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Abstract

In the face of sparsity, statistical models are
often interpolated with lower order (backoff)
models, particularly in Language Modeling.
In this paper, we argue that there is a rela-
tion between the higher order and the backoff
model that must be satisfied in order for the
interpolation to be effective. We show that in
n-gram models, the relation is trivially held,
but in models that allow arbitrary clustering
of context (such as decision tree models), this
relation is generally not satisfied. Based on
this insight, we also propose a generalization
of linear interpolation which significantly im-
proves the performance of a decision tree lan-
guage model.

1 Introduction

A prominent use case for Language Models (LMs)
in NLP applications such as Automatic Speech
Recognition (ASR) and Machine Translation (MT)
is selection of the most fluent word sequence among
multiple hypotheses. Statistical LMs formulate the
problem as the computation of the model’s proba-
bility to generate the word sequencew1w2 . . . wm ≡
wm

1 , assuming that higher probability corresponds to
more fluent hypotheses. LMs are often represented
in the following generative form:

p(wm
1 ) =

m∏
i=1

p(wi|wi−1
1 )

In the following discussion, we will refer to the func-
tion p(wi|wi−1

1 ) as a language model.

Note the context space for this function, wi−1
1

is arbitrarily long, necessitating some independence
assumption, which usually consists of reducing the
relevant context to n− 1 immediately preceding to-
kens:

p(wi|wi−1
1 ) ≈ p(wi|wi−1

i−n+1)

These distributions are typically estimated from ob-
served counts of n-grams wi

i−n+1 in the training
data. The context space is still far too large; there-
fore, the models are recursively smoothed using
lower order distributions. For instance, in a widely
used n-gram LM, the probabilities are estimated as
follows:

p̃(wi|wi−1
i−n+1) = ρ(wi|wi−1

i−n+1) + (1)

γ(wi−1
i−n+1) · p̃(wi|wi−1

i−n+2)

where ρ is a discounted probability1.
In addition to n-gram models, there are many

other ways to estimate probability distributions
p(wi|wi−1

i−n+1); in this work, we are particularly in-
terested in models involving decision trees (DTs).
As in n-gram models, DT models also often uti-
lize interpolation with lower order models; however,
there are issues concerning the interpolation which
arise from the fact that decision trees permit arbi-
trary clustering of context, and these issues are the
main subject of this paper.

1We refer the reader to (Chen and Goodman, 1999) for a
survey of the discounting methods for n-gram models.
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2 Decision Trees

The vast context space in a language model man-
dates the use of context clustering in some form. In
n-gram models, the clustering can be represented as
a k-ary decision tree of depth n − 1, where k is the
size of the vocabulary. Note that this is a very con-
strained form of a decision tree, and is probably sub-
optimal. Indeed, it is likely that some of the clusters
predict very similar distributions of words, and the
model would benefit from merging them. Therefore,
it is reasonable to believe that arbitrary (i.e., uncon-
strained) context clustering such as a decision tree
should be able to outperform the n-gram model.

A decision tree provides us with a clustering func-
tion Φ(wi−1

i−n+1) → {Φ1, . . . ,ΦN}, where N is the
number of clusters (leaves in the DT), and clusters
Φk are disjoint subsets of the context space; the
probability estimation is approximated as follows:

p(wi|wi−1
i−n+1) ≈ p(wi|Φ(wi−1

i−n+1)) (2)

Methods of DT construction and probability estima-
tion used in this work are based on (Filimonov and
Harper, 2009); therefore, we refer the reader to that
paper for details.

Another advantage of using decision trees is the
ease of adding parameters such as syntactic tags:

p(wm
1 ) =

X
t1...tm

p(wm
1 t

m
1 ) =

X
t1...tm

mY
i=1

p(witi|wi−1
1 ti−1

1 )

≈
X

t1...tm

mY
i=1

p(witi|Φ(wi−1
i−n+1t

i−1
i−n+1)) (3)

In this case, the decision tree would cluster the con-
text space wi−1

i−n+1t
i−1
i−n+1 based on information the-

oretic metrics, without utilizing heuristics for which
order the context attributes are to be backed off (cf.
Eq. 1). In subsequent discussion, we will write
equations for word models (Eq. 2), but they are
equally applicable to joint models (Eq. 3) with trivial
transformations.

3 Backoff Property

Let us rewrite the interpolation Eq. 1 in a more
generic way:

p̃(wi|wi−1
1 ) = ρn(wi|Φn(wi−1

1 )) + (4)
γ(Φn(wi−1

1 )) · p̃(wi|BOn−1(wi−1
1 ))

where, ρn is a discounted distribution, Φn is a clus-
tering function of order n, and γ(Φn(wi−1

1 )) is the
backoff weight chosen to normalize the distribution.
BOn−1 is the backoff clustering function of order
n − 1, representing a reduction of context size. In
the case of an n-gram model, Φn(wi−1

1 ) is the set
of word sequences where the last n − 1 words are
wi−1

i−n+1, similarly, BOn−1(wi−1
1 ) is the set of se-

quences ending with wi−1
i−n+2. In the case of a de-

cision tree model, the same backoff function is typ-
ically used, but the clustering function can be arbi-
trary.

The intuition behind Eq. 4 is that the backoff con-
text BOn−1(wi−1

1 ) allows for more robust (but less
informed) probability estimation than the context
cluster Φn(wi−1

1 ). More precisely:

∀wi−1
1 ,W : W ∈ Φn(wi−1

1 )⇒W ∈ BOn−1(wi−1
1 )

(5)
that is, every word sequence W that belongs to a
context cluster Φn(wi−1

1 ), belongs to the same back-
off cluster BOn−1(wi−1

1 ) (hence has the same back-
off distribution). For n-gram models, Property 5
trivially holds since BOn−1(wi−1

1 ) and Φn(wi−1
1 )

are defined as sets of sequences ending with wi−1
i−n+2

and wi−1
i−n+1 with the former clearly being a superset

of the latter. However, when Φ can be arbitrary, e.g.,
a decision tree, that is not necessarily so.

Let us consider what happens when we have
two context sequences W and W ′ that belong to
the same cluster Φn(W ) = Φn(W ′) but differ-
ent backoff clusters BOn−1(W ) 6= BOn−1(W ′).
For example: suppose we have Φ(wi−2wi−1) =
({on}, {may,june}) and two corresponding backoff
clusters: BO′ = ({may}) and BO′′ = ({june}).
Following on, the word may is likely to be a month
rather than a modal verb, although the latter is
more frequent and will dominate in BO′. There-
fore we have much less faith in p̃(wi|BO′) than in
p̃(wi|BO′′) and would like a much smaller weight γ
assigned to BO′, but it is not possible in the back-
off scheme in Eq. 4, thus we will have to settle on a
compromise value of γ, resulting in suboptimal per-
formance.

We would expect this effect to be more pro-
nounced in higher order models, because viola-
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tions of Property 5 are less frequent in lower or-
der models. Indeed, in a 2-gram model, the
property is never violated since its backoff, un-
igram, contains the entire context in one clus-
ter. The 3-gram example above, Φ(wi−2wi−1) =
({on}, {may,june}), although illustrative, is not
likely to occur because may in wi−1 position will
likely be split from june very early on, since it is
very informative about the following word. How-
ever, in a 4-gram model, Φ(wi−3wi−2wi−1) =
({on}, {may,june}, {<unk>}) is quite plausible.

Thus, arbitrary clustering (an advantage of DTs)
leads to violation of Property 5, which, we argue,
may lead to a degradation of performance if back-
off interpolation Eq. 4 is used. In the next section,
we generalize the interpolation scheme which, as we
show in Section 6, allows us to find a better solution
in the face of the violation of Property 5.

4 Linear Interpolation

We use linear interpolation as the baseline, rep-
resented recursively, which is similar to Jelinek-
Mercer smoothing for n-gram models (Jelinek and
Mercer, 1980):

p̃n(wi|wi−1
i−n+1) = λn(φn) · pn(wi|φn) + (6)

(1− λn(φn)) · p̃n−1(wi|wi−1
i−n+2)

where φn ≡ Φn(wi−1
i−n+1), and λn(φn) ∈ [0, 1] are

assigned to each cluster and are optimized on a held-
out set using EM. pn(wi|φn) is the probability dis-
tribution at the cluster φn in the tree of order n. This
interpolation method is particularly useful as, un-
like count-based discounting methods (e.g., Kneser-
Ney), it can be applied to already smooth distribu-
tions pn

2.

5 Generalized Interpolation

We can unwind the recursion in Eq. 6 and make sub-
stitutions:

λn(φn) → λ̂n(φn)

(1− λn(φn)) · λn−1(φn−1) → λ̂n−1(φn−1)
...

2In decision trees, the distribution at a cluster (leaf) is often
recursively interpolated with its parent node, e.g. (Bahl et al.,
1990; Heeman, 1999; Filimonov and Harper, 2009).

p̃n(wi|wi−1
i−n+1) =

n∑
m=1

λ̂m(φm) · pm(wi|φm) (7)

n∑
m=1

λ̂m(φm) = 1

Note that in this parameterization, the weight as-
signed to pn−1(wi|φn−1) is limited by (1−λn(φn)),
i.e., the weight assigned to the higher order model.

Ideally we should be able to assign a different set
of interpolation weights for every eligible combina-
tion of clusters φn, φn−1, . . . , φ1. However, not only
is the number of such combinations extremely large,
but many of them will not be observed in the train-
ing data, making parameter estimation cumbersome.
Therefore, we propose the following parameteriza-
tion for the interpolation of decision tree models:

p̃n(wi|wi−1
i−n+1) =

∑n
m=1 λm(φm) · pm(wi|φm)∑n

m=1 λm(φm)
(8)

Note that this parameterization has the same num-
ber of parameters as in Eq. 7 (one per cluster in ev-
ery tree), but the number of degrees of freedom is
larger because the the parameters are not constrained
to sum to 1, hence the denominator.

In Eq. 8, there is no explicit distinction between
higher order and backoff models. Indeed, it ac-
knowledges that lower order models are not backoff
models when Property 5 is not satisfied. However,
it can be shown that Eq. 8 reduces to Eq. 6 if Prop-
erty 5 holds. Therefore, the new parameterization
can be thought of as a generalization of linear inter-
polation. Indeed, suppose we have the parameteri-
zation in Eq. 8 and Property 5. Let us transform this
parameterization into Eq. 7 by induction. We define:

Λm ≡
m∑

k=1

λk ; Λm = λm + Λm−1

where, due to space limitation, we redefine λm ≡
λm(φm) and Λm ≡ Λm(φm); φm ≡ Φm(wi−1

1 ),
i.e., the cluster of model order m, to which the se-
quence wi−1

1 belongs. The lowest order distribution
p1 is not interpolated with anything, hence:

Λ1p̃1(wi|φ1) = λ1p1(wi|φ1)

Now the induction step. From Property 5, it follows
that φm ⊂ φm−1, thus, for all sequences in ∀wn

1
∈
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n-gram DT: Eq. 6 (baseline) DT: Eq. 8 (generalized)
order Jelinek-Mercer Mod KN word-tree syntactic word-tree syntactic

2-gram 270.2 261.0 257.8 214.3 258.1 214.6
3-gram 186.5 (31.0%) 174.3 (33.2%) 168.7 (34.6%) 156.8 (26.8%) 168.4 (34.8%) 155.3 (27.6%)
4-gram 177.1 (5.0%) 161.7 (7.2%) 164.0 (2.8%) 156.5 (0.2%) 155.7 (7.5%) 147.1 (5.3%)

Table 1: Perplexity results on PTB WSJ section 23. Percentage numbers in parentheses denote the reduction of per-
plexity relative to the lower order model of the same type. “Word-tree” and “syntactic” refer to DT models estimated
using words only (Eq. 2) and words and tags jointly (Eq. 3).

φm, we have the same distribution:

λmpm(wi|φm) + Λm−1p̃m−1(wi|φm−1) =

= Λm

(
λm

Λm
pm(wi|φm) +

Λm−1

Λm
p̃m−1(wi|φm−1)

)
= Λm

(
λ̂mpm(wi|φm) + (1− λ̂m)p̃m−1(wi|φm−1)

)
= Λmp̃m(wi|φm) ; λ̂m ≡

λm

Λm

Note that the last transformation is because φm ⊂
φm−1; had it not been the case, p̃m would depend on
the combination of φm and φm−1 and require multi-
ple parameters to be represented on its entire domain
wn

1 ∈ φm. After n iterations, we have:

n∑
m=1

λm(φm)pm(wi|φm) = Λnp̃n(wi|φn); (cf. Eq. 8)

Thus, we have constructed p̃n(wi|φn) using the
same recursive representation as in Eq. 6, which
proves that the standard linear interpolation is a spe-
cial case of the new interpolation scheme, which oc-
curs when the backoff Property 5 holds.

6 Results and Discussion

Models are trained on 35M words of WSJ 94-96
from LDC2008T13. The text was converted into
speech-like form, namely numbers and abbrevia-
tions were verbalized, text was downcased, punc-
tuation was removed, and contractions and posses-
sives were joined with the previous word (i.e., they
’ll becomes they’ll). For syntactic modeling, we
used tags comprised of POS tags of the word and its
head, as in (Filimonov and Harper, 2009). Parsing
of the text for tag extraction occurred after verbal-
ization of numbers and abbreviations but before any
further processing; we used an appropriately trained
latent variable PCFG parser (Huang and Harper,
2009). For reference, we include n-gram models

with Jelinek-Mercer and modified interpolated KN
discounting. All models use the same vocabulary of
approximately 50k words.

We implemented four decision tree models3: two
using the interpolation method of (Eq. 6) and two
based on the generalized interpolation (Eq. 8). Pa-
rameters λ were estimated using the L-BFGS to
minimize the entropy on a heldout set. In order to
eliminate the influence of all factors other than the
interpolation, we used the same decision trees. The
perplexity results on WSJ section 23 are presented in
Table 1. As we have predicted, the effect of the new
interpolation becomes apparent at the 4-gram order,
when Property 5 is most frequently violated. Note
that we observe similar patterns for both word-tree
and syntactic models, with syntactic models outper-
forming their word-tree counterparts.

We believe that (Xu and Jelinek, 2004) also suf-
fers from violation of Property 5, however, since
they use a heuristic method4 to set backoff weights,
it is difficult to ascertain the extent.

7 Conclusion

The main contribution of this paper is the insight
that in the standard recursive backoff there is an im-
plied relation between the backoff and the higher or-
der models, which is essential for adequate perfor-
mance. When this relation is not satisfied other in-
terpolation methods should be employed; hence, we
propose a generalization of linear interpolation that
significantly outperforms the standard form in such
a scenario.

3We refer the reader to (Filimonov and Harper, 2009) for
details on the tree construction algorithm.

4The higher order model was discounted according to KN
discounting, while the lower order model could be either a lower
order DT (forest) model, or a standard n-gram model, with the
former performing slightly better.
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