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Abstract

Several results in the word segmentation liter-
ature suggest that description length provides
a useful estimate of segmentation quality in
fully unsupervised settings. However, since
the space of potential segmentations grows ex-
ponentially with the length of the corpus, no
tractable algorithm follows directly from the
Minimum Description Length (MDL) princi-
ple. Therefore, it is necessary to generate
a set of candidate segmentations and select
between them according to the MDL princi-
ple. We evaluate several algorithms for gen-
erating these candidate segmentations on a
range of natural language corpora, and show
that the Bootstrapped Voting Experts algo-
rithm consistently outperforms other methods
when paired with MDL.

1 Introduction

The goal of unsupervised word segmentation is to
discover correct word boundaries in natural lan-
guage corpora where explicit boundaries are absent.
Often, unsupervised word segmentation algorithms
rely heavily on parameterization to produce the cor-
rect segmentation for a given language. The goal
of fully unsupervised word segmentation, then, is to
recover the correct boundaries for arbitrary natural
language corpora without explicit human parameter-
ization. This means that a fully unsupervised algo-
rithm would have to set its own parameters based
only on the corpus provided to it.

In principle, this goal can be achieved by creat-
ing a function that measures the quality of a seg-
mentation in a language-independent way, and ap-
plying this function to all possible segmentations of
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the corpora to select the best one. Evidence from the
word segmentation literature suggests that descrip-
tion length provides a good approximation to this
segmentation quality function. We discuss the Min-
imum Description Length (MDL) principle in more
detail in the next section. Unfortunately, evaluating
all possible segmentations is intractable, since a cor-
pus of length n has 2"~ ! possible segmentations. As
a result, MDL methods have to rely on an efficient
algorithm to generate a relatively small number of
candidate segmentations to choose between. It is
an empirical question which algorithm will generate
the most effective set of candidate segmentations.
In this work, we compare a variety of unsupervised
word segmentation algorithms operating in conjunc-
tion with MDL for fully unsupervised segmentation,
and find that the Bootstrapped Voting Experts (BVE)
algorithm generally achieves the best performance.

2 Minimum Description Length

At a formal level, a segmentation algorithm is a
function SEGMENT(c, §) that maps a corpus ¢ and
a vector of parameters § € © to one of the
possible segmentations of that corpus. The goal
of fully unsupervised segmentation is to reduce
SEGMENT(c, ) to SEGMENT(c) by removing the
need for a human to specify a particular §. One way
to achieve this goal is to generate a set of candidate
segmentations by evaluating the algorithm for mul-
tiple values of #, and then choose the segmentation
that minimizes some cost function. Thus, we can
define SEGMENT(c) in terms of SEGMENT(c, 6):

SEGMENT(c) = argmin COST(SEGMENT(c, 0))
0€0
1
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Now, selecting the best segmentation is treated as a
model selection problem, where each segmentation
provides a different model of the corpus. Intuitively,
a general approach is to choose the simplest model
that explains the data, a principle known as Occam’s
Razor. In information theory, this intuitive princi-
ple of simplicity or parsimony has been formalized
as the Minimum Description Length (MDL) princi-
ple, which states that the most likely model of the
data is the one that requires the fewest bits to en-
code (Rissanen, 1983). The number of bits required
to represent a model is called its description length.
Previous work applying the MDL principle to seg-
mentation (Yu, 2000; Argamon et al., 2004; Zhikov
et al., 2010) is motivated by the observation that ev-
ery segmentation of a corpus implicitly defines a lex-
icon, or set of words.

More formally, the segmented corpus S is a list
of words s1s2...sy. L(S5), the lexicon implicitly
defined by S, is simply the set of unique words in .S.
The description length of .S can then be broken into
two components, the description length of the lex-
icon and the description length of the corpus given
the lexicon. If we consider S as being generated
by sampling words from a probability distribution
over words in the lexicon, the number of bits re-
quired to represent each word s; in S is simply its
surprisal, — log P(s;). The information cost of the
corpus given the lexicon is then computed by sum-
ming the surprisal of each word s; in the corpus:

N

CODE(S|L(S)) = - Zizl log P(si) ()
To properly compute the description length of the
segmentation, we must also include the cost of the
lexicon. Adding in the description length of the lex-
icon forces a trade-off between the lexicon size and
the size of the compressed corpus. For purposes of
the description length calculation, the lexicon is sim-
ply treated as a separate corpus consisting of char-
acters rather than words. The description length can
then be computed in the usual manner, by summing
the surprisal of each character in each word in the
lexicon:

CODE(L(S)) = — ZWEL(S) ZkEw log P(k)  (3)

where k € w refers to the characters in word w
in the lexicon. As noted by Zhikov et al. (Zhikov
et al., 2010), an additional term is needed for the
information required to encode the parameters of the
lexicon model. This quantity is normally estimated
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by (k/2) log n, where k is the degrees of freedom in
the model and n is the length of the data (Rissanen,
1983). Substituting the appropriate values for the
lexicon model yields:

7|L(S;| —1 * log N

)
The full description length calculation is simply the
sum of three terms shown in 2, 3, and 4. From this
definition, it follows that a low description length
will be achieved by a segmentation that defines a
small lexicon, which nonetheless reduces the corpus
to a short series of mostly high-frequency words.

3 Generating Candidate Segmentations

Recent unsupervised MDL algorithms rely on
heuristic methods to generate candidate segmenta-
tions. Yu (2000) makes simplifying assumptions
about the nature of the lexicon, and then performs an
Expectation-Maximization (EM) search over this re-
duced hypothesis space. Zhikov et al. (2010) present
an algorithm called EntropyMDL that generates a
candidate segmentation based on branching entropy,
and then iteratively refines the segmentation in an
attempt to greedily minimize description length.

We selected three entropy-based algorithms for
generating candidate segmentations, because such
algorithms do not depend on the details of any par-
ticular language. By “unsupervised,” we mean op-
erating on a single unbroken sequence of characters
without any boundary information; Excluded from
consideration are a class of algorithms that are semi-
supervised because they require sentence boundaries
to be provided. Such algorithms include MBDP-1
(Brent, 1999), HDP (Goldwater et al., 2009), and
WordEnds (Fleck, 2008), each of which is discussed
in Section 5.

3.1 Phoneme to Morpheme

Tanaka-Ishii and Jin (2006) developed Phoneme to
Morpheme (PtM) to implement ideas originally de-
veloped by Harris (1955). Harris noticed that if
one proceeds incrementally through a sequence of
phonemes and asks speakers of the language to
count the letters that could appear next in the se-
quence (today called the successor count), the points
where the number increases often correspond to
morpheme boundaries. Tanaka-Ishii and Jin cor-



rectly recognized that this idea was an early ver-
sion of branching entropy, given by Hpg(seq) =
— > eg Plc|seq) log P(c|seq), where S is the set
of successors to seq. They designed their PtM algo-
rithm based on branching entropy in both directions,
and it was able to achieve scores near the state of the
art on word segmentation in phonetically-encoded
English and Chinese. PtM posits a boundary when-
ever the increase in the branching entropy exceeds
a threshold. This threshold provides an adjustable
parameter for PtM, which we exploit to generate 41
candidate segmentations by trying every threshold in
the range [0.0, 2.0, in steps of 0.05.

3.2 Voting Experts

The Voting Experts (VE) algorithm (Cohen and
Adams, 2001) is based on the premise that words
may be identified by an information theoretic signa-
ture: Entropy within a word is relatively low, en-
tropy at word boundaries is relatively high. The
name Voting Experts refers to the “experts” that vote
on possible boundary locations. VE has two ex-
perts: One votes to place boundaries after sequences
that have low internal entropy (surprisal), given by
Hi(seq) = —log P(seq), the other votes after se-
quences that have high branching entropy. All se-
quences are evaluated locally, within a sliding win-
dow, so the algorithm is very efficient. A boundary
is generated whenever the vote total at a given loca-
tion exceeds a threshold, and in some cases only if
the vote total is a local maximum. VE thus has three
parameters that can be manipulated to generate po-
tential segmentations: Window size, threshold, and
local maximum. Pairing VE with MDL was first ex-
amined by Hewlett and Cohen (2009). We generated
a set of 104 segmentations by trying every viable
threshold and local max setting for each window size
between 2 and 9.

3.3 Bootstrapped Voting Experts

The Bootstrapped Voting Experts (BVE) algorithm
(Hewlett and Cohen, 2009) is an extension to VE.
BVE works by segmenting the corpus repeatedly,
with each new segmentation incorporating knowl-
edge gained from previous segmentations. As with
many bootstrapping methods, three essential com-
ponents are required: some initial seed knowledge,
a way to represent knowledge, and a way to lever-
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age that knowledge to improve future performance.
For BVE, the seed knowledge consists of a high-
precision segmentation generated by VE. After this
seed segmentation, BVE segments the corpus re-
peatedly, lowering the vote threshold with each iter-
ation. Knowledge gained from prior segmentations
is represented in a data structure called the knowl-
edge trie. During voting, this knowledge trie pro-
vides statistics for a third expert that places votes in
contexts where boundaries were most frequently ob-
served during the previous iteration. Each iteration
of BVE provides a candidate segmentation, and ex-
ecuting BVE for window sizes 2-8 and both local
max settings generated a total of 126 segmentations.

4 Experiments

There are two ways to evaluate the quality of a seg-
mentation algorithm in the MDL framework. The
first is to directly measure the quantity of the seg-
mentation chosen by MDL. For word segmentation,
this is typically done by computing the F-score,
where F' = (2 * Precision * Recall)/(Precision +
Recall), for both boundaries (BF) and words (WF)
found by the algorithm. The second is to com-
pare the minimal description length among the can-
didates to the true description length of the corpus.

4.1 Results

We chose a diverse set of natural language cor-
pora, including some widely-used corpora to facil-
itate comparison. For each corpus, we generated a
set of candidate segmentations with PtM, VE, and
BVE, as described in the previous section. From
each set of candidates, results for the segmentation
with minimal description length are presented in the
tables below. Where possible, results for other algo-
rithms are presented in italics, with semi-supervised
algorithms set apart. Source code for all algorithms
evaluated here, as well as data files for all corpora,
are available online'.

One of the most commonly-used benchmark cor-
pora for unsupervised word segmentation is the
BRS87 corpus. This corpus is a phonemic encod-
ing of the Bernstein Ratner corpus (Bernstein Rat-
ner, 1987) from the CHILDES database of child-
directed speech (MacWhinney, 2000). The perfor-

'nttp://code.google.com/p/voting-experts



mance of the algorithms on BR87 is shown in Ta-
ble 1 below. As with all experiments in this work,
the input was presented as one continuous sequence
of characters with no word or sentence boundaries.
Published results for two unsupervised algorithms,
the MDL-based algorithm of Yu (2000) and the
EntropyMDL (EMDL) algorithm of Zhikov et al.
(2010), on this widely-used benchmark corpus are
shown in italics. Set apart in the table are pub-
lished results for three semi-supervised algorithms,
MBDP-1 (Brent, 1999), HDP (Goldwater, 2007),
and WordEnds (Fleck, 2008), described in Section
5. These algorithms operate on a version of the cor-

in Table 3 were obtained using the first 100,000
words of the Chinese Gigaword corpus (Huang,
2007), written in Chinese characters. The word
boundaries specified in the Chinese Gigaword Cor-
pus were used as a gold standard. Table 4 shows
results for a roughly 100,000 word subset of a cor-
pus of Thai novels written in the Thai script, taken
from a recent Thai word segmentation competition,
InterBEST 2009. Working with a similar but much
larger corpus of Thai text, Zhikov et al. were able
to achieve slightly better performance (BF=0.934,
WF=0.822).

that includ ¢ boundari [Algorithm J| BP [ BR | BF ][ WP | WR [ WF ]
pus that includes sentence boundaries. POM+MDL || 0.894 | 0.610 | 0.725 || 0571 | 0.390 | 0.463
i VE+MDL 0.871 | 0.847 | 0.859 || 0.657 | 0.639 | 0.648
[Algorithm [| BP [ BR [ BF || WP [ WR [ WF | BVE+MDL || 0.834 | 0.914 | 0.872 || 0.654 | 0.717 | 0.684

PtM+MDL 0.861 | 0.897 | 0.879 || 0.676 | 0.704 | 0.690

VE+MDL 0.875 | 0.803 | 0.838 || 0.614 | 0.563 | 0.587 . .

BVE+MDL 110.949 10879 [ 0.913 [ 0.793 [ 0.734 | 0.762 Table 3: Results for a corpus of orthographic Chinese.

Yu 0.722 | 0.724 | 0.723 NR NR NR

EMDL NR NR 0.907 NR NR 0.750
MBDP-1__ | 0.803 | 0.843 | 0.823 || 0.670 | 0.694 | 0.682 [ Algorithm [[ BP [ BR | BF [[ WP [ WR | WF |
HDP 0.903 | 0.808 | 0.852 [ 0.752 |1 0.696 | 0.723 PtM+MDL 0.863 | 0.934 | 0.897 || 0.702 | 0.760 | 0.730
WordEnds 0.946 | 0.737 | 0.829 NR NR 0.707 VE+MDL 0.916 | 0.837 | 0.874 || 0.702 | 0.642 | 0.671
BVE+MDL || 0.889 | 0.969 | 0.927 || 0.767 | 0.836 | 0.800

Table 1: Results for the BR87 corpus.

Results for one corpus, the first 50,000 charac-
ters of George Orwell’s 71984, have been reported
in nearly every VE-related paper. It thus provides
a good opportunity to compare to the other VE-
derived algorithms: Hierarchical Voting Experts —
3 Experts (Miller and Stoytchev, 2008) and Markov
Experts (Cheng and Mitzenmacher, 2005). Table 2
shows the results for candidate algorithms as well as
the two other VE-derived algorithms, HVE-3E and
ME.

[Algorithm J[ BP | BR | BF [[ WP [ WR [ WF |
PtM+MDL [ 0.694 | 0.833 [ 0.758 [[ 0.421 [ 0.505 | 0.459
VE+MDL 0.788 | 0.774 | 0.781 || 0.498 | 0.489 | 0.493
BVE+MDL || 0.841 | 0.828 | 0.834 || 0.585 | 0.577 | 0.581
HVE-3E 0.796 | 0.771 | 0.784 || 0.512 | 0.496 | 0.504
ME 0.809 | 0.787 [ 0.798 || NR | 0.542 | NR

Table 2: Results for the first 50,000 characters of /984.

Chinese and Thai are both commonly written
without spaces between words, though some punc-
tuation is often included. Because of this, these
languages provide an excellent real-world challenge
for unsupervised segmentation. The results shown
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Table 4: Results for a corpus of orthographic Thai.

The Switchboard corpus (Godfrey and Holli-
man, 1993) was created by transcribing sponta-
neous speech, namely telephone conversations be-
tween English speakers. Results in Table 5 are for
a roughly 64,000 word section of the corpus, tran-
scribed orthographically.

Algorithm || BP | BR | BF || WP | WR | WF |

PtM+MDL || 0.761 | 0.837 | 0.797 || 0.499 | 0.549 | 0.523
VE+MDL 0.779 | 0.855 | 0.815 || 0.530 | 0.582 | 0.555
BVE+MDL || 0.890 | 0.818 | 0.853 || 0.644 | 0.592 | 0.617
Yu 0.674 | 0.665 | 0.669 NR NR NR

WordEnds 0.900 | 0.755 | 0.821 NR NR | 0.663
HDP 0.731 | 0.924 | 0.816 NR NR | 0.636

Table 5: Results for a subset of the Switchboard corpus.

4.2 Description Length

Table 6 shows the best description length achieved
by each algorithm for each of the test corpora. In
most cases, BVE compressed the corpus more than
VE, which in turn achieved better compression than
PtM. In Chinese, the two VE-algorithms were able
to compress the corpus beyond the gold standard



size, which may mean that these algorithms are
sometimes finding repeated units larger than words,
such as phrases.

[ Algorithm  [[ BR87 [ Orwell [ SWB [ CGW | Thai |
PtM+MDL 3.43¢5 ] 6.10e5 | 8.79¢5 | 1.80e6 [ 1,23¢6
VE+MDL 3.41e5 | 5.75¢5 | 8.24e5 | 1.54e6 | 1.23¢6
BVE+MDL 3.13e5 | 5.29¢5 | 7.64e5 | 1.56e6 | 1.13¢6
Gold Standard [[ 2.99¢5 | 5.07e5 | 7.06e5 | 1.62e6 | 1.11e6

Table 6: Best description length achieved by each algo-
rithm compared to the actual description length of the
corpus.

5 Related Work

The algorithms described in Section 3 are all rela-
tively recent algorithms based on entropy. Many al-
gorithms for computational morphology make use
of concepts similar to branching entropy, such as
successor count. The HubMorph algorithm (John-
son and Martin, 2003) adds all known words to a
trie and then performs DFA minimization (Hopcroft
and Ullman, 1979) to convert the trie to a finite state
machine. In this DFA, it searches for sequences of
states (stretched hubs) with low branching factor in-
ternally and high branching factor at the boundaries,
which is analogous to the chunk signature that drives
VE and BVE, as well as the role of branching en-
tropy in PtM.

MDL is analogous to Bayesian inference, where
the information cost of the model CODE(M) acts
as the prior distribution over models P(M), and
CODE(D| M), the information cost of the data given
the model, acts as the likelihood function P(D|M).
Thus, Bayesian word segmentation methods may
be considered related as well. Indeed, one of the
early Bayesian methods, MBDP-1 (Brent, 1999)
was adapted from an earlier MDL-based method.
Venkataraman (2001) simplified MBDP-1, relaxed
some of its assumptions while preserving the same
level of performance. Recently, Bayesian methods
with more sophisticated language models have been
developed, including one that models language gen-
eration as a hierarchical Dirichlet process (HDP),
in order to incorporate the effects of syntax into
word segmentation (Goldwater et al., 2009). An-
other recent algorithm, WordEnds, generalizes in-
formation about the distribution of characters near
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word boundaries to improve segmentation (Fleck,
2008), which is analogous to the role of the knowl-
edge trie in BVE.

6 Discussion

For the five corpora tested above, BVE achieved
the best performance in conjunction with MDL, and
also achieved the lowest description length. We have
shown that the combination of BVE and MDL pro-
vides an effective approach to unsupervised word
segmentation, and that it can equal or surpass semi-
supervised algorithms such as MBDP-1, HDP, and
WordEnds in some cases.

All of the languages tested here have relatively
few morphemes per word. One area for future work
is a full investigation of the performance of these al-
gorithms in polysynthetic languages such as Inukti-
tut, where each word contains many morphemes. It
is likely that in such languages, the algorithms will
find morphs rather than words.
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