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Abstract ¢ In machine translation, integrating language
o _ model states as early as possible is essential to
We present an SCFG binarization algorithm reducing search errors. Synchronous binariza-

that combines the strengths of early termi-
nal matching on the source language side and
early language model integration on the tar-

tion (Zhang et al., 2006) enables the decoder to
incorporate language model scores as soon as a

get language side. We also examine how dif- binarized rule is applied.
ferent strategies of target-side terminal attach-
ment during binarization can significantly af- In this paper, we examine a CYK-like syn-
fect translation quality. chronous binarization algorithm that integrates a
novel criterion in a unified semiring parsing frame-
1 Introduction work. The criterion we present has explicit consider-

ation of source-side terminals. In general, terminals
Synchronous context-free grammars (SCFG) are big-a rule have a lower probability of being matched
hind most syntax-based machine translation mogiven a sentence, and therefore have the effect of
els. Efficient machine translation decoding with aranchoring” a rule and limiting its possible applica-
SCFG requires converting the grammar into a bingon points. Hopkins and Langmead (2010) formal-
rized form, either explicitly, as in synchronous binajzed this concept as thecopeof a rule. A rule of
rization (Zhang et al., 2006), where virtual nontermiscope ofk: can be parsed i (n*). The scope of a
nals are generated for binarization, or implicitly, asule can be calculated by counting the number of ad-
in Earley parsing (Earley, 1970), where dotted itemgcent nonterminal pairs and boundary nonterminals.

are used. For example,
Given a source-side binarized SCFG with termi-
nal set7 and nonterminal seV/, the time complex- A — w; BCwyD
ity of decoding a sentence of lengttwith am-gram
language model is (Venugopal et al., 2007): has scope two. Building on the concept of scope,

we define a cost function that estimates the expected
number of hyperedges to be built when a particular

whereK is the maximum number of right-hand-sideb'nar'zat'on tree is applied to unseen data. This ef-

nonterminals. SCFG binarization serves two impoFgCtiVGly puts hard-to-match derivations at the bot-
tant goals: tom of the binarization tree, which enables the de-

coder to decide early on whether an unbinarized rule
e Parsing complexity for unbinarized SCFGcan be built or not.
grows exponentially with the number of non- We also investigate a better way to handle target-
terminals on the right-hand side of grammaside terminals during binarization. In theory, differ-
rules. Binarization ensures cubic time decodkent strategies should produce equivalent translation
ing in terms of input sentence length. results. However, because decoding always involves

O(n*(IN] - [T P =D)F)
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16000 ‘ ‘ ‘ ‘ T — Algorithm 1 The CYK binarization algorithm.
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t— T[i, k] + Tk, 7] + c((i, k, j))
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Number of right-hand-side nonterminls Even with the synchronous binarization constraint,
_ o many possible binarizations exist. Analysis of our
Figure 1. Rule Statistics Chinese-English parallel corpus has shown that the

majority of synchronously binarizable rules with ar-

pruning, we show that different strategies do have ity smaller than 4 arenonotonici.e., the target-side
significant effect in translation quality. nontermingl permutati.on is either strictly incrgasing
Other works investigating alternative binarizatiorP" décreasing (See Figure 1). For monotonic rules,
methods mostly focus on the effect of nonterminaf"y Source-side binarization is also a permissible
sharing. Xiao et al. (2009) also proposed a CyKEYnchronous binarization.
like algorithm for synchronous binarization. Appar- '€ binarization problem can be formulated as a
ently the lack of virtual nonterminal sharing in theirS€Mirng parsing (Goodman, 1999) problem. We
decoder caused heavy competition between virtudffin€ @ cost function that considers different bina-
nonterminals, and they created a cost function tgzation criteria. A CYK-like algorithm can be used
“diversify” binarization trees, which is equivalent toto find th(_e best bln_arlzatlon tree according to the
minimizing nonterminal sharing. cost function. Consider an SCFG ru}é—> (v, ),
DeNero et al. (2009b) used a greedy method t\gher(_afy anda stand for the source side a_nd th(_a tar-
maximize virtual nonterminal sharing on the sourc@_et ?'de' LetB(y) b_e the set of all possmlg bina-
side during the -LM parsing phase. They show thdization trees fory._ Wlth_the_cos_t function: defl_ned
effective source-side binarization can improve the epver .hyp'eredgeAs'ln a binarization trg¢he optimal
ficiency of parsing SCFG. However, their method?!Narization tree is
works only on the source side, and synchronous bina- f = argmin }  c(h)
rization is put off to the +LM decoding phase (DeN- t€B(M) hey
ero et al., 2009a). _ _
Although these ideas all lead to faster decodiny€rec(h) is the cost of a hyperedgein ¢.
and reduced search errors, there can be conflicts in | € OPtimization problem can be solved by Al-
the constraints each of them has on the form of rul2Mithm 1. (i, k. j) denotes a hyperedgethat con-
and accommodating all of them can be a challeng&€Cts the spang;, k) and (k, j) to the span(i, j).
In this paper, we present a cubic time algorithm t&mit is the initialization for the cost function We

find the best binarization tree, given the conﬂictingian recover the optimal source-side binarization tree
constraints y augmenting the algorithm with back pointers.

Binarized rules are generated by iterating over the
nodes in the optimal binarization tree, while attach-
ing unaligned target-side terminals. At each tree
An SCFG rule is synchronously binarizable if whemode, we generate a virtual nonterminal symbol by
simultaneously binarizing source and target sidespncatenating the source span it dominates.

virtual nonterminals created by binarizations always We define the cost functior:(h) to be a
have contiguous spans on both sides (Huang, 200@ple of component cost functions:c(h) =

2 TheBinarization Algorithm
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(c1(h), ca(h),...). When two costs andb are com- vp _,  PPBEH [JINNL],

pared, the components are compared piecewise, i.e. [[propose a JJ NNJ» PP
. . . . The source side of the first binarized rulg,“— JJ
c<deoa<aVia=ahen<a)V... NN, propose a JJ NNcontains a very frequent non-

) terminal sequenceJJ NN'. If one were to parse
If the (min, +) operators on each component Cosfi the binarized rule, and if the virtual nontermi-

satisfy the semiring properties, the cost tuple is alsg,, : has been built, the parser needs to continue
a semiring. Next, we describe our cost functions angl . ving the binarization tree in order to determine
how we handle target-side terminals. whether the original rule would be matched. Further-
more, having two consecutive nonterminals adds to
complexity since the parser needs to test each split
We use a binary costto indicate whether a binariza- pojnt.

tion tree is a permissible synchronous binarization. The following binarization is equally valid but in-
Given a hyperedgg, k, j), we sayk is apermissible  agrates terminals early:

split of the spar(i, 7) if and only if the spangi, k)

and (k, j) are both synchronously binarizable and \p _,  PPIiEdi 335 NN,

the spar(i, j) covers a consecutive sequence of non- [[propose a JJINN], PP

terminals on the target side. A sparsigichronously Here, the first binarized ruld]y — #2H1 JJ, pro-
binarizableif and only if the span is of length one,pose a JJanchors on a terminal and enables earlier
or a permissible split of the span exists. The @ost pruning of the original rule.

2.1 SynchronousBinarization asa Cost

is defined as: We formulate this intuition by asking the ques-
o . . .. .. tion: given a source-side string what binarization
b((i,k,7)) = { 12 lft}]: IS a_ permissible split ofi, ) tree, on average, builds the smallest number of hy-
otherwise peredges when the rule is applied? This is realized
binit (1) =T by defining a cost functiom which estimates the

probability of a hyperedgé;, &, j) being built. We
Under this configuration, the semiring operatorgse a simple model: assume each terminal or non-
(min, +) defined for the costare(v, A). Usingbas  terminal in is matched independently with a fixed
the first cost function in the cost function tuple guarmyobability, then a hyperedgg, k, j) is derived if
antees that we will find a tree that is a synchronouslynq only if all symbols in the source spéin;) are

binarized if one exists. matched. The costis thus defined &s
2.2 Early Source-Side Terminal Matching e((i.k,5)) = T »()
When a rule is being applied while parsing a sen- i<0<]j
tence, terminals in the rule have less chance of be- eimit(i) = 0

ing matched. We can exploit this fact by taking ter-

minals into account during binarization and placing=or termina|s,p(fyé) can be estimated by counting
terminals lower in the binarization tree. Consider théhe source side of the training corpus. For nontermi-

following SCFG rule: nals, we simply assumsy,) = 1.
PP#E 4 JJ NN With the hyperedge cost the cost of a binariza-
VP propose a JJ NN PP tion treetis 3, ., e(h), i.e., the expected number of

hyperedges to be built when a particular binarization

The synchronous binarization algorithm of Zhang €t a rule is applied to unseen dataThe operators

al. (2006) binarizes the ruleby finding the right-
most binarizable points on the source side: 2In this definition,k does not appear on the right-hand side
of the equation because all edges leading to the same span share
1we follow Wu (1997) and use square brackets for straighthe same cost value.
rules and pointed brackets for inverted rules. We also mark 2Although this cost function is defined as an expectation, it
brackets with indices to represent virtual nonterminals. does not form arexpectation semiringEisner, 2001) because
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for the coste are the usualmin, +) operators on order traversal of the binarization tree. The conven-

real numbers. tional wisdom is that early consideration of target-
o . . side terminals promotes early language model score
2.3 Maximizing Nonterminal Sharing integration (Huang et al., 2009). The second bina-

During binarization, newly created virtual nontermifization, on the contrary, attaches the target-side ter-
nals are named according to the symbols (terminafsinals as high as possible in the binarization tree.
and nonterminals) that they generate. For exampleVdée argue that this late target-side terminal attach-
new virtual nonterminal covering two nonterminalsment is in fact better for two reasons.

NP and VP is named NP+VP. To achieve maximum First, as in the example above, compare the fol-
virtual nonterminal sharing, we also define a codbwing two rules resulting from early attachment of
function n to count the number new nonterminalstarget terminals and late attachment of target termi-
generated by a binarization tree. We keep track ofals:

all the nonterminals that have been generated when
binarizing a rule set. When thé&h rule is being
binarized, a nonterminal is considered new if itis 1y, _ 15 NN, NN []5

previously unseen in binarizing rulégo : — 1. This

greedy approach is similar to that of DeNero et al.he former has a much smaller chance of sharing

(2009b). The cost function is thus defined as: the same target side with other binarized rules be-
cause on the target side, many nonterminals will be

()2 — [13 NN, resp. for the NN [J

n((i, k, j)) = 1 ifthe VT for span(i, j) isnew attached without any lexical evidence. We are more
7= 0 otherwise likely to have a smaller set of rules with the latter
binarization.

Ninit (i) = 0 _ _ '
Second, with the presence of pruning, dynamic
The semiring operators for this cost are als@rogramming states that are generated by rules with

(min, +) on real numbers. many target-side terminals are disadvantaged when
_ _ competing with others in the same bin because of
2.4 LateTarget-Side Terminal Attachment the language model score. As a result, these would

Once the optimal source-side binarization tree ibe discarded earlier, even if the original unbinarized
found, we have a good deal of freedom to attacfule has a high probability. Consequently, we lose
target-side terminals to adjacent nonterminals, dbe benefit of using larger rules, which have more
long as the bracketing of nonterminals is not viocontextual information. We show in our experiment
lated. The following example is taken from Zhanghat late target side terminal attachment significantly
et al. (2006): outperforms early target side terminal attachment.

Although the problem can be alleviated by pre-
computing a language model score for the original
unbinarized rule and applying the heuristic to its bi-
With the source-side binarization fixed, we can prtharized rules, this still grants no benefit over late ter-
duce distinct binarized rules by choosing differentninal attachment. We show in our experiment that
ways of attaching target-side terminals: late target-side terminal attachment significantly out-
[RB 1] ( [PP]s NN o, performs early target side terminal attachment.

[RB]; ( resp. for the NN [PR] )2

[RB 1 5t]1 ([PPHI]3 NN )o,
[RB]; resp. for thel NN [PPL ) 3.1 Setup

The first binarization is generated by attaching the test our binarization algorithm on an Chinese-
target-side terminals as low as possible in a postnglish translation task. We extract a GHKM gram-

it is defined as an expectation over input strings, instead of dmar (Galley et al., 2004) from a parallel corpus with
expectation over trees. the parsed English side with some modification so

RB 177 PP NN,

ADJP RB responsible for the NN PP

ADJP
3 Experiments
ADJP
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-355 terms of BLEU score, decoding speed, or model
360 | _ score when comparing translation results that used
ix grammars that employed nonterminal sharing max-
imization and ones that did not. In the rest of this

section, all the results we discuss use nonterminal
T sharing maximization as a part of the cost function.

. We then compare the effects of early target-side
terminal attachment and late attachment. Figure 2
(byn)-early —+— shows model scores of each decoder run with vary-

(b,n)-late i K K X
(b.en)-early ---x--- ing bin sizes, and Figure 3 shows BLEU scores

10 (T‘;’Q) = for corresponding runs of the experiments. (b,n)-
Seconds / Sentence (log scale) early is conventional synchronous binarization with
early target-side terminal attachment and nontermi-
Figure 2: Model Scores vs. Decoding Time nal sharing maximization, (b,n)-late is the same set-
ting with late target-side terminal attachment. The
tuples represent cost functions that are discussed in
2L ~ | Section 2. The figures clearly show that late attach-
S ment of target-side terminals is better. Although
195 - P Figure 3 does not show perfect correlation with Fig-
ure 2, it exhibits the same trend. The same goes for
(b,e,n)-early and (b,e,n)-late.
_ Finally, we examine the effect of including the
source-side terminal-aware cost function, denoted

-365
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Model Score (log-probability)

-385 |- S

-390

-395

205

19 +

BLEU

185

(b,n)-early —+—

18 - o Emte 1 “e”in our cost tuples. Comparing (b,e,n)-late with
,e,n)-early ---*--- H H 1 1
75 l (b.en)-late -z (b,n)-late, we see that terminal-aware binarization
10 100 gives better model scores and BLEU scores. The

Seconds / Sentence (log scale)

trend is the same when one compares (b,e,n)-early

Figure 3: BLEU Scores vs Decoding Time and (b,n)-early.

4 Conclusion

as not to extract_unary rules (Chung et a.l" 201. /e examined binarizing synchronous context-free
The corpus consists of 250K sentence pairs, whic

. . . rammars within a semiring parsing framework. We
's 6.3M words on the Enghsh Slde.' A ?’92.-Sentencgroposed binarization methods that explicitly take
test set was to evaluate different binarizations.

terminals into consideration. We have found that al-

Decoding is performed by a general CYK SCI:Gthough binarized rules are already scope 3, we can

decdodle_)r devzlo%:ed én—ho(;Jse and t?\ trlc?:(aKm :ang_rr;':lgﬁ” do better by putting infrequent derivations as
Modetis used. The decoder runs the algont,y as possible in a binarization tree to promote

with cube-pruning (Chiang, 2007). In all our eXloer'early pruning. We have also found that attaching

gnents,hwe dtl)sc;;]d unbltnalrlzggcl;—:ér?les, which hav.garget side terminals as late as possible promotes
een shown by Zhang et al. ( ) to have no signi marter pruning of rules thereby improving model

icant effect on translation accuracy. score and translation quality at decoding time. Im-
32 Results provements we discuss in this paper result in better

. _ . ._search, and hence better translation.
We first discuss effects of maximizing nonterminal

sharing. Having nonterminal sharing maximizatiorAcknowledgments We thank Hao Zhang for use-
as a part of the cost function for binarization didful discussions and the anonymous reviewers for
yield slightly smaller grammars. However, we couldheir helpful comments. This work was supported
not discern any noticeable difference or trend iy NSF grants 11S-0546554 and 11S-0910611.
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