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Abstract

In this work, we compare the translation
performance of word alignments obtained
via Bayesian inference to those obtained via
expectation-maximization (EM). We propose
a Gibbs sampler for fully Bayesian inference
in IBM Model 1, integrating over all possi-
ble parameter values in finding the alignment
distribution. We show that Bayesian inference
outperforms EM in all of the tested language
pairs, domains and data set sizes, by up to 2.99
BLEU points. We also show that the proposed
method effectively addresses the well-known
rare word problem in EM-estimated models;
and at the same time induces a much smaller
dictionary of bilingual word-pairs.

1 Introduction

Word alignment is a crucial early step in the training
of most statistical machine translation (SMT) sys-
tems, in which the estimated alignments are used for
constraining the set of candidates in phrase/grammar
extraction (Koehn et al., 2003; Chiang, 2007; Galley
et al., 2006). State-of-the-art word alignment mod-
els, such as IBM Models (Brown et al., 1993), HMM
(Vogel et al., 1996), and the jointly-trained symmet-
ric HMM (Liang et al., 2006), contain a large num-
ber of parameters (e.g., word translation probabili-
ties) that need to be estimated in addition to the de-
sired hidden alignment variables.

The most common method of inference in such
models is expectation-maximization (EM) (Demp-
ster et al., 1977) or an approximation to EM when
exact EM is intractable. However, being a maxi-

mization (e.g., maximum likelihood (ML) or max-
imum a posteriori (MAP)) technique, EM is gen-
erally prone to local optima and overfitting. In
essence, the alignment distribution obtained via EM
takes into account only the most likely point in the
parameter space, but does not consider contributions
from other points.

Problems with the standard EM estimation of
IBM Model 1 was pointed out by Moore (2004) and
a number of heuristic changes to the estimation pro-
cedure, such as smoothing the parameter estimates,
were shown to reduce the alignment error rate, but
the effects on translation performance was not re-
ported. Zhao and Xing (2006) note that the param-
eter estimation (for which they use variational EM)
suffers from data sparsity and use symmetric Dirich-
let priors, but they find the MAP solution.

Bayesian inference, the approach in this paper,
have recently been applied to several unsupervised
learning problems in NLP (Goldwater and Griffiths,
2007; Johnson et al., 2007) as well as to other tasks
in SMT such as synchronous grammar induction
(Blunsom et al., 2009) and learning phrase align-
ments directly (DeNero et al., 2008).

Word alignment learning problem was addressed
jointly with segmentation learning in Xu et al.
(2008), Nguyen et al. (2010), and Chung and Gildea
(2009). The former two works place nonparametric
priors (also known as cache models) on the param-
eters and utilize Gibbs sampling. However, align-
ment inference in neither of these works is exactly
Bayesian since the alignments are updated by run-
ning GIZA++ (Xu et al., 2008) or by local maxi-
mization (Nguyen et al., 2010). On the other hand,
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Chung and Gildea (2009) apply a sparse Dirichlet
prior on the multinomial parameters to prevent over-
fitting. They use variational Bayes for inference, but
they do not investigate the effect of Bayesian infer-
ence to word alignment in isolation. Recently, Zhao
and Gildea (2010) proposed fertility extensions to
IBM Model 1 and HMM, but they do not place any
prior on the parameters and their inference method is
actually stochastic EM (also known as Monte Carlo
EM), a ML technique in which sampling is used to
approximate the expected counts in the E-step. Even
though they report substantial reductions in align-
ment error rate, the translation BLEU scores do not
improve.

Our approach in this paper is fully Bayesian in
which the alignment probabilities are inferred by
integrating over all possible parameter values as-
suming an intuitive, sparse prior. We develop a
Gibbs sampler for alignments under IBM Model 1,
which is relevant for the state-of-the-art SMT sys-
tems since: (1) Model 1 is used in bootstrapping
the parameter settings for EM training of higher-
order alignment models, and (2) many state-of-the-
art SMT systems use Model 1 translation probabil-
ities as features in their log-linear model. We eval-
uate the inferred alignments in terms of the end-to-
end translation performance, where we show the re-
sults with a variety of input data to illustrate the gen-
eral applicability of the proposed technique. To our
knowledge, this is the first work to directly investi-
gate the effects of Bayesian alignment inference on
translation performance.

2 Bayesian Inference with IBM Model 1

Given a sentence-aligned parallel corpus (E,F), let
ei (fj) denote the i-th (j-th) source (target)1 word
in e (f ), which in turn consists of I (J) words and
denotes the s-th sentence in E (F).2 Each source
sentence is also hypothesized to have an additional
imaginary “null” word e0. Also let VE (VF ) denote
the size of the observed source (target) vocabulary.

In Model 1 (Brown et al., 1993), each target word

1We use the “source” and “target” labels following the gen-
erative process, in which E generates F (cf. Eq. 1).

2Dependence of the sentence-level variables e, f , I , J (and
a and n, which are introduced later) on the sentence index s
should be understood even though not explicitly indicated for
notational simplicity.

fj is associated with a hidden alignment variable aj

whose value ranges over the word positions in the
corresponding source sentence. The set of align-
ments for a sentence (corpus) is denoted by a (A).
The model parameters consist of a VE × VF ta-
ble T of word translation probabilities such that
te,f = P (f |e).

The joint distribution of the Model-1 variables is
given by the following generative model3:

P (E,F,A; T) =
∏
s

P (e)P (a|e)P (f |a, e; T) (1)

=
∏
s

P (e)

(I + 1)J

J∏
j=1

teaj ,fj
(2)

In the proposed Bayesian setting, we treat T as a
random variable with a prior P (T). To find a suit-
able prior for T, we re-write (2) as:

P (E,F,A|T) =
∏
s

P (e)

(I + 1)J

VE∏
e=1

VF∏
f=1

(te,f )ne,f (3)

=

VE∏
e=1

VF∏
f=1

(te,f )Ne,f
∏
s

P (e)

(I + 1)J
(4)

where in (3) the count variable ne,f denotes the
number of times the source word type e is aligned
to the target word type f in the sentence-pair s, and
in (4) Ne,f =

∑
s ne,f . Since the distribution over

{te,f} in (4) is in the exponential family, specifically
being a multinomial distribution, we choose the con-
jugate prior, in this case the Dirichlet distribution,
for computational convenience.

For each source word type e, we assume the prior
distribution for te = te,1 · · · te,VF

, which is itself
a distribution over the target vocabulary, to be a
Dirichlet distribution (with its own set of hyperpa-
rameters Θe = θe,1 · · · θe,VF

) independent from the
priors of other source word types:

te ∼ Dirichlet(te; Θe)

fj |a, e,T ∼ Multinomial(fj ; teaj
)

We choose symmetric Dirichlet priors identically
for all source words e with θe,f = θ = 0.0001 to
obtain a sparse Dirichlet prior. A sparse prior favors

3We omit P (J |e) since both J and e are observed and so
this term does not affect the inference of hidden variables.
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distributions that peak at a single target word and
penalizes flatter translation distributions, even for
rare words. This choice addresses the well-known
problem in the IBM Models, and more severely in
Model 1, in which rare words act as “garbage col-
lectors” (Och and Ney, 2003) and get assigned ex-
cessively large number of word alignments.

Then we obtain the joint distribution of all (ob-
served + hidden) variables as:

P (E,F,A,T; Θ) = P (T; Θ) P (E,F,A|T) (5)

where Θ = Θ1 · · ·ΘVE
.

To infer the posterior distribution of the align-
ments, we use Gibbs sampling (Geman and Ge-
man, 1984). One possible method is to derive the
Gibbs sampler from P (E,F,A,T; Θ) obtained in
(5) and sample the unknowns A and T in turn, re-
sulting in an explicit Gibbs sampler. In this work,
we marginalize out T by:

P (E,F,A; Θ) =

∫
T
P (E,F,A,T; Θ) (6)

and obtain a collapsed Gibbs sampler, which sam-
ples only the alignment variables.

Using P (E,F,A; Θ) obtained in (6), the Gibbs
sampling formula for the individual alignments is
derived as:4

P (aj = i|E,F,A¬j ; Θ)

=
N¬j

ei,fj
+ θei,fj∑VF

f=1N
¬j
ei,f

+
∑VF

f=1 θei,f

(7)

where the superscript ¬j denotes the exclusion of
the current value of aj .

The algorithm is given in Table 1. Initialization
of A in Step 1 can be arbitrary, but for faster conver-
gence special initializations have been used, e.g., us-
ing the output of EM (Chiang et al., 2010). Once the
Gibbs sampler is deemed to have converged after B
burn-in iterations, we collect M samples of A with
L iterations in-between5 to estimate P (A|E,F). To
obtain the Viterbi alignments, which are required for
phrase extraction (Koehn et al., 2003), we select for
each aj the most frequent value in the M collected
samples.

4The derivation is quite standard and similar to other
Dirichlet-multinomial Gibbs sampler derivations, e.g. (Resnik
and Hardisty, 2010).

5A lag is introduced to reduce correlation between samples.

Input: E, F; Output: K samples of A
1 Initialize A
2 for k = 1 to K do
3 for each sentence-pair s in (E,F) do
4 for j = 1 to J do
5 for i = 0 to I do
6 Calculate P (aj = i| · · · )

according to (7)
7 Sample a new value for aj

Table 1: Gibbs sampling algorithm for IBM Model 1 (im-
plemented in the accompanying software).

3 Experimental Setup

For Turkish↔English experiments, we used the
20K-sentence travel domain BTEC dataset (Kikui
et al., 2006) from the yearly IWSLT evaluations6

for training, the CSTAR 2003 test set for develop-
ment, and the IWSLT 2004 test set for testing7. For
Czech↔English, we used the 95K-sentence news
commentary parallel corpus from the WMT shared
task8 for training, news2008 set for development,
news2009 set for testing, and the 438M-word En-
glish and 81.7M-word Czech monolingual news cor-
pora for additional language model (LM) training.
For Arabic↔English, we used the 65K-sentence
LDC2004T18 (news from 2001-2004) for training,
the AFP portion of LDC2004T17 (news from 1998,
single reference) for development and testing (about
875 sentences each), and the 298M-word English
and 215M-word Arabic AFP and Xinhua subsets of
the respective Gigaword corpora (LDC2007T07 and
LDC2007T40) for additional LM training. All lan-
guage models are 4-gram in the travel domain exper-
iments and 5-gram in the news domain experiments.

For each language pair, we trained standard
phrase-based SMT systems in both directions (in-
cluding alignment symmetrization and log-linear
model tuning) using Moses (Koehn et al., 2007),
SRILM (Stolcke, 2002), and ZMERT (Zaidan,
2009) tools and evaluated using BLEU (Papineni et
al., 2002). To obtain word alignments, we used the
accompanying Perl code for Bayesian inference and

6International Workshop on Spoken Language Translation.
http://iwslt2010.fbk.eu

7Using only the first English reference for symmetry.
8Workshop on Machine Translation.

http://www.statmt.org/wmt10/translation-task.html
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Method TE ET CE EC AE EA

EM-5 38.91 26.52 14.62 10.07 15.50 15.17

EM-80 39.19 26.47 14.95 10.69 15.66 15.02

GS-N 41.14 27.55 14.99 10.85 14.64 15.89

GS-5 40.63 27.24 15.45 10.57 16.41 15.82

GS-80 41.78 29.51 15.01 10.68 15.92 16.02

M4 39.94 27.47 15.47 11.15 16.46 15.43

Table 2: BLEU scores in translation experiments. E: En-
glish, T: Turkish, C: Czech, A: Arabic.

GIZA++ (Och and Ney, 2003) for EM.
For each translation task, we report two EM es-

timates, obtained after 5 and 80 iterations (EM-5
and EM-80), respectively; and three Gibbs sampling
estimates, two of which were initialized with those
two EM Viterbi alignments (GS-5 and GS-80) and a
third was initialized naively9 (GS-N). Sampling set-
tings were B = 400 for T↔E, 4000 for C↔E and
8000 for A↔E; M = 100, and L = 10. For refer-
ence, we also report the results with IBM Model 4
alignments (M4) trained in the standard bootstrap-
ping regimen of 15H53343.

4 Results

Table 2 compares the BLEU scores of Bayesian in-
ference and EM estimation. In all translation tasks,
Bayesian inference outperforms EM. The improve-
ment range is from 2.59 (in Turkish-to-English)
up to 2.99 (in English-to-Turkish) BLEU points in
travel domain and from 0.16 (in English-to-Czech)
up to 0.85 (in English-to-Arabic) BLEU points in
news domain. Compared to the state-of-the-art IBM
Model 4, the Bayesian Model 1 is better in all travel
domain tasks and is comparable or better in the news
domain.

Fertility of a source word is defined as the num-
ber of target words aligned to it. Table 3 shows the
distribution of fertilities in alignments obtained from
different methods. Compared to EM estimation, in-
cluding Model 4, the proposed Bayesian inference
dramatically reduces “questionable” high-fertility (4
≤ fertility≤ 7) alignments and almost entirely elim-

9Each target word was aligned to the source candidate that
co-occured the most number of times with that target word in
the entire parallel corpus.

Method TE ET CE EC AE EA

All 140K 183K 1.63M 1.78M 1.49M 1.82M

EM-80 5.07K 2.91K 52.9K 45.0K 69.1K 29.4K

M4 5.35K 3.10K 36.8K 36.6K 55.6K 36.5K

GS-80 755 419 14.0K 10.9K 47.6K 18.7K

EM-80 426 227 10.5K 18.6K 21.4K 24.2K

M4 81 163 2.57K 10.6K 9.85K 21.8K

GS-80 1 1 39 110 689 525

EM-80 24 24 28 30 44 46

M4 9 9 9 9 9 9

GS-80 8 8 13 18 20 19

Table 3: Distribution of inferred alignment fertilities. The
four blocks of rows from top to bottom correspond to (in
order) the total number of source tokens, source tokens
with fertilities in the range 4–7, source tokens with fertil-
ities higher than 7, and the maximum observed fertility.
The first language listed is the source in alignment (Sec-
tion 2).

Method TE ET CE EC AE EA

EM-80 52.5K 38.5K 440K 461K 383K 388K

M4 57.6K 40.5K 439K 441K 422K 405K

GS-80 23.5K 25.4K 180K 209K 158K 176K

Table 4: Sizes of bilingual dictionaries induced by differ-
ent alignment methods.

inates “excessive” alignments (fertility ≥ 8)10.
The number of distinct word-pairs induced by an

alignment has been recently proposed as an objec-
tive function for word alignment (Bodrumlu et al.,
2009). Small dictionary sizes are preferred over
large ones. Table 4 shows that the proposed in-
ference method substantially reduces the alignment
dictionary size, in most cases by more than 50%.

5 Conclusion

We developed a Gibbs sampling-based Bayesian in-
ference method for IBM Model 1 word alignments
and showed that it outperforms EM estimation in
terms of translation BLEU scores across several lan-
guage pairs, data sizes and domains. As a result
of this increase, Bayesian Model 1 alignments per-
form close to or better than the state-of-the-art IBM

10The GIZA++ implementation of Model 4 artificially limits
fertility parameter values to at most nine.
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Model 4. The proposed method learns a compact,
sparse translation distribution, overcoming the well-
known “garbage collection” problem of rare words
in EM-estimated current models.
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