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Abstract

We present a preliminary study on unsu-
pervised preposition sense disambiguation
(PSD), comparing different models and train-
ing techniques (EM, MAP-EM with L0 norm,
Bayesian inference using Gibbs sampling). To
our knowledge, this is the first attempt at un-
supervised preposition sense disambiguation.
Our best accuracy reaches 56%, a significant
improvement (at p <.001) of 16% over the
most-frequent-sense baseline.

1 Introduction

Reliable disambiguation of words plays an impor-
tant role in many NLP applications. Prepositions
are ubiquitous—they account for more than 10% of
the 1.16m words in the Brown corpus—and highly
ambiguous. The Preposition Project (Litkowski and
Hargraves, 2005) lists an average of 9.76 senses
for each of the 34 most frequent English preposi-
tions, while nouns usually have around two (Word-
Net nouns average about 1.2 senses, 2.7 if monose-
mous nouns are excluded (Fellbaum, 1998)). Dis-
ambiguating prepositions is thus a challenging and
interesting task in itself (as exemplified by the Sem-
Eval 2007 task, (Litkowski and Hargraves, 2007)),
and holds promise for NLP applications such as
Information Extraction or Machine Translation.1

Given a sentence such as the following:

In the morning, he shopped in Rome

we ultimately want to be able to annotate it as

1See (Chan et al., 2007) for how using WSD can help MT.

in/TEMPORAL the morning/TIME he/PERSON
shopped/SOCIAL in/LOCATIVE
Rome/LOCATION

Here, the preposition in has two distinct meanings,
namely a temporal and a locative one. These mean-
ings are context-dependent. Ultimately, we want
to disambiguate prepositions not by and for them-
selves, but in the context of sequential semantic la-
beling. This should also improve disambiguation of
the words linked by the prepositions (here, morn-
ing, shopped, and Rome). We propose using un-
supervised methods in order to leverage unlabeled
data, since, to our knowledge, there are no annotated
data sets that include both preposition and argument
senses. In this paper, we present our unsupervised
framework and show results for preposition disam-
biguation. We hope to present results for the joint
disambiguation of preposition and arguments in a
future paper.

The results from this work can be incorporated
into a number of NLP problems, such as seman-
tic tagging, which tries to assign not only syntac-
tic, but also semantic categories to unlabeled text.
Knowledge about semantic constraints of preposi-
tional constructions would not only provide better
label accuracy, but also aid in resolving preposi-
tional attachment problems. Learning by Reading
approaches (Mulkar-Mehta et al., 2010) also cru-
cially depend on unsupervised techniques as the
ones described here for textual enrichment.

Our contributions are:

• we present the first unsupervised preposition
sense disambiguation (PSD) system
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• we compare the effectiveness of various models
and unsupervised training methods

• we present ways to extend this work to prepo-
sitional arguments

2 Preliminaries

A preposition p acts as a link between two words, h
and o. The head word h (a noun, adjective, or verb)
governs the preposition. In our example above, the
head word is shopped. The object of the preposi-
tional phrase (usually a noun) is denoted o, in our
example morning and Rome. We will refer to h and
o collectively as the prepositional arguments. The
triple h, p, o forms a syntactically and semantically
constrained structure. This structure is reflected in
dependency parses as a common construction. In
our example sentence above, the respective struc-
tures would be shopped in morning and shopped in
Rome. The senses of each element are denoted by a
barred letter, i.e., p̄ denotes the preposition sense, h̄
denotes the sense of the head word, and ō the sense
of the object.

3 Data

We use the data set for the SemEval 2007 PSD
task, which consists of a training (16k) and a test
set (8k) of sentences with sense-annotated preposi-
tions following the sense inventory of The Preposi-
tion Project, TPP (Litkowski and Hargraves, 2005).
It defines senses for each of the 34 most frequent
prepositions. There are on average 9.76 senses per
preposition. This corpus was chosen as a starting
point for our study since it allows a comparison with
the original SemEval task. We plan to use larger
amounts of additional training data.

We used an in-house dependency parser to extract
the prepositional constructions from the data (e.g.,
“shop/VB in/IN Rome/NNP”). Pronouns and num-
bers are collapsed into ”PRO” and ”NUM”, respec-
tively.

In order to constrain the argument senses, we con-
struct a dictionary that lists for each word all the
possible lexicographer senses according to Word-
Net. The set of lexicographer senses (45) is a higher
level abstraction which is sufficiently coarse to allow
for a good generalization. Unknown words are as-
sumed to have all possible senses applicable to their

respective word class (i.e. all noun senses for words
labeled as nouns, etc).

4 Graphical Model

ph o

p!h! o!
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b)
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Figure 1: Graphical Models. a) 1st order HMM. b)
variant used in experiments (one model/preposition,
thus no conditioning on p). c) incorporates further
constraints on variables

As shown by Hovy et al. (2010), preposition
senses can be accurately disambiguated using only
the head word and object of the PP. We exploit this
property of prepositional constructions to represent
the constraints between h, p, and o in a graphical
model. We define a good model as one that reason-
ably constrains the choices, but is still tractable in
terms of the number of parameters being estimated.

As a starting point, we choose the standard first-
order Hidden Markov Model as depicted in Figure
1a. Since we train a separate model for each preposi-
tion, we can omit all arcs to p. This results in model
1b. The joint distribution over the network can thus
be written as

Pp(h, o, h̄, p̄, ō) = P (h̄) · P (h|h̄) · (1)

P (p̄|h̄) · P (ō|p̄) · P (o|ō)

We want to incorporate as much information as
possible into the model to constrain the choices. In
Figure 1c, we condition p̄ on both h̄ and ō, to reflect
the fact that prepositions act as links and determine
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their sense mainly through context. In order to con-
strain the object sense ō, we condition on h̄, similar
to a second-order HMM. The actual object o is con-
ditioned on both p̄ and ō. The joint distribution is
equal to

Pp(h, o, h̄, p̄, ō) = P (h̄) · P (h|h̄) · (2)

P (ō|h̄) · P (p̄|h̄, ō) · P (o|ō, p̄)

Though we would like to also condition the prepo-
sition sense p̄ on the head word h (i.e., an arc be-
tween them in 1c) in order to capture idioms and
fixed phrases, this would increase the number of pa-
rameters prohibitively.

5 Training

The training method largely determines how well the
resulting model explains the data. Ideally, the sense
distribution found by the model matches the real
one. Since most linguistic distributions are Zipfian,
we want a training method that encourages sparsity
in the model.

We briefly introduce different unsupervised train-
ing methods and discuss their respective advantages
and disadvantages. Unless specified otherwise, we
initialized all models uniformly, and trained until the
perplexity rate stopped increasing or a predefined
number of iterations was reached. Note that MAP-
EM and Bayesian Inference require tuning of some
hyper-parameters on held-out data, and are thus not
fully unsupervised.

5.1 EM

We use the EM algorithm (Dempster et al., 1977) as
a baseline. It is relatively easy to implement with ex-
isting toolkits like Carmel (Graehl, 1997). However,
EM has a tendency to assume equal importance for
each parameter. It thus prefers “general” solutions,
assigning part of the probability mass to unlikely
states (Johnson, 2007). We ran EM on each model
for 100 iterations, or until the perplexity stopped de-
creasing below a threshold of 10−6.

5.2 EM with Smoothing and Restarts

In addition to the baseline, we ran 100 restarts with
random initialization and smoothed the fractional
counts by adding 0.1 before normalizing (Eisner,

2002). Smoothing helps to prevent overfitting. Re-
peated random restarts help escape unfavorable ini-
tializations that lead to local maxima. Carmel pro-
vides options for both smoothing and restarts.

5.3 MAP-EM with L0 Norm

Since we want to encourage sparsity in our mod-
els, we use the MDL-inspired technique intro-
duced by Vaswani et al. (2010). Here, the goal
is to increase the data likelihood while keeping
the number of parameters small. The authors use
a smoothed L0 prior, which encourages probabil-
ities to go down to 0. The prior involves hyper-
parameters α, which rewards sparsity, and β, which
controls how close the approximation is to the true
L0 norm.2 We perform a grid search to tune the
hyper-parameters of the smoothed L0 prior for ac-
curacy on the preposition against, since it has a
medium number of senses and instances. For HMM,
we set αtrans =100.0, βtrans =0.005, αemit =1.0,
βemit =0.75. The subscripts trans and emit de-
note the transition and emission parameters. For
our model, we set αtrans =70.0, βtrans =0.05,
αemit =110.0, βemit =0.0025. The latter resulted
in the best accuracy we achieved.

5.4 Bayesian Inference

Instead of EM, we can use Bayesian inference with
Gibbs sampling and Dirichlet priors (also known as
the Chinese Restaurant Process, CRP). We follow
the approach of Chiang et al. (2010), running Gibbs
sampling for 10,000 iterations, with a burn-in pe-
riod of 5,000, and carry out automatic run selec-
tion over 10 random restarts.3 Again, we tuned the
hyper-parameters of our Dirichlet priors for accu-
racy via a grid search over the model for the prepo-
sition against. For both models, we set the concen-
tration parameter αtrans to 0.001, and αemit to 0.1.
This encourages sparsity in the model and allows for
a more nuanced explanation of the data by shifting
probability mass to the few prominent classes.

2For more details, the reader is referred to Vaswani et al.
(2010).

3Due to time and space constraints, we did not run the 1000
restarts used in Chiang et al. (2010).
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result table

Page 1

HMM
0.40 (0.40)

0.42 (0.42) 0.55 (0.55) 0.45 (0.45) 0.53 (0.53)

0.41 (0.41) 0.49 (0.49) 0.55 (0.56) 0.48 (0.49)

baseline Vanilla EM

EM, smoothed, 

100 random 

restarts

MAP-EM + 

smoothed L0 

norm

CRP, 10 random 

restarts

our model

Table 1: Accuracy over all prepositions w. different models and training. Best accuracy: MAP-
EM+smoothed L0 norm on our model. Italics denote significant improvement over baseline at p <.001.
Numbers in brackets include against (used to tune MAP-EM and Bayesian Inference hyper-parameters)

6 Results

Given a sequence h, p, o, we want to find the se-
quence of senses h̄, p̄, ō that maximizes the joint
probability. Since unsupervised methods use the
provided labels indiscriminately, we have to map the
resulting predictions to the gold labels. The pre-
dicted label sequence ĥ, p̂, ô generated by the model
via Viterbi decoding can then be compared to the
true key. We use many-to-1 mapping as described
by Johnson (2007) and used in other unsupervised
tasks (Berg-Kirkpatrick et al., 2010), where each
predicted sense is mapped to the gold label it most
frequently occurs with in the test data. Success is
measured by the percentage of accurate predictions.
Here, we only evaluate p̂.

The results presented in Table 1 were obtained
on the SemEval test set. We report results both
with and without against, since we tuned the hyper-
parameters of two training methods on this preposi-
tion. To test for significance, we use a two-tailed
t-test, comparing the number of correctly labeled
prepositions. As a baseline, we simply label all word
types with the same sense, i.e., each preposition to-
ken is labeled with its respective name. When using
many-to-1 accuracy, this technique is equivalent to a
most-frequent-sense baseline.

Vanilla EM does not improve significantly over
the baseline with either model, all other methods
do. Adding smoothing and random restarts increases
the gain considerably, illustrating how important
these techniques are for unsupervised training. We
note that EM performs better with the less complex
HMM.

CRP is somewhat surprisingly roughly equivalent
to EM with smoothing and random restarts. Accu-

racy might improve with more restarts.
MAP-EM with L0 normalization produces the

best result (56%), significantly outperforming the
baseline at p < .001. With more parameters (9.7k
vs. 3.7k), which allow for a better modeling of
the data, L0 normalization helps by zeroing out in-
frequent ones. However, the difference between
our complex model and the best HMM (EM with
smoothing and random restarts, 55%) is not signifi-
cant.

The best (supervised) system in the SemEval task
(Ye and Baldwin, 2007) reached 69% accuracy. The
best current supervised system we are aware of
(Hovy et al., 2010) reaches 84.8%.

7 Related Work

The semantics of prepositions were topic of a special
issue of Computational Linguistics (Baldwin et al.,
2009). Preposition sense disambiguation was one of
the SemEval 2007 tasks (Litkowski and Hargraves,
2007), and was subsequently explored in a number
of papers using supervised approaches: O’Hara and
Wiebe (2009) present a supervised preposition sense
disambiguation approach which explores different
settings; Tratz and Hovy (2009), Hovy et al. (2010)
make explicit use of the arguments for preposition
sense disambiguation, using various features. We
differ from these approaches by using unsupervised
methods and including argument labeling.

The constraints of prepositional constructions
have been explored by Rudzicz and Mokhov (2003)
and O’Hara and Wiebe (2003) to annotate the se-
mantic role of complete PPs with FrameNet and
Penn Treebank categories. Ye and Baldwin (2006)
explore the constraints of prepositional phrases for
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semantic role labeling. We plan to use the con-
straints for argument disambiguation.

8 Conclusion and Future Work

We evaluate the influence of two different models (to
represent constraints) and three unsupervised train-
ing methods (to achieve sparse sense distributions)
on PSD. Using MAP-EM with L0 norm on our
model, we achieve an accuracy of 56%. This is a
significant improvement (at p <.001) over the base-
line and vanilla EM. We hope to shorten the gap to
supervised systems with more unlabeled data. We
also plan on training our models with EM with fea-
tures (Berg-Kirkpatrick et al., 2010).

The advantage of our approach is that the models
can be used to infer the senses of the prepositional
arguments as well as the preposition. We are cur-
rently annotating the data to produce a test set with
Amazon’s Mechanical Turk, in order to measure la-
bel accuracy for the preposition arguments.
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