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Abstract

In statistical machine translation, a researcher
seeks to determine whether some innovation
(e.g., a new feature, model, or inference al-
gorithm) improves translation quality in com-
parison to a baseline system. To answer this
question, he runs an experiment to evaluate the
behavior of the two systems on held-out data.
In this paper, we consider how to make such
experiments more statistically reliable. We
provide a systematic analysis of the effects of
optimizer instability—an extraneous variable
that is seldom controlled for—on experimen-
tal outcomes, and make recommendations for
reporting results more accurately.

1 Introduction

The need for statistical hypothesis testing for ma-
chine translation (MT) has been acknowledged since
at least Och (2003). In that work, the proposed
method was based on bootstrap resampling and was
designed to improve the statistical reliability of re-
sults by controlling for randomness across test sets.
However, there is no consistently used strategy that
controls for the effects of unstable estimates of
model parameters.1 While the existence of opti-
mizer instability is an acknowledged problem, it is
only infrequently discussed in relation to the relia-
bility of experimental results, and, to our knowledge,
there has yet to be a systematic study of its effects on

1We hypothesize that the convention of “trusting” BLEU
score improvements of, e.g., > 1, is not merely due to an ap-
preciation of what qualitative difference a particular quantita-
tive improvement will have, but also an implicit awareness that
current methodology leads to results that are not consistently
reproducible.

hypothesis testing. In this paper, we present a series
of experiments demonstrating that optimizer insta-
bility can account for substantial amount of variation
in translation quality,2 which, if not controlled for,
could lead to incorrect conclusions. We then show
that it is possible to control for this variable with a
high degree of confidence with only a few replica-
tions of the experiment and conclude by suggesting
new best practices for significance testing for ma-
chine translation.

2 Nondeterminism and Other
Optimization Pitfalls

Statistical machine translation systems consist of a
model whose parameters are estimated to maximize
some objective function on a set of development
data. Because the standard objectives (e.g., 1-best
BLEU, expected BLEU, marginal likelihood) are
not convex, only approximate solutions to the op-
timization problem are available, and the parame-
ters learned are typically only locally optimal and
may strongly depend on parameter initialization and
search hyperparameters. Additionally, stochastic
optimization and search techniques, such as mini-
mum error rate training (Och, 2003) and Markov
chain Monte Carlo methods (Arun et al., 2010),3

constitute a second, more obvious source of noise
in the optimization procedure.

This variation in the parameter vector affects the
quality of the model measured on both development

2This variation directly affects the output translations, and
so it will propagate to both automated metrics as well as human
evaluators.

3Online subgradient techniques such as MIRA (Crammer et
al., 2006; Chiang et al., 2008) have an implicit stochastic com-
ponent as well based on the order of the training examples.
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data and held-out test data, independently of any ex-
perimental manipulation. Thus, when trying to de-
termine whether the difference between two mea-
surements is significant, it is necessary to control for
variance due to noisy parameter estimates. This can
be done by replication of the optimization procedure
with different starting conditions (e.g., by running
MERT many times).

Unfortunately, common practice in reporting ma-
chine translation results is to run the optimizer once
per system configuration and to draw conclusions
about the experimental manipulation from this sin-
gle sample. However, it could be that a particu-
lar sample is on the “low” side of the distribution
over optimizer outcomes (i.e., it results in relatively
poorer scores on the test set) or on the “high” side.
The danger here is obvious: a high baseline result
paired with a low experimental result could lead to a
useful experimental manipulation being incorrectly
identified as useless. We now turn to the question of
how to reduce the probability falling into this trap.

3 Related Work

The use of statistical hypothesis testing has grown
apace with the adoption of empirical methods in
natural language processing. Bootstrap techniques
(Efron, 1979; Wasserman, 2003) are widespread
in many problem areas, including for confidence
estimation in speech recognition (Bisani and Ney,
2004), and to determine the significance of MT re-
sults (Och, 2003; Koehn, 2004; Zhang et al., 2004;
Zhang and Vogel, 2010). Approximate randomiza-
tion (AR) has been proposed as a more reliable tech-
nique for MT significance testing, and evidence sug-
gests that it yields fewer type I errors (i.e., claiming
a significant difference where none exists; Riezler
and Maxwell, 2005). Other uses in NLP include
the MUC-6 evaluation (Chinchor, 1993) and pars-
ing (Cahill et al., 2008). However, these previous
methods assume model parameters are elements of
the system rather than extraneous variables.

Prior work on optimizer noise in MT has fo-
cused primarily on reducing optimizer instability
(whereas our concern is how to deal with optimizer
noise, when it exists). Foster and Kuhn (2009) mea-
sured the instability of held-out BLEU scores across
10 MERT runs to improve tune/test set correlation.
However, they only briefly mention the implications
of the instability on significance. Cer et al. (2008)

explored regularization of MERT to improve gener-
alization on test sets. Moore and Quirk (2008) ex-
plored strategies for selecting better random “restart
points” in optimization. Cer et al. (2010) analyzed
the standard deviation over 5 MERT runs when each
of several metrics was used as the objective function.

4 Experiments

In our experiments, we ran the MERT optimizer to
optimize BLEU on a held-out development set many
times to obtain a set of optimizer samples on two dif-
ferent pairs of systems (4 configurations total). Each
pair consists of a baseline system (System A) and an
“experimental” system (System B), which previous
research has suggested will perform better.

The first system pair contrasts a baseline phrase-
based system (Moses) and experimental hierarchi-
cal phrase-based system (Hiero), which were con-
structed from the Chinese-English BTEC corpus
(0.7M words), the later of which was decoded with
the cdec decoder (Koehn et al., 2007; Chiang, 2007;
Dyer et al., 2010). The second system pair con-
trasts two German-English Hiero/cdec systems con-
structed from the WMT11 parallel training data
(98M words).4 The baseline system was trained on
unsegmented words, and the experimental system
was constructed using the most probable segmenta-
tion of the German text according to the CRF word
segmentation model of Dyer (2009). The Chinese-
English systems were optimized 300 times, and the
German-English systems were optimized 50 times.

Our experiments used the default implementation
of MERT that accompanies each of the two de-
coders. The Moses MERT implementation uses 20
random restart points per iteration, drawn uniformly
from the default ranges for each feature, and, at each
iteration, 200-best lists were extracted with the cur-
rent weight vector (Bertoldi et al., 2009). The cdec
MERT implementation performs inference over the
decoder search space which is structured as a hyper-
graph (Kumar et al., 2009). Rather than using restart
points, in addition to optimizing each feature inde-
pendently, it optimizes in 5 random directions per it-
eration by constructing a search vector by uniformly
sampling each element of the vector from (−1, 1)
and then renormalizing so it has length 1. For all
systems, the initial weight vector was manually ini-
tialized so as to yield reasonable translations.

4http://statmt.org/wmt11/

177



Metric System Avg ssel sdev stest

BTEC Chinese-English (n = 300)

BLEU ↑ System A 48.4 1.6 0.2 0.5
System B 49.9 1.5 0.1 0.4

MET ↑ System A 63.3 0.9 - 0.4
System B 63.8 0.9 - 0.5

TER ↓ System A 30.2 1.1 - 0.6
System B 28.7 1.0 - 0.2

WMT German-English (n = 50)

BLEU ↑ System A 18.5 0.3 0.0 0.1
System B 18.7 0.3 0.0 0.2

MET ↑ System A 49.0 0.2 - 0.2
System B 50.0 0.2 - 0.1

TER ↓ System A 65.5 0.4 - 0.3
System B 64.9 0.4 - 0.4

Table 1: Measured standard deviations of different au-
tomatic metrics due to test-set and optimizer variability.
sdev is reported only for the tuning objective function
BLEU.

Results are reported using BLEU (Papineni et
al., 2002), METEOR5 (Banerjee and Lavie, 2005;
Denkowski and Lavie, 2010), and TER (Snover et
al., 2006).

4.1 Extraneous variables in one system
In this section, we describe and measure (on the ex-
ample systems just described) three extraneous vari-
ables that should be considered when evaluating a
translation system. We quantify these variables in
terms of standard deviation s, since it is expressed
in the same units as the original metric. Refer to
Table 1 for the statistics.

Local optima effects sdev The first extraneous
variable we discuss is the stochasticity of the opti-
mizer. As discussed above, different optimization
runs find different local maxima. The noise due to
this variable can depend on many number of fac-
tors, including the number of random restarts used
(in MERT), the number of features in a model, the
number of references, the language pair, the portion
of the search space visible to the optimizer (e.g. 10-
best, 100-best, a lattice, a hypergraph), and the size
of the tuning set. Unfortunately, there is no proxy to
estimate this effect as with bootstrap resampling. To
control for this variable, we must run the optimizer
multiple times to estimate the spread it induces on
the development set. Using the n optimizer samples,
with mi as the translation quality measurement of

5METEOR version 1.2 with English ranking parameters and
all modules.

the development set for the ith optimization run, and
m is the average of all mis, we report the standard
deviation over the tuning set as sdev:

sdev =

√√√√ n∑
i=1

(mi −m)2

n− 1

A high sdev value may indicate that the optimizer is
struggling with local optima and changing hyperpa-
rameters (e.g. more random restarts in MERT) could
improve system performance.

Overfitting effects stest As with any optimizer,
there is a danger that the optimal weights for a tuning
set may not generalize well to unseen data (i.e., we
overfit). For a randomized optimizer, this means that
parameters can generalize to different degrees over
multiple optimizer runs. We measure the spread in-
duced by optimizer randomness on the test set met-
ric score stest, as opposed to the overfitting effect in
isolation. The computation of stest is identical to sdev
except that the mis are the translation metrics cal-
culated on the test set. In Table 1, we observe that
stest > sdev, indicating that optimized parameters are
likely not generalizing well.

Test set selection ssel The final extraneous vari-
able we consider is the selection of the test set it-
self. A good test set should be representative of
the domain or language for which experimental ev-
idence is being considered. However, with only a
single test corpus, we may have unreliable results
because of idiosyncrasies in the test set. This can
be mitigated in two ways. First, replication of ex-
periments by testing on multiple, non-overlapping
test sets can eliminate it directly. Since this is not
always practical (more test data may not be avail-
abile), the widely-used bootstrap resampling method
(§3) also controls for test set effects by resampling
multiple “virtual” test sets from a single set, making
it possible to infer distributional parameters such as
the standard deviation of the translation metric over
(very similar) test sets.6 Furthermore, this can be
done for each of our optimizer samples. By averag-
ing the bootstrap-estimated standard deviations over

6Unlike actually using multiple test sets, bootstrap resam-
pling does not help to re-estimate the mean metric score due to
test set spread (unlike actually using multiple test sets) since the
mean over bootstrap replicates is approximately the aggregate
metric score.
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optimizer samples, we have a statistic that jointly
quantifies the impact of test set effects and optimizer
instability on a test set. We call this statistic ssel.
Different values of this statistic can suggest method-
ological improvements. For example, a large ssel in-
dicates that more replications will be necessary to
draw reliable inferences from experiments on this
test set, so a larger test set may be helpful.

To compute ssel, assume we have n indepen-
dent optimization runs which produced weight vec-
tors that were used to translate a test set n times.
The test set has ` segments with references R =
〈R1, R2, . . . , R`〉. Let X = 〈X1, X2, . . . , Xn〉
where each Xi = 〈Xi1, Xi2, . . . , Xi`〉 is the list of
translated segments from the ith optimization run
list of the ` translated segments of the test set. For
each hypothesis output Xi, we construct k bootstrap
replicates by drawing ` segments uniformly, with re-
placement, from Xi, together with its corresponding
reference. This produces k virtual test sets for each
optimization run i. We designate the score of the jth
virtual test set of the ith optimization run with mij .
If mi = 1

k

∑k
j=1 mij , then we have:

si =

√√√√ k∑
j=1

(mij −mi)
2

k − 1

ssel =
1

n

n∑
i=1

si

4.2 Comparing Two Systems
In the previous section, we gave statistics about
the distribution of evaluation metrics across a large
number of experimental samples (Table 1). Because
of the large number of trials we carried out, we can
be extremely confident in concluding that for both
pairs of systems, the experimental manipulation ac-
counts for the observed metric improvements, and
furthermore, that we have a good estimate of the
magnitude of that improvement. However, it is not
generally feasible to perform as many replications
as we did, so here we turn to the question of how
to compare two systems, accounting for optimizer
noise, but without running 300 replications.

We begin with a visual illustration how opti-
mizer instability affects test set scores when com-
paring two systems. Figure 1 plots the histogram
of the 300 optimizer samples each from the two
BTEC Chinese-English systems. The phrase-based
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Figure 1: Histogram of test set BLEU scores for the
BTEC phrase-based system (left) and BTEC hierarchical
system (right). While the difference between the systems
is 1.5 BLEU in expectation, there is a non-trivial region
of overlap indicating that some random outcomes will re-
sult in little to no difference being observed.
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Figure 2: Relative frequencies of obtaining differences
in BLEU scores on the WMT system as a function of the
number of optimizer samples. The expected difference
is 0.2 BLEU. While there is a reasonably high chance of
observing a non-trivial improvement (or even a decline)
for 1 sample, the distribution quickly peaks around the
expected value given just a few more samples.

system’s distribution is centered at the sample
mean 48.4, and the hierarchical system is centered
at 49.9, a difference of 1.5 BLEU, correspond-
ing to the widely replicated result that hierarchi-
cal phrase-based systems outperform conventional
phrase-based systems in Chinese-English transla-
tion. Crucially, although the distributions are dis-
tinct, there is a non-trivial region of overlap, and
experimental samples from the overlapping region
could suggest the opposite conclusion!

To further underscore the risks posed by this over-
lap, Figure 2 plots the relative frequencies with
which different BLEU score deltas will occur, as a
function of the number of optimizer samples used.

When is a difference significant? To determine
whether an experimental manipulation results in a
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statistically reliable difference for an evaluation met-
ric, we use a stratified approximate randomization
(AR) test. This is a nonparametric test that approxi-
mates a paired permutation test by sampling permu-
tations (Noreen, 1989). AR estimates the probability
(p-value) that a measured difference in metric scores
arose by chance by randomly exchanging sentences
between the two systems. If there is no significant
difference between the systems (i.e., the null hypoth-
esis is true), then this shuffling should not change
the computed metric score. Crucially, this assumes
that the samples being analyzed are representative
of all extraneous variables that could affect the out-
come of the experiment. Therefore, we must include
multiple optimizer replications. Also, since metric
scores (such as BLEU) are in general not compa-
rable across test sets, we stratify, exchanging only
hypotheses that correspond to the same sentence.

Table 2 shows the p-values computed by AR, test-
ing the significance of the differences between the
two systems in each pair. The first three rows illus-
trate “single sample” testing practice. Depending on
luck with MERT, the results can vary widely from
insignificant (at p > .05) to highly significant.

The last two lines summarize the results of the test
when a small number of replications are performed,
as ought to be reasonable in a research setting. In
this simulation, we randomly selected n optimizer
outputs from our large pool and ran the AR test to
determine the significance; we repeated this proce-
dure 250 times. The p-values reported are the p-
values at the edges of the 95% confidence interval
(CI) according to AR seen in the 250 simulated com-
parison scenarios. These indicate that we are very
likely to observe a significant difference for BTEC
at n = 5, and a very significant difference by n = 50
(Table 2). Similarly, we see this trend in the WMT
system: more replications leads to more significant
results, which will be easier to reproduce. Based on
the average performance of the systems reported in
Table 1, we expect significance over a large enough
number of independent trials.

5 Discussion and Recommendations

No experiment can completely control for all pos-
sible confounding variables. Nor are metric scores
(even if they are statistically reliable) a substitute
for thorough human analysis. However, we believe
that the impact of optimizer instability has been ne-

p-value
n System A System B BTEC WMT
1 high low 0.25 0.95
1 median median 0.15 0.13
1 low high 0.0003 0.003

p-value (95% CI)
5 random random 0.001–0.034 0.001–0.38
50 random random 0.001–0.001 0.001–0.33

Table 2: Two-system analysis: AR p-values for three
different “single sample” scenarios that illustrate differ-
ent pathological scenarios that can result when the sam-
pled weight vectors are “low” or “high.” For “random,”
we simulate an experiments with n optimization replica-
tions by drawing n optimized system outputs from our
pool and performing AR; this simulation was repeated
250 times and the 95% CI of the AR p-values is reported.

glected by standard experimental methodology in
MT research, where single-sample measurements
are too often used to assess system differences. In
this paper, we have provided evidence that optimizer
instability can have a substantial impact on results.
However, we have also shown that it is possible to
control for it with very few replications (Table 2).
We therefore suggest:
• Replication be adopted as standard practice in

MT experimental methodology, especially in
reporting results;7

• Replication of optimization (MERT) and test
set evaluation be performed at least three times;
more replications may be necessary for experi-
mental manipulations with more subtle effects;
• Use of the median system according to a trusted

metric when manually analyzing system out-
put; preferably, the median should be deter-
mined based on one test set and a second test
set should be manually analyzed.
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