
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:shortpapers, pages 413–417,
Portland, Oregon, June 19-24, 2011. c©2011 Association for Computational Linguistics

Issues Concerning Decoding with Synchronous Context-free Grammar

Tagyoung Chung, Licheng Fang and Daniel Gildea
Department of Computer Science

University of Rochester
Rochester, NY 14627

Abstract

We discuss some of the practical issues that
arise from decoding with general synchronous
context-free grammars. We examine problems
caused by unary rules and we also examine
how virtual nonterminals resulting from bina-
rization can best be handled. We also inves-
tigate adding more flexibility to synchronous
context-free grammars by adding glue rules
and phrases.

1 Introduction

Synchronous context-free grammar (SCFG) is
widely used for machine translation. There are many
different ways to extract SCFGs from data. Hiero
(Chiang, 2005) represents a more restricted form of
SCFG, while GHKM (Galley et al., 2004) uses a gen-
eral form of SCFG.

In this paper, we discuss some of the practical is-
sues that arise from decoding general SCFGs that
are seldom discussed in the literature. We focus on
parsing grammars extracted using the method put
forth by Galley et al. (2004), but the solutions to
these issues are applicable to other general forms of
SCFG with many nonterminals.

The GHKM grammar extraction method produces
a large number of unary rules. Unary rules are the
rules that have exactly one nonterminal and no ter-
minals on the source side. They may be problematic
for decoders since they may create cycles, which are
unary production chains that contain duplicated dy-
namic programming states. In later sections, we dis-
cuss why unary rules are problematic and investigate
two possible solutions.

GHKM grammars often have rules with many
right-hand-side nonterminals and require binariza-
tion to ensureO(n3) time parsing. However, bina-
rization creates a large number of virtual nontermi-
nals. We discuss the challenges of, and possible so-
lutions to, issues arising from having a large num-
ber of virtual nonterminals. We also compare bina-
rizing the grammar with filtering rules according to
scope, a concept introduced by Hopkins and Lang-
mead (2010). By explicitly considering the effect
of anchoring terminals on input sentences, scope-
3 rules encompass a much larger set of rules than
Chomsky normal form but they can still be parsed in
O(n3) time.

Unlike phrase-based machine translation, GHKM
grammars are less flexible in how they can seg-
ment sentence pairs into phrases because they are
restricted not only by alignments between words in
sentence pairs, but also by target-side parse trees. In
general, GHKM grammars suffer more from data
sparsity than phrasal rules. To alleviate this issue,
we discuss adding glue rules and phrases extracted
using methods commonly used in phrase-based ma-
chine translation.

2 Handling unary rules

Unary rules are common in GHKM grammars. We
observed that as many as 10% of the rules extracted
from a Chinese-English parallel corpus are unary.

Some unary rules are the result of alignment er-
rors, but other ones might be useful. For example,
Chinese lacks determiners, and English determiners
usually remain unaligned to any Chinese words. Ex-
tracted grammars include rules that reflect this fact:

NP→ NP, the NP
NP→ NP, a NP

413



However, unary rules can be problematic:

• Unary production cycles corrupt the translation
hypergraph generated by the decoder. A hyper-
graph containing a unary cycle cannot be topo-
logically sorted. Many algorithms for parame-
ter tuning and coarse-to-fine decoding, such as
the inside-outside algorithm and cube-pruning,
cannot be run in the presence of unary cycles.

• The existence of many unary rules of the form
“NP → NP, the NP”quickly fills a pruning bin
with guesses of English words to insert without
any source-side lexical evidence.

The most obvious way of eliminating problem-
atic unary rules would be converting grammars into
Chomsky normal form. However, this may result
in bloated grammars. In this section, we present
two different ways to handle unary rules. The first
involves modifying the grammar extraction method,
and the second involves modifying the decoder.

2.1 Modifying grammar extraction

We can modify the grammar extraction method such
that it does not extract any unary rules. Galley et al.
(2004) extracts rules by segmenting the target-side
parse parse tree based onfrontier nodes. We modify
the definition of a frontier node in the following way.
We label frontier nodes in the English parse tree, and
examine the Chinese span each frontier node cov-
ers. If a frontier node covers the same span as the
frontier node that immediately dominates it, then the
dominated node is no longer considered a frontier.
This modification prevents unary rules from being
extracted.

Figure 1 shows an example of an English-Chinese
sentence pair with the English side automatically
parsed. Frontier nodes in the tree in the original
GHKM rule extraction method are marked with a
box. With the modification, only the top bold-
facedNP would be considered a frontier node. The
GHKM rule extraction results in the following rules:

NPB→白鹭鸶, the snowy egret
NP→ NPB, NPB
PP→ NP, with NP
NP→ PP, romance PP

With the change, only the following rule is extracted:

NP

NPB

NNP

romance

PP

IN

with

NP

NPB

DT

the

JJ

snowy

NN

egret

白鹭 鸶 的 爱

Figure 1: A sentence fragment pair with erroneous align-
ment and tokenization

NP→白鹭鸶, romance with the snowy egret

We examine the effect of this modification has on
translation performance in Section 5.

2.2 Modifying the decoder

Modifying how grammars are extracted has an ob-
vious down side, i.e., the loss of generality. In the
previous example, the modification results in a bad
rule, which is the result of bad alignments. Before
the modification, the rule set includes a good rule:

NPB→白鹭鸶, the snowy egret

which can be applied at test time. Because of this,
one may still want to decode with all available unary
rules. We handle unary rules inside the decoder in
the following ways:

• Unary cycle detection

The naïve way to detect unary cycles is back-
tracking on a unary chain to see if a newly gen-
erated item has been generated before. The run-
ning time of this is constrained only by the num-
ber of possible items in a chart span. In prac-
tice, however, this is often not a problem: if all
unary derivations have positive costs and a pri-
ority queue is used to expand unary derivations,

414



only the bestK unary items will be generated,
whereK is the pruning constant.

• Ban negative cost unary rules

When tuning feature weights, an optimizer may
try feature weights that may give negative costs
to unary productions. This causes unary deriva-
tions to go on forever. The solution is to set
a maximum length for unary chains, or to ban
negative unary productions outright.

3 Issues with binarization

3.1 Filtering and binarization

Synchronous binarization (Zhang et al., 2006) is
an effective method to reduce SCFG parsing com-
plexity and allow early language model integration.
However, it creates virtual nonterminals which re-
quire special attention at parsing time. Alternatively,
we can filter rules that have more than scope-3 to
parse inO(n3) time with unbinarized rules. This
requires Earley (Earley, 1970) style parsing, which
does implicit binarization at decoding time. Scope-
filtering may filter out unnecessarily long rules that
may never be applied, but it may also throw out
rules with useful contextual information. In addi-
tion, scope-filtering does not accommodate early lan-
guage model state integration. We compare the two
with an experiment. For the rest of the section, we
discuss issues created by virtual nonterminals.

3.2 Handling virtual nonterminals

One aspect of grammar binarization that is rarely
mentioned is how to assign probabilities to binarized
grammar rules. The naïve solution is to assign prob-
ability one to any rule whose left-hand side is a vir-
tual nonterminal. This maintains the original model.
However, it is generally not fair to put chart items of
virtual nonterminals and those of regular nontermi-
nals in the same bin, because virtual items have arti-
ficially low costs. One possible solution is adding a
heuristic to push up the cost of virtual items for fair
comparison.

For our experiments, we use an outside estimate
as a heuristic for a virtual item. Consider the follow-
ing rule binarization (only the source side shown):

A → BCD :− log(p) ⇒
V → BC : 0
A → VD : − log(p)

A → BCD is the orginal rule and− log(p) is the cost
of the rule. In decoding time, when a chart item is
generated from the binarized ruleV → BC, we add
− log(p) to its total cost as an optimistic estimate of
the cost to build the original unbinarized rule. The
heuristic is used only for pruning purposes, and it
does not change the real cost. The idea is similar
to A* parsing (Klein and Manning, 2003). One com-
plication is that a binarized rule can arise from multi-
ple different unbinarized rules. In this case, we pick
the lowest cost among the unbinarized rules as the
heuristic.

Another approach for handling virtual nontermi-
nals would be giving virtual items separate bins and
avoiding pruning them at all. This is usually not
practical for GHKM grammars, because of the large
number of nonterminals.

4 Adding flexibility

4.1 Glue rules

Because of data sparsity, an SCFG extracted from
data may fail to parse sentences at test time. For
example, consider the following rules:

NP→ JJ NN, JJ NN
JJ→ c1, e1

JJ→ c2, e2

NN → c3, e3

This set of rules is able to parse the word sequence
c1 c3 and c2 c3 but not c1 c2 c3, if we have not seen
“NP → JJ JJ NN”at training time. Because SCFGs
neither model adjunction, nor are they markovized,
with a small amount of data, such problems can oc-
cur. Therefore, we may opt to add glue rules as used
in Hiero (Chiang, 2005):

S→ C, C
S→ S C, S C

where S is the goal state and C is the glue nonter-
minal that can produce any nonterminals. We re-
fer to these glue rules as the monotonic glue rules.
We rely on GHKM rules for reordering when we use
the monotonic glue rules. However, we can also al-
low glue rules to reorder constituents. Wu (1997)
presents a better-constrained grammar designed to
only produce tail-recursive parses. See Table 1 for
the complete set of rules. We refer to these rules as
ABC glue rules. These rules always generate left-

415



S→ A A → [A B] B → 〈 B A 〉
S→ B A → [B B] B → 〈 A A 〉
S→ C A → [C B] B → 〈 C A 〉

A → [A C] B → 〈 B C 〉
A → [B C] B → 〈 A C 〉
A → [C C] B → 〈 C C 〉

Table 1: The ABC Grammar. We follow the convention
of Wu (1997) that square brackets stand for straight rules
and angle brackets stand for inverted rules.

heavy derivations, weeding out ambiguity and mak-
ing search more efficient. We learn probabilities of
ABC glue rules by using expectation maximization
(Dempster et al., 1977) to train a word-level Inver-
sion Transduction Grammar from data.

In our experiments, depending on the configura-
tion, the decoder failed to parse about 5% of sen-
tences without glue rules, which illustrates their ne-
cessity. Although it is reasonable to believe that re-
ordering should always have evidence in data, as
with GHKM rules, we may wish to reorder based
on evidence from the language model. In our ex-
periments, we compare the ABC glue rules with the
monotonic glue rules.

4.2 Adding phrases

GHKM grammars are more restricted than the
phrase extraction methods used in phrase-based
models, since, in GHKM grammar extraction,
phrase segmentation is constrained by parse trees.
This may be a good thing, but it suffers from loss
of flexibility, and it also cannot use non-constituent
phrases. We use the method of Koehn et al. (2003)
to extract phrases, and, for each phrase, we add a
rule with the glue nonterminal as the left-hand side
and the phrase pair as the right-hand side. We exper-
iment to see whether adding phrases is beneficial.

There have been other efforts to extend GHKM
grammar to allow more flexible rule extraction. Gal-
ley et al. (2006) introduce composed rules where
minimal GHKM rules are fused to form larger rules.
Zollmann and Venugopal (2006) introduce a model
that allows more generalized rules to be extracted.

BLEU
Baseline + monotonic glue rules 20.99
No-unary + monotonic glue rules 23.83
No-unary + ABC glue rules 23.94
No-unary (scope-filtered) + monotonic 23.99
No-unary (scope-filtered) + ABC glue rules24.09
No-unary + ABC glue rules + phrases 23.43

Table 2: BLEU score results for Chinese-English with
different settings

5 Experiments

5.1 Setup

We extracted a GHKM grammar from a Chinese-
English parallel corpus with the English side parsed.
The corpus consists of 250K sentence pairs, which
is 6.3M words on the English side. Terminal-aware
synchronous binarization (Fang et al., 2011) was ap-
plied to all GHKM grammars that are not scope-
filtered. MERT (Och, 2003) was used to tune pa-
rameters. We used a 392-sentence development set
with four references for parameter tuning, and a 428-
sentence test set with four references for testing. Our
in-house decoder was used for experiments with a
trigram language model. The decoder is capable
of both CNF parsing and Earley-style parsing with
cube-pruning (Chiang, 2007).

For the experiment that incorporated phrases, the
phrase pairs were extracted from the same corpus
with the same set of alignments. We have limited
the maximum size of phrases to be four.

5.2 Results

Our result is summarized in Table 2. The baseline
GHKM grammar with monotonic glue rules yielded
a worse result than the no-unary grammar with the
same glue rules. The difference is statistically signif-
icant atp < 0.05 based on 1000 iterations of paired
bootstrap resampling (Koehn, 2004).

Compared to using monotonic glue rules, using
ABC glue rules brought slight improvements for
both the no-unary setting and the scope-filtered set-
ting, but the differences are not statistically signifi-
cant. In terms of decoding speed and memory usage,
using ABC glues and monotonic glue rules were vir-
tually identical. The fact that glue rules are seldom
used at decoding time may account for why there is

416



little difference in using monotonic glue rules and us-
ing ABC glue rules. Out of all the rules that were ap-
plied to decoding our test set, less than one percent
were glue rules, and among the glue rules, straight
glue rules outnumbered inverted ones by three to
one.

Compared with binarized no-unary rules, scope-
3 filtered no-unary rules retained 87% of the rules
but still managed to have slightly better BLEU score.
However, the score difference is not statistically sig-
nificant. Because the size of the grammar is smaller,
compared to using no-unary grammar, it used less
memory at decoding time. However, decoding speed
was somewhat slower. This is because the decoder
employs Early-style dotted rules to handle unbina-
rized rules, and in order to decode with scope-3
rules, the decoder needs to build dotted items, which
are not pruned until a rule is completely matched,
thus leading to slower decoding.

Adding phrases made the translation result
slightly worse. The difference is not statistically
significant. There are two possible explanations for
this. Since there were more features to tune, MERT
may have not done a good job. We believe the
more important reason is that once a phrase is used,
only glue rules can be used to continue the deriva-
tion, thereby losing the richer information offered
by GHKM grammar.

6 Conclusion

In this paper, we discussed several issues concerning
decoding with synchronous context-free grammars,
focusing on grammars resulting from the GHKM
extraction method. We discussed different ways to
handle cycles. We presented a modified grammar
extraction scheme that eliminates unary rules. We
also presented a way to decode with unary rules in
the grammar, and examined several different issues
resulting from binarizing SCFGs. We finally dis-
cussed adding flexibility to SCFGs by adding glue
rules and phrases.

Acknowledgments We would like to thank the
anonymous reviewers for their helpful comments.
This work was supported by NSF grants IIS-
0546554 and IIS-0910611.

References

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. InProceedings of
ACL-05, pages 263–270, Ann Arbor, MI.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via theEM
algorithm. Journal of the Royal Statistical Society,
39(1):1–21.

Jay Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 6(8):451–455.

Licheng Fang, Tagyoung Chung, and Daniel Gildea.
2011. Terminal-aware synchronous binarization. In
Proceedings of the ACL 2011 Conference Short Pa-
pers, Portland, Oregon, June. Association for Compu-
tational Linguistics.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? InPro-
ceedings of NAACL-04, pages 273–280.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio Thayer.
2006. Scalable inference and training of context-
rich syntactic translation models. InProceedings of
COLING/ACL-06, pages 961–968, July.

Mark Hopkins and Greg Langmead. 2010. SCFG decod-
ing without binarization. InProceedings of the 2010
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 646–655, Cambridge, MA,
October. Association for Computational Linguistics.

Dan Klein and Christopher D. Manning. 2003. A* pars-
ing: Fast exact Viterbi parse selection. InProceedings
of NAACL-03.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. InProceed-
ings of NAACL-03, Edmonton, Alberta.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. InProceedings of
EMNLP, pages 388–395, Barcelona, Spain, July.

Franz Josef Och. 2003. Minimum error rate training for
statistical machine translation. InProceedings of ACL-
03.

Dekai Wu. 1997. Stochastic inversion transduction gram-
mars and bilingual parsing of parallel corpora.Compu-
tational Linguistics, 23(3):377–403.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for machine
translation. InProceedings of NAACL-06, pages 256–
263, New York, NY.

Andreas Zollmann and Ashish Venugopal. 2006. Syn-
tax augmented machine translation via chart parsing.
In Proc. Workshop on Statistical Machine Translation,
pages 138–141.

417


