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Abstract 

To address the parse error issue for tree-to-
string translation, this paper proposes a 
similarity-based decoding generation (SDG) 
solution by reconstructing similar source 
parse trees for decoding at the decoding 
time instead of taking multiple source parse 
trees as input for decoding. Experiments on 
Chinese-English translation demonstrated 
that our approach can achieve a significant 
improvement over the standard method, 
and has little impact on decoding speed in 
practice. Our approach is very easy to im-
plement, and can be applied to other para-
digms such as tree-to-tree models.  

1 Introduction 

Among linguistically syntax-based statistical ma-
chine translation (SMT) approaches, the tree-to-
string model (Huang et al. 2006; Liu et al. 2006) is 
the simplest and fastest, in which parse trees on 
source side are used for grammar extraction and 
decoding. Formally, given a source (e.g., Chinese) 
string c and its auto-parsed tree T1-best, the goal of 
typical tree-to-string SMT is to find a target (e.g., 
English) string e* by the following equation as 
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where Pr(e|c,T1-best) is the probability that e is the 
translation of the given source string c and its T1-best. 
A typical tree-to-string decoder aims to search for 
the best derivation among all consistent derivations 
that convert source tree into a target-language 

string. We call this set of consistent derivations the 
tree-to-string search space. Each derivation in the 
search space respects the source parse tree.  

Parsing errors on source parse trees would cause 
negative effects on tree-to-string translation due to 
decoding on incorrect source parse trees. To ad-
dress the parse error issue in tree-to-string transla-
tion, a natural solution is to use n-best parse trees 
instead of 1-best parse tree as input for decoding, 
which can be expressed by 
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where <Tn-best> denotes a set of n-best parse trees 
of c produced by a state-of-the-art syntactic parser. 
A simple alternative (Xiao et al. 2010) to generate 
<Tn-best> is to utilize multiple parsers, which can 
improve the diversity among source parse trees in 
<Tn-best>. In this solution, the most representative 
work is the forest-based translation method (Mi et 
al. 2008; Mi and Huang 2008; Zhang et al. 2009) 
in which a packed forest (forest for short) structure 
is used to effectively represent <Tn-best> for decod-
ing. Forest-based approaches can increase the tree-
to-string search space for decoding, but face a non-
trivial problem of high decoding time complexity 
in practice. 

In this paper, we propose a new solution by re-
constructing new similar source parse trees for de-
coding, referred to as similarity-based decoding 
generation (SDG), which is expressed as 
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where <Tsim> denotes a set of similar parse trees of 
T1-best that are dynamically reconstructed at the de-
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coding time. Roughly speaking, <Tn-best> is a sub-
set of {T1-best, <Tsim>}. Along this line of thinking, 
Equation (2) can be considered as a special case of 
Equation (3).  

In our SDG solution, given a source parse tree 
T1-best, the key is how to generate its <Tsim> at the 
decoding time. In practice, it is almost intractable 
to directly reconstructing <Tsim> in advance as in-
put for decoding due to too high computation com-
plexity. To address this crucial challenge, this 
paper presents a simple and effective technique 
based on similarity-based matching constraints to 
construct new similar source parse trees for decod-
ing at the decoding time. Our SDG approach can 
explicitly increase the tree-to-string search space 
for decoding without changing any grammar ex-
traction and pruning settings, and has little impact 
on decoding speed in practice.  

2 Tree-to-String Derivation 

We choose the tree-to-string paradigm in our study 
because this is the simplest and fastest among syn-
tax-based models, and has been shown to be one of 
the state-of-the-art syntax-based models. Typically, 
by using the GHKM algorithm (Galley et al. 2004), 
translation rules are learned from word-aligned 
bilingual texts whose source side has been parsed 
by using a syntactic parser. Each rule consists of a 
syntax tree in the source language having some 
words (terminals) or variables (nonterminals) at 
leaves, and sequence words or variables in the tar-
get language. With the help of these learned trans-
lation rules, the goal of tree-to-string decoding is to 
search for the best derivation that converts the 
source tree into a target-language string. A deriva-
tion is a sequence of translation steps (i.e., the use 
of translation rules).  

Figure 1 shows an example derivation d that 
performs translation over a Chinese source parse 
tree, and how this process works. In the first step, 
we can apply rule r1 at the root node that matches a 
subtree {IP[1] (NP[2] VP[3])}. The corresponding 
target side {x1 x2} means to preserve the top-level 
word-order in the translation, and results in two 
unfinished subtrees with root labels NP[2] and VP[3], 
respectively. The rule r2 finishes the translation on 
the subtree of NP[2], in which the Chinese word 
“中方” is translated into an English string “the 
Chinese side”. The rule r3 is applied to perform 
translation on the subtree of VP[3], and results in an  

 
An example tree-to-string derivation d consisting of five 
translation rules is given as follows: 
r1: IP[1] (x1:NP[2] x2:VP[3]) → x1 x2 
r2: NP[2] (NN (中方)) → the Chinese side 
r3: VP[3] (ADVP(AD(高度)) VP(VV(评价) AS(了) 

x1:NP[4])) → highly appreciated x1 
r4: NP[4] (DP(DT(这) CLP(M(次))) x1:NP[5]) → this x1 
r5: NP[5] (NN(会谈)) → talk 
Translation results: The Chinese side highly appreciated 
this talk. 
 
Figure 1. An example derivation performs translation 
over the Chinese parse tree T.  
 
unfinished subtree of NP[4]. Similarly, rules r4 and 
r5 are sequentially used to finish the translation on 
the remaining. This process is a depth-first search 
over the whole source tree, and visits every node 
only once. 

3 Decoding Generalization 

3.1 Similarity-based Matching Constraints 

In typical tree-to-string decoding, an ordered se-
quence of rules can be reassembled to form a deri-
vation d whose source side matches the given 
source parse tree T. The source side of each rule in 
d should match one of subtrees of T, referred to as 
matching constraint. Before discussing how to ap-
ply our similarity-based matching constraints to 
reconstruct new similar source parse trees for de-
coding at the decoding time, we first define the 
similarity between two tree-to-string rules. 
 
Definition 1 Given two tree-to-string rules t and u, 
we say that t and u are similar such that their 
source sides ts and us have the same root label and 
frontier nodes, written as ut ≅ , otherwise not.  

419



 
Figure 2: Two similar tree-to-string rules. (a) rule r3 
used by the example derivation d in Figure 1, and (b) a 
similar rule τ3 of r3.  
 

Here we use an example figure to explain our 
similarity-based matching constraint scheme (simi-
larity-based scheme for short). 

 

 
Figure 3: (a) a typical tree-to-string derivation d using 
rule t, and (b) a new derivation d* is generated by the 
similarity-based matching constraint scheme by using 
rule t* instead of rule t, where t* t≅ . 

 
Given a source-language parse tree T, in typical 

tree-to-string matching constraint scheme shown in 
Figure 3(a), rule t used by the derivation d should 
match a substree ABC of T. In our similarity-based 
scheme, the similar rule t* ( t≅ ) is used to form a 
new derivation d* that performs translation over 
the same source sentence {w1 ... wn}. In such a case, 
this new derivation d* can yield a new similar 
parse tree T* of T. 

Since an incorrect source parse tree might filter 
out good derivations during tree-to-string decoding, 
our similarity-based scheme is much more likely to 
recover the correct tree for decoding at the decod-
ing time, and does not rule out good (potentially 
correct) translation choices. In our method, many 
new source-language trees T* that are similar to but 
different from the original source tree T can be re-
constructed at the decoding time. In theory our 
similarity-based scheme can increase the search 

space of the tree-to-string decoder, but we did not 
change any rule extraction and pruning settings.  

In practice, our similarity-based scheme can ef-
fectively keep the advantage of fast decoding for 
tree-to-string translation because its implementa-
tion is very simple. Let’s revisit the example deri-
vation d in Figure 1, i.e., d=r1⊕r2⊕r3⊕r4⊕r5

1. In 
such a case, the decoder can effectively produce a 
new derivation d* by simply replacing rule r3 with 
its similar rule τ3 ( 3r≅ ) shown in Figure 2, that is, 
d*=r1⊕r2⊕τ3⊕r4⊕r5.  

With beam search, typical tree-to-string decod-
ing with an integrated language model can run in 
time2 O(ncb2) in practice (Huang 2007). For our 
decoding time complexity computation, only the 
parameter c value can be affected by our similar-
ity-based scheme. In other words, our similarity-
based scheme would result in a larger c value at 
decoding time as many similar translation rules 
might be matched at each node. In practice, there 
are two feasible optimization techniques to allevi-
ate this problem. The first technique is to limit the 
maximum number of similar translation rules 
matched at each node. The second one is to prede-
fine a similarity threshold to filter out less similar 
translation rules in advance.  

In the implementation, we add a new feature 
into the model: similarity-based matching counting 
feature. This feature counts the number of similar 
rules used to form the derivation. The weight λsim 
of this feature is tuned via minimal error rate train-
ing (MERT) (Och 2003) with other feature weights. 

3.2 Pseudo-rule Generation 

In the implementation of tree-to-string decoding, 
the first step is to load all translation rules matched 
at each node of the source tree T. It is possible that 
some nonterminal nodes do not have any matched 
rules when decoding some new sentences. If the 
root node of the source tree has no any matched 
rules, it would cause decoding failure. To tackle 
this problem, motivated by “glue” rules (Chiang 
2005), for some node S without any matched rules, 
we introduce a special pseudo-rule which reassem-
bles all child nodes with local reordering to form 
new translation rules for S to complete decoding. 
                                                           
1 The symbol⊕denotes the composition (leftmost substitution) 
operation of two tree-to-string rules. 
2 Where n is the number of words, b is the size of the beam, 
and c is the number of translation rules matched at each node.   
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               S                S(x1:A x2:B x3:C x4:D)→x1 x2 x3 x4               
                                 S(x1:A x2:B x3:C x4:D)→x2 x1 x3 x4           
                                 S(x1:A x2:B x3:C x4:D)→x1 x3 x2 x4 
    A     B     C     D   S(x1:A x2:B x3:C x4:D)→x1 x2 x4 x3 
              (a)                                         (b) 
Figure 4: (a) An example unseen substree, and (b) its 
four pseudo-rules. 
 

Figure 4 (a) depicts an example unseen substree 
where no any rules is matched at its root node S.  
Its simplest pseudo-rule is to simply combine a 
sequence of S’s child nodes. To give the model 
more options to build partial translations, we util-
ize a local reordering technique in which any two 
adjacent frontier (child) nodes are reordered during 
decoding. Figure 4(b) shows four pseudo-rules in 
total generated from this example unseen substree.   

In the implementation, we add a new feature to 
the model: pseudo-rule counting feature. This fea-
ture counts the number of pseudo-rules used to 
form the derivation. The weight λpseudo of this fea-
ture is tuned via MERT with other feature weights.   

4 Evaluation 

4.1 Setup 

Our bilingual training data consists of 140K Chi-
nese-English sentence pairs in the FBIS data set. 
For rule extraction, the minimal GHKM rules (Gal-
ley et al. 2004) were extracted from the bitext, and 
the composed rules were generated by combining 
two or three minimal GHKM rules. A 5-gram lan-
guage model was trained on the target-side of the 
bilingual data and the Xinhua portion of English 
Gigaword corpus. The beam size for beam search 
was set to 20. The base feature set used for all sys-
tems is similar to that used in (Marcu et al. 2006), 
including 14 base features in total such as 5-gram 
language model, bidirectional lexical and phrase-
based translation probabilities. All features were 
linearly combined and their weights are optimized 
by using MERT. The development data set used 
for weight training in our approaches comes from 
NIST MT03 evaluation set. To speed up MERT, 
sentences with more than 20 words were removed 
from the development set (Dev set). The test sets 
are the NIST MT04 and MT05 evaluation sets. The 
translation quality was evaluated in terms of case-
insensitive NIST version BLEU metric. Statistical 
significance test was conducted by using the boot-
strap re-sampling method (Koehn 2004). 

4.2 Results 

MT04 MT05  DEV
MT03 <=20 ALL <=20 ALL 

Baseline 32.99 36.54 32.70 34.61 30.60 
This 
work 

34.67*

(+1.68)
36.99+

(+0.45)
35.03* 
(+2.33) 

35.16+ 
(+0.55) 

33.12*

(+2.52)
Table 1. BLEU4 (%) scores of various methods on Dev 
set (MT03) and two test sets (MT04 and MT05). Each 
small test set (<=20) was built by removing the sen-
tences with more than 20 words from the full set (ALL). 
+ and * indicate significantly better on performance 
comparison at p < .05 and p < .01, respectively. 
 
Table 1 depicts the BLEU scores of various meth-
ods on the Dev set and four test sets. Compared to 
typical tree-to-string decoding (the baseline), our 
method can achieve significant improvements on 
all datasets. It is noteworthy that the improvement 
achieved by our approach on full test sets is bigger 
than that on small test sets. For example, our 
method results in an improvement of 2.52 BLEU 
points over the baseline on the MT05 full test set, 
but only 0.55 points on the MT05 small test set. As 
mentioned before, tree-to-string approaches are 
more vulnerable to parsing errors. In practice, the 
Berkeley parser (Petrov et al. 2006) we used yields 
unsatisfactory parsing performance on some long 
sentences in the full test sets. In such a case, it 
would result in negative effects on the performance 
of the baseline method on the full test sets. Ex-
perimental results show that our SDG approach 
can effectively alleviate this problem, and signifi-
cantly improve tree-to-string translation.  
 

 Another issue we are interested in is the decod-
ing speed of our method in practice. To investigate 
this issue, we evaluate the average decoding speed 
of our SDG method and the baseline on the Dev set 
and all test sets.  

 
Decoding Time 

(seconds per sentence) 
  

<=20 ALL 
Baseline 0.43s 1.1s 
This work 0.50s 1.3s 
Table 2. Average decoding speed of various methods on 
small (<=20) and full (ALL) datasets in terms of sec-
onds per sentence. The parsing time of each sentence is 
not included. The decoders were implemented in C++ 
codes on an X86-based PC with two processors of 
2.4GHZ and 4GB physical memory.  
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Table 2 shows that our approach only has little 
impact on decoding speed in practice, compared to 
the typical tree-to-string decoding (baseline). No-
tice that in these comparisons our method did not 
adopt any optimization techniques mentioned in 
Section 3.1, e.g., to limit the maximum number of 
similar rules matched at each node. It is obviously 
that the use of such an optimization technique can 
effectively increase the decoding speed of our 
method, but might hurt the performance in practice.  

Besides, to speed up decoding long sentences, it 
seems a feasible solution to first divide a long sen-
tence into multiple short sub-sentences for decod-
ing, e.g., based on comma. In other words, we can 
segment a complex source-language parse tree into 
multiple smaller subtrees for decoding, and com-
bine the translations of these small subtrees to form 
the final translation. This practical solution can 
speed up the decoding on long sentences in real-
world MT applications, but might hurt the transla-
tion performance. 

For convenience, here we call the rule τ3 in Fig-
ure 2(b) similar-rules. It is worth investigating how 
many similar-rules and pseudo-rules are used to 
form the best derivations in our similarity-based 
scheme. To do it, we count the number of similar-
rules and pseudo-rules used to form the best deri-
vations when decoding on the MT05 full set. Ex-
perimental results show that on average 13.97% of 
rules used to form the best derivations are similar-
rules, and one pseudo-rule per sentence is used. 
Roughly speaking, average five similar-rules per 
sentence are utilized for decoding generalization.  

5 Related Work 

String-to-tree SMT approaches also utilize the 
similarity-based matching constraint on target side 
to generate target translation. This paper applies it 
on source side to reconstruct new similar source 
parse trees for decoding at the decoding time, 
which aims to increase the tree-to-string search 
space for decoding, and improve decoding gener-
alization for tree-to-string translation.  

The most related work is the forest-based trans-
lation method (Mi et al. 2008; Mi and Huang 2008; 
Zhang et al. 2009) in which rule extraction and 
decoding are implemented over k-best parse trees 
(e.g., in the form of packed forest) instead of one 
best tree as translation input. Liu and Liu (2010) 
proposed a joint parsing and translation model by 

casting tree-based translation as parsing (Eisner 
2003), in which the decoder does not respect the 
source tree. These methods can increase the tree-
to-string search space. However, the decoding time 
complexity of their methods is high, i.e., more than 
ten or several dozen times slower than typical tree-
to-string decoding (Liu and Liu 2010).  

Some previous efforts utilized the techniques of 
soft syntactic constraints to increase the search 
space in hierarchical phrase-based models (Marton 
and Resnik 2008; Chiang et al. 2009; Huang et al. 
2010), string-to-tree models (Venugopal et al. 
2009) or tree-to-tree (Chiang 2010) systems. These 
methods focus on softening matching constraints 
on the root label of each rule regardless of its in-
ternal tree structure, and often generate many new 
syntactic categories3. It makes them more difficult 
to satisfy syntactic constraints for the tree-to-string 
decoding.  

6 Conclusion and Future Work 

This paper addresses the parse error issue for tree-
to-string translation, and proposes a similarity-
based decoding generation solution by reconstruct-
ing new similar source parse trees for decoding at 
the decoding time. It is noteworthy that our SDG 
approach is very easy to implement. In principle, 
forest-based and tree sequence-based approaches 
improve rule coverage by changing the rule extrac-
tion settings, and use exact tree-to-string matching 
constraints for decoding. Since our SDG approach 
is independent of any rule extraction and pruning 
techniques, it is also applicable to forest-based ap-
proaches or other tree-based translation models, 
e.g., in the case of casting tree-to-tree translation as 
tree parsing (Eisner 2003). 
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