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Abstract Brown et al. and many other authors primarily use
context information for clustering. Niesler et al.

We present a class-based language model that  (1998) showed that context clustering works better
clusters rare words of similar morphology 4.1 clusters based on part-of-speech tags. How-
together. The model improves the predic- . .
tion of words after histories containing out- ever, since the context of an QOV word is unknown
of-vocabulary words. The morphological fea- and it therefore cannot be assigned to a cluster, OOV
tures used are obtained without the use of la-  words are as much a problem to a context-based
beled data. The perplexity improvement com- class model as to a word model. That is why we
pared to a state of the art Kneser-Ney modelis  use non-distributional features — features like mor-

4% overall and31% on unknown histories. phological suffixes that only depend on the shape of
the word itself — to design a new class-based model
1 Introduction that can naturally integrate unknown words.

One of the challenges in statistical language mod- In related work, factored language models
eling are words that appear in the recognition tas{Bilmes and Kirchhoff, 2003) were proposed to
at hand, but not in the training set, so called outmake use of morphological information in highly
of-vocabulary (OOV) words. Especially for produc-inflecting languages such as Finnish (Creutz et al.,
tive language it is often necessary to at least redu@®07), Turkish (Creutz et al., 2007; Yuret and Bigici,
the number of OOVs. We present a novel approac?009) and Arabic (Creutz et al., 2007; Vergyri et
based ormorphological classeto handling OOV al., 2004) or compounding languages like German
words in language modeling for English. PreviougBerton et al., 1996). The main idea is to replace
work on morphological classes in English has notvords by sequences of factors or features and to
been able to show noticeable improvements in peapply statistical language modeling to the resulting
plexity. In this article class-based language modactor sequences. If, for example, words were seg-
els as proposed by Brown et al. (1992) are used taented into morphemes, an unknown word would
tackle the problem. Our model improves perplexbe splitinto an unseen sequence, which could be rec-
ity of a Kneser-Ney (KN) model for English by 4%, ognized using discounting techniques. However, if
the largest improvement of a state-of-the-art modelne morpheme, e.g. the stem, is unknown to the sys-
for English due to morphological modeling that wetem, the fundamental problem remains unsolved.
are aware of. A class-based language model groups

words into classes and replaces the word transition OUr class-based model uses a number of features

probability by a class transition probability and ahat have not been used in factored models (e.g.,
word emission probability: shape and length features) and achieves — in con-

trast to factored models — good perplexity gains for
P(ws|wiwz) = P(eslercs) - P(wsles). (1) English.
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is_capital(w) first character ofv is an uppercase letter
is_all_capital(w) V¢ € w: cis an uppercase letter
capital _character(w) Je € w : cis an uppercase letter
appears_in_lowercase(w) —capital_character(w) V w' € Xp
special_character(w) dc € w: cis not a letter or digit
digit(w) Jec e w: cisadigit
is_number(w) w € L([+ —€¢][0 = 9] (([.,][0 — 9])|[0 — 9]) *)
not_special (w) —(special_character(w) V digit(w) V is_number(w))

Table 1: Predicates of the capitalization and special dargroupsXr is the vocabulary of the training corpds
w’ is obtained fromw by changing all uppercase letters to lowercase Afd:pr) is the language generated by the
regular expressioaxpr.

2 Morphological Features We designed the four feature groups to group
word types to either resemble POS classes or to in-
The feature vector of a word consists of four partsluce an even finer sub-partitioning. Unsupervised
that represent information abosuffixescapitaliza- POS clustering is a hard task in English and it is vir-
tion, special charactersindword length For the tually impossible if a word’s context (which is not
suffix group, we define a binary feature for eaclavailable for OOV items) is not taken into account.
of the 100 most frequent suffixes learned on th&or example, there is no way we can learn that “the”
training corpus by the Reports algorithm (Keshavaand “a” are similar or that “child” has the same re-
2006), a general purpose unsupervised morphologgtionship to “children” as “kid” does to “kids”. But
learning algorithm. One additional binary feature isas our analysis in Table 2 shows, part of the benefit
used for all other suffixes learned by Reports, inef morphological analysis for OOVs comes from an
cluding the empty suffix. appropriate treatment of names and numbers. The
The feature groups<apitalization and special suffix feature group is useful for categorizing OOV
charactersare motivated by the analysis shown inhouns and adjectives because there are very few ir-
Table 2. Our goal is to improve OOV modeling.regular morphemes like “ren” ichildrenin English
The table shows that most OOV wordg £ 0) are and OOV words are likely to be regular words.
numbers (CD), names (NP), and nouns and adjec- S0 even though morphological learning based on
tives (NN, NNS, JJ). This distribution is similar to the limited information we use is not possible in gen-
hapax legomenaf(= 1), but different from the POS eral, it can be partially solved for the special case of
distribution of all tokens. Capitalization and specia@OV words. Our experimental results in Section 5
character features are of obvious utility in identify-confirm that this is the case. We also testes prefixes
ing the POS classes NP and CD since names in EAnd features based on word stems. However, they
glish are usually capitalized and numbers are writProduced inferior clustering solutions.
ten with digits and special characters such as comma
and period. To capture these “shape” properties o?}?;l The Language Model

word, we define the features listed in Table 1. As mentioned before in the literature, e.g. by Mal-
The fourth feature group is length. Short wordgese and Mancini (1992), class-based models only
often have unusual distributional properties. Examautperform word models in cases of insufficient
ples are abbreviations and bond credit ratings likdata. That is why we use a frequency-based ap-
Aaa. To represent this information in thength proach and only include words below a certain to-
part of the vector, we define four binary features foken frequency threshol@in the clustering process.
lengths 1, 2, 3 and greater than 3. The four par#d second motivation is that the contexts of low fre-
of the vector (suffixes, capitalization, special charquency words are more similar to the expected con-
acters, length) are weighted equally by normalizingexts of OOV words.
the subvector of each subgroup to unit length. Given a training corpus, all words with a fre-
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tag types tokens however, is beyond the scope of this article. We es-

f=1]|f=0(00V) timate optimal parametepgc;) using the algorithm
CD 0.39 0.38 0.05 described by Bahl et al. (1991).
NP 0.35 0.35 0.14
NN 0.10 0.10| 0.17 4 Experimental Setup
NNS | 0.05 0.06 0.07

We compare the performance of the described model

JJ 0.05 0.06| 0.07 : .
V* 0.04 005! 015 with a Kneser-Ney model and an interpolated model
> 098 099 066 based on part-of-speech (POS) tags. The relation be-

tween words and POS tags is many-to-many, but we
Table 2: Proportion of dominant POS for types with traintransform it to a many-to-one relation by labeling
ing set frequencieg € {0, 1} and for tokens. V* consists every word — independent of its context — with its
of all verb POS tags. most frequent tag. OOV words are treated equally
even though their POS classes would not be known

quency below the threshold are partitioned into Inareal application. Treetagger (Schmid, 1994) was
k clusters using the bisecting k-means algorithri¥Sed to tag the entire corpus.

(Steinbach et al., 2000). The cluster of an OOV The experiments are carried out on a Wall Street
word w can be defined as the cluster whose centroggpurnal (WSJ) corpus of 50 million words that is
is closest to the feature vector af The formerly SPlit into training set (80%), valdev (5%), valtst
removed high-frequency words are added as singl€5%), and test set (10%). The number of distinct fea-
ton clusters to produce a complete clustering. Howflre vectors in training set, valdev and validation set
ever, OOV words can only be assigned to the origvaldev-+valtst) are 632, 466, and 512, respectively.
inal k-means clusters. Over this clustering a clas$S mentioned above, the training set is used to learn
based trigram model can be defined, as introduc&dffixes and the maximum likelihood n-gram esti-
by Brown et al. (1992). The word transition proba-mnates. The unknown word rate of the validation set

bility of such a model is given by equation 1, wherds € ~ 0.028.

¢; denotes the cluster of the worgd;. The class We use two setups to evaluate our methods. The
transition probabilityP(c3|c1c2) is estimated using first usesvaldevfor parameter estimation anltst

the unsmoothed maximum likelihood estimate. Théor testing and the second the entire validation set for

emission probability is defined as follows: parameter estimation and the test set for testing. All

models with a threshold greater or equal to the fre-

1 if c(ws) >0  quency of the most frequent word type are identical.

P(wsle3) = (1— 6)% if 6>c(ws)>0 We usex as the threshold to refer to these models.
¢ e if c(ws) =0 In a similar manner, the cluster coust denotes a

clustering where two words are in the same cluster
wherec(w) is the frequency ofv in the training set. if and only if their features are identical. This is the
e is estimated on held-out data. The morphologifinest possible clustering of the feature vectors.
cal language model is then interpolated with a modi-
fied Kneser-Ney trigram model. In this interpolation5 Results
the parameters depend on the clusteg of the his-

tory wordws, i.e.: Table 3 shows the results of our experiments. The

KN model yields a perplexity o88.06 onvaltst(top
P(ws|wiws) = A(ez) - Py (ws|wiws) row). For small frequency thresholds overfitting ef-
+ (1= Mez)) - P (ws|wiws). fects cause that the interpolated models are W(_Jrse
than the KN model. We can see that a clustering
This setup may cause overfitting as every high fresf the feature vectors is not necessary as the differ-
guent wordhw, corresponds to a singleton class. Aences between all cluster models are small agd
grouping of several words into equivalence classas the overall best model. Surprisingly, morphologi-
could therefore further improve the model; thiscal clustering and POS classes are close even though
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0 | cros c1 cs0 | c1o0 Coo 0 cPOS c1 50 €100 Coo
0 88.06| 88.06| 88.06| 88.06| 88.06 0 813.50| 813.50| 813.50| 813.50| 813.50
1 1
5 5

89.74| 89.84| 89.73| 89.74| 89.74 181.25| 206.17| 182.78| 183.62| 184.43
89.07 | 89.36 | 89.07| 89.06 | 89.07 152.51| 185.54| 154.52| 152.98| 153.83
10 | 88.59| 89.01| 88.58| 88.57 | 88.58 10 | 147.48| 186.12| 149.34| 147.98| 147.48
50 | 86.72| 87.58| 86.69 | 86.68| 86.68 50 | 146.21| 203.10| 142.21| 140.67| 140.46
102 | 85.92| 87.06| 85.92| 85.91| 85.89 102 | 149.06| 215.54| 143.95| 142.48| 141.67
10 | 84.43| 86.88| 84.83| 84.77| 84.56| 103 | 173.91| 279.02| 164.22| 159.04| 150.13
10* | 85.22| 87.59| 85.89| 85.73| 85.26| 10* | 239.72| 349.54| 221.42| 208.85| 180.57
10° | 86.82| 87.99| 87.44| 87.32| 86.79| 10° | 317.13| 373.98| 318.04| 297.18| 236.90
oo | 87.31| 88.06| 87.96| 87.92| 87.62 oo | 348.76| 378.38| 366.92| 357.80| 292.34

Table 3: Perplexities for different frequency threshaldmd cluster models. In the left table, perplexity is caltada
over all eventsP(ws|w;w2) of thevaltstset. On the right side, the subset of events wherer w, are unknown is
taken into account. The overall best results for class nsaaiedl POS models are highlighted in bold.

the POS class model uses oracle information to ater model ford = 1000 are84.59 and84.71 respec-
sign the right POS to an unknown word. The optimafively, which corresponds again to an improvement
threshold i = 103 — the bolded perplexity values of 4%. For unknown histories the KN model per-
84.43 and 84.56; that means that onlg5% of the plexity is 767.25 and the POS andl,, cluster model
word types were excluded from the morphologicaperplexities ath = 50 are150.90 and144.77. Thus,
clustering 86% of the tokens). The improvementthe morphological model reduces perplexitydays
over the KN model igl%. compared to the KN model.

In a second evaluation we reduce the perplexit
calculations to predictions of the forf(ws|w;ws)

wherew, or w; are OOV words. On such an eventyye have presented a new class-based morphological
the KN model has to back off to a bigram or evenanguage model. In an experiment the model outper-
unigram estimate, which results in inferior predicoymed a modified Kneser-Ney model, especially in
tions and higher perplexity. The perplexity for theihe prediction of the continuations of histories con-
KN model is813.50 (top row). A first observation taining OOV words. The model is entirely unsuper-
is that the perplexity of modet, starts at a good yjseqd, but works as well as a model using part-of-
value, but worsens with rising values fér> 10.  gpeech information.

The reason is the dominance of proper nouns and g 1,re Work. We plan to use our model for do-

cardinal numbers at a frequency threshold of one anfain adaptation in applications like machine trans-
in the distribution of OOV words (cf. Table 2). The |ation. We then want to extend our model to other
c1 model withf = 1 is specialized for predicting |3nguages, which could be more challenging, as cer-
words after unknown nouns and cardinal numberg,;, languages have a more complex morphology

and two thirds of the unknown words are of exactlyp o English, but also worthwhile, if the unknown
that type. However, with rising, other word classes |y rate is higher. Preliminary experiments on

get a higher influence and different probability distgerman and Finnish show promising results. The
tributions are superimposed. The best morpholog,qdel could be further improved by using contex-
cal modelco, reduces the KN perplexity of 813.50 5| information for the word clustering and training
to 140.46 (bolded), an improvement&s’s. a classifier based on morphological features to as-
As a final experiment, we evaluated our methogign OOV words to these clusters.
on the test set. In this case, we used the entire Acknowledgments.This research was funded by
validation set for parameter tuning (i.e., valdev an®FG (grant SFB 732). We would like to thank Hel-
valtst). The overall perplexity of the KN model is mut Schmid and the anonymous reviewers for their
88.28, the perplexities for the best POS andclus- valuable comments.
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