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Abstract

We present a pointwise approach to Japanese
morphological analysis (MA) that ignores
structure information during learning and tag-
ging. Despite the lack of structure, it is able to
outperform the current state-of-the-art struc-
tured approach for Japanese MA, and achieves
accuracy similar to that of structured predic-
tors using the same feature set. We also
find that the method is both robust to out-
of-domain data, and can be easily adapted
through the use of a combination of partial an-
notation and active learning.

1 Introduction

Japanese morphological analysis (MA) takes an un-
segmented string of Japanese text as input, and out-
puts a string of morphemes annotated with parts of
speech (POSs). As MA is the first step in Japanese
NLP, its accuracy directly affects the accuracy of
NLP systems as a whole. In addition, with the prolif-
eration of text in various domains, there is increasing
need for methods that are both robust and adaptable
to out-of-domain data (Escudero et al., 2000).
Previous approaches have used structured predic-
tors such as hidden Markov models (HMMs) or con-
ditional random fields (CRFs), which consider the
interactions between neighboring words and parts
of speech (Nagata, 1994; Asahara and Matsumoto,
2000; Kudo et al., 2004). However, while struc-
ture does provide valuable information, Liang et al.
(2008) have shown that gains provided by struc-
tured prediction can be largely recovered by using a
richer feature set. This approach has also been called

“pointwise” prediction, as it makes a single indepen-
dent decision at each point (Neubig and Mori, 2010).
While Liang et al. (2008) focus on the speed ben-
efits of pointwise prediction, we demonstrate that it
also allows for more robust and adaptable MA. We
find experimental evidence that pointwise MA can
exceed the accuracy of a state-of-the-art structured
approach (Kudo et al., 2004) on in-domain data, and
is significantly more robust to out-of-domain data.
We also show that pointwise MA can be adapted
to new domains with minimal effort through the
combination of active learning and partial annota-
tion (Tsuboi et al., 2008), where only informative
parts of a particular sentence are annotated. In a
realistic domain adaptation scenario, we find that a
combination of pointwise prediction, partial annota-
tion, and active learning allows for easy adaptation.

2 Japanese Morphological Analysis

Japanese MA takes an unsegmented string of char-
acters ] as input, segments it into morphemes w7,
and annotates each morpheme with a part of speech
t{. This can be formulated as a two-step process of
first segmenting words, then estimating POSs (Ng
and Low, 2004), or as a single joint process of find-
ing a morpheme/POS string from unsegmented text
(Kudo et al., 2004; Nakagawa, 2004; Kruengkrai et
al., 2009). In this section we describe an existing
joint sequence-based method for Japanese MA, as
well as our proposed two-step pointwise method.

2.1 Joint Sequence-Based MA

Japanese MA has traditionally used sequence based
models, finding a maximal POS sequence for en-
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Figure 1: Joint MA (a) performs maximization over the
entire sequence, while two-step MA (b) maximizes the 4
boundary and 4 POS tags independently.

Type Feature Strings

Unigram tj, tjwj, c(wj), tjc(wj)

Bigram tj—ltj, tj_ltj’w]‘_l,
tj_ltjwj, tj_ltjwj_le

Table 1: Features for the joint model using tags ¢ and
words w. ¢(-) is a mapping function onto character types
(kanji, katakana, etc.).

tire sentences as in Figure 1 (a). The CRF-based
method presented by Kudo et al. (2004) is gener-
ally accepted as the state-of-the-art in this paradigm.
CREFs are trained over segmentation lattices, which
allows for the handling of variable length sequences
that occur due to multiple segmentations. The model
is able to take into account arbitrary features, as well
as the context between neighboring tags.

We follow Kudo et al. (2004) in defining our fea-
ture set, as summarized in Table 1!. Lexical features
were trained for the top 5000 most frequent words in
the corpus. It should be noted that these are word-
based features, and information about transitions be-
tween POS tags is included. When creating training
data, the use of word-based features indicates that
word boundaries must be annotated, while the use
of POS transition information further indicates that
all of these words must be annotated with POSs.

"More fine-grained POS tags have provided small boosts in
accuracy in previous research (Kudo et al., 2004), but these in-
crease the annotation burden, which is contrary to our goal.

Type ‘ Feature Strings

Character | xj, xr, T;_1%], X%y,

n-gram TrZy41, TI—1T] Ty, T TrLr41

Char. Type | c¢(x;), c(x)

n-gram c(xi—1xy), c(zzy), e(xrTrg1)
c(w1—9xi-171), (W11 20%7)
C(SC[SCTSCT+1), C(xrxr+1xr+2)

WS Only ls, s, is

POS Only | wj, c(wy), d;

Table 2: Features for the two-step model. x; and z,. indi-
cate the characters to the left and right of the word bound-
ary or word w; in question. [, 5, and is represent the
left, right, and inside dictionary features, while d;, indi-
cates that tag k exists in the dictionary for word j.

2.2 2-Step Pointwise MA

In our research, we take a two-step approach, first
segmenting character sequence x! into the word se-
quence w{ with the highest probability, then tagging
each word with parts of speech ¢{. This approach is
shown in Figure 1 (b).

We follow Sassano (2002) in formulating word
segmentation as a binary classification problem, es-
timating boundary tags b{_l. Tag b; = 1 indi-
cates that a word boundary exists between charac-
ters x; and z;41, while b; = 0 indicates that a word
boundary does not exist. POS estimation can also
be formulated as a multi-class classification prob-
lem, where we choose one tag t; for each word w;.
These two classification problems can be solved by
tools in the standard machine learning toolbox such
as logistic regression (LR), support vector machines
(SVMs), or conditional random fields (CRFs).

We use information about the surrounding charac-
ters (character and character-type n-grams), as well
as the presence or absence of words in the dictio-
nary as features (Table 2). Specifically dictionary
features for word segmentation /s and r are active
if a string of length s included in the dictionary is
present directly to the left or right of the present
word boundary, and 7, is active if the present word
boundary is included in a dictionary word of length
s. Dictionary feature d;;, for POS estimation indi-
cates whether the current word w; occurs as a dic-
tionary entry with tag tj.

Previous work using this two-stage approach has



used sequence-based prediction methods, such as
maximum entropy Markov models (MEMMs) or
CRFs (Ng and Low, 2004; Peng et al., 2004). How-
ever, as Liang et al. (2008) note, and we confirm,
sequence-based predictors are often not necessary
when an appropriately rich feature set is used. One
important difference between our formulation and
that of Liang et al. (2008) and all other previous
methods is that we rely only on features that are di-
rectly calculable from the surface string, without us-
ing estimated information such as word boundaries
or neighboring POS tags?. This allows for training
from sentences that are partially annotated as de-
scribed in the following section.

3 Domain Adaptation for Morphological
Analysis

NLP is now being used in domains such as medi-
cal text and legal documents, and it is necessary that
MA be easily adaptable to these areas. In a domain
adaptation situation, we have at our disposal both
annotated general domain data, and unannotated tar-
get domain data. We would like to annotate the
target domain data efficiently to achieve a maximal
gain in accuracy for a minimal amount of work.

Active learning has been used as a way to pick
data that is useful to annotate in this scenario for
several applications (Chan and Ng, 2007; Rai et
al., 2010) so we adopt an active-learning-based ap-
proach here. When adapting sequence-based predic-
tion methods, most active learning approaches have
focused on picking full sentences that are valuable to
annotate (Ringger et al., 2007; Settles and Craven,
2008). However, even within sentences, there are
generally a few points of interest surrounded by
large segments that are well covered by already an-
notated data.

Partial annotation provides a solution to this prob-
lem (Tsuboi et al., 2008; Sassano and Kurohashi,
2010). In partial annotation, data that will not con-
tribute to the improvement of the classifier is left
untagged. For example, if there is a single difficult
word in a long sentence, only the word boundaries
and POS of the difficult word will be tagged. “Dif-

*Dictionary features are active if the string exists, regardless
of whether it is treated as a single word in w7, and thus can be
calculated without the word segmentation result.

Type ‘ Train  Test
General | 782k 87.5k
Target 153k 17.3k

Table 3: General and target domain corpus sizes in words.

ficult” words can be selected using active learning
approaches, choosing words with the lowest classi-
fier accuracy to annotate. In addition, corpora that
are tagged with word boundaries but not POS tags
are often available; this is another type of partial an-
notation.

When using sequence-based prediction, learning
on partially annotated data is not straightforward,
as the data that must be used to train context-based
transition probabilities may be left unannotated. In
contrast, in the pointwise prediction framework,
training using this data is both simple and efficient;
unannotated points are simply ignored. A method
for learning CRFs from partially annotated data has
been presented by Tsuboi et al. (2008). However,
when using partial annotation, CRFs’ already slow
training time becomes slower still, as they must be
trained over every sequence that has at least one an-
notated point. Training time is important in an active
learning situation, as an annotator must wait while
the model is being re-trained.

4 Experiments

In order to test the effectiveness of pointwise MA,
we did an experiment measuring accuracy both on
in-domain data, and in a domain-adaptation situa-
tion. We used the Balanced Corpus of Contempo-
rary Written Japanese (BCCWJ) (Maekawa, 2008),
specifying the whitepaper, news, and books sections
as our general domain corpus, and the web text sec-
tion as our target domain corpus (Table 3).

As a representative of joint sequence-based MA
described in 2.1, we used MeCab (Kudo, 2006), an
open source implementation of Kudo et al. (2004)’s
CRF-based method (we will call this JOINT). For the
pointwise two-step method, we trained logistic re-
gression models with the LIBLINEAR toolkit (Fan
et al., 2008) using the features described in Section
2.2 (2-LR). In addition, we trained a CRF-based
model with the CRFSuite toolkit (Okazaki, 2007)
using the same features and set-up (for both word



Train Test JOINT  2-CRF 2-LR
GEN GEN | 97.31% 98.08% 98.03%
GEN TAR | 94.57% 95.39% 95.13%
GEN+TAR TAR | 96.45% 9691% 96.82%

Table 4: Word/POS F-measure for each method when
trained and tested on general (GEN) or target (TAR) do-
main corpora.

segmentation and POS tagging) to examine the con-
tribution of context information (2-CRF).

To create the dictionary, we added all of the words
in the corpus, but left out a small portion of single-
tons to prevent overfitting on the training data®. As
an evaluation measure, we follow Nagata (1994) and
Kudo et al. (2004) and use Word/POS tag pair F-
measure, so that both word boundaries and POS tags
must be correct for a word to be considered correct.

4.1 Analysis Results

In our first experiment we compared the accuracy of
the three methods on both the in-domain and out-
of-domain test sets (Table 4). It can be seen that
2-LR outperforms JOINT, and achieves similar but
slightly inferior results to 2-CRF. The reason for
accuracy gains over JOINT lies largely in the fact
that while JOINT is more reliant on the dictionary,
and thus tends to mis-segment unknown words, the
two-step methods are significantly more robust. The
small difference between 2-LR and 2-CRF indicates
that given a significantly rich feature set, context-
based features provide little advantage, although the
advantage is larger on out-of-domain data. In addi-
tion, training of 2-LR is significantly faster than 2-
CRF. 2-LR took 16m44s to train, while 2-CRF took
51m109s to train on a 3.33GHz Intel Xeon CPU.

4.2 Domain Adaptation

Our second experiment focused on the domain
adaptability of each method. Using the target do-
main training corpus as a pool of unannotated data,
we performed active learning-based domain adapta-
tion using two techniques.

e Sentence-based annotation (SENT), where sen-
tences with the lowest total POS and word
3For JOINT we removed singletons randomly until coverage

was 99.99%, and for 2-LR and 2-CRF coverage was set to 99%,
which gave the best results on held-out data.
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Figure 2: Domain adaptation results for three approaches
and two annotation methods.

boundary probabilities were annotated first.

e Word-based partial annotation (PART), where
the word or word boundary with the smallest
probability margin between the first and second
candidates was chosen. This can only be used
with the pointwise 2-LR approach? .

For both methods, 100 words (or for SENT until
the end of the sentence in which the 100th word
is reached) are annotated, then the classifier is re-
trained and new probability scores are generated.
Each set of 100 words is a single iteration, and 100
iterations were performed for each method.

From the results in Figure 2, it can be seen that
the combination of PART and 2-LR allows for sig-
nificantly faster adaptation than other approaches,
achieving accuracy gains in 15 iterations that are
achieved in 100 iterations with SENT, and surpassing
2-CREF after 15 iterations. Finally, it can be seen that
JOINT improves at a pace similar to PART, likely due
to the fact that its pre-adaptation accuracy is lower
than the other methods. It can be seen from Table 4
that even after adaptation with the full corpus, it will
still lag behind the two-step methods.

5 Conclusion

This paper proposed a pointwise approach to
Japanese morphological analysis. It showed that de-
spite the lack of structure, it was able to achieve re-

*In order to prevent wasteful annotation, each unique word
was only annotated once per iteration.



sults that meet or exceed structured prediction meth-
ods. We also demonstrated that it is both robust and
adaptable to out-of-domain text through the use of
partial annotation and active learning. Future work
in this area will include examination of performance
on other tasks and languages.
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