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Abstract

This paper describes an unsupervised,
language-independent model for finding
rhyme schemes in poetry, using no prior
knowledge about rhyme or pronunciation.

1 Introduction

Rhyming stanzas of poetry are characterized by
rhyme schemes, patterns that specify how the lines
in the stanza rhyme with one another. The question
we raise in this paper is: can we infer the rhyme
scheme of a stanza given no information about pro-
nunciations or rhyming relations among words?

Background A rhyme scheme is represented as a
string corresponding to the sequence of lines that
comprise the stanza, in which rhyming lines are de-
noted by the same letter. For example, the limerick’s
rhyme scheme is aabba, indicating that the 1st, 2nd,
and 5th lines rhyme, as do the the 3rd and 4th.

Motivation Automatic rhyme scheme annotation
would benefit several research areas, including:

• Machine Translation of Poetry There has been
a growing interest in translation under con-
straints of rhyme and meter, which requires
training on a large amount of annotated poetry
data in various languages.

• ‘Culturomics’ The field of digital humanities
is growing, with a focus on statistics to track
cultural and literary trends (partially spurred
by projects like the Google Books Ngrams1).

1http://ngrams.googlelabs.com/

Rhyming corpora could be extremely useful for
large-scale statistical analyses of poetic texts.

• Historical Linguistics/Study of Dialects
Rhymes of a word in poetry of a given time
period or dialect region provide clues about its
pronunciation in that time or dialect, a fact that
is often taken advantage of by linguists (Wyld,
1923). One could automate this task given
enough annotated data.

An obvious approach to finding rhyme schemes
is to use word pronunciations and a definition of
rhyme, in which case the problem is fairly easy.
However, we favor an unsupervised solution that uti-
lizes no external knowledge for several reasons.

• Pronunciation dictionaries are simply not avail-
able for many languages. When dictionaries
are available, they do not include all possible
words, or account for different dialects.

• The definition of rhyme varies across poetic
traditions and languages, and may include
slant rhymes like gate/mat, ‘sight rhymes’ like
word/sword, assonance/consonance like shore/
alone, leaves/lance, etc.

• Pronunciations and spelling conventions
change over time. Words that rhymed histori-
cally may not anymore, like prove and love –
or proued and beloued.

2 Related Work

There have been a number of recent papers on the
automated annotation, analysis, or translation of po-
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etry. Greene et al. (2010) use a finite state trans-
ducer to infer the syllable-stress assignments in lines
of poetry under metrical constraints. Genzel et al.
(2010) incorporate constraints on meter and rhyme
(where the stress and rhyming information is derived
from a pronunciation dictionary) into a machine
translation system. Jiang and Zhou (2008) develop a
system to generate the second line of a Chinese cou-
plet given the first. A few researchers have also ex-
plored the problem of poetry generation under some
constraints (Manurung et al., 2000; Netzer et al.,
2009; Ramakrishnan et al., 2009). There has also
been some work on computational approaches to
characterizing rhymes (Byrd and Chodorow, 1985)
and global properties of the rhyme network (Son-
deregger, 2011) in English. To the best of our knowl-
edge, there has been no language-independent com-
putational work on finding rhyme schemes.

3 Finding Stanza Rhyme Schemes

A collection of rhyming poetry inevitably contains
repetition of rhyming pairs. For example, the word
trees will often rhyme with breeze across different
stanzas, even those with different rhyme schemes
and written by different authors. This is partly due
to sparsity of rhymes – many words that have no
rhymes at all, and many others have only a handful,
forcing poets to reuse rhyming pairs.

In this section, we describe an unsupervised al-
gorithm to infer rhyme schemes that harnesses this
repetition, based on a model of stanza generation.

3.1 Generative Model of a Stanza
1. Pick a rhyme scheme r of length n with proba-

bility P (r).

2. For each i ∈ [1, n], pick a word sequence,
choosing the last2 word xi as follows:

(a) If, according to r, the ith line does not
rhyme with any previous line in the stanza, pick
a word xi from a vocabulary of line-end words
with probability P (xi).

(b) If the ith line rhymes with some previous
line(s) j according to r, choose a word xi that

2A rhyme may span more than one word in a line – for ex-
ample, laureate... / Tory at... / are ye at (Byron, 1824), but this
is uncommon. An extension of our model could include a latent
variable that selects the entire rhyming portion of a line.

rhymes with the last words of all such lines
with probability

∏
j<i:ri=rj

P (xi|xj).

The probability of a stanza x of length n is given
by Eq. 1. Ii,r is the indicator variable for whether
line i rhymes with at least one previous line under r.

P (x) =
∑
r∈R

P (r)P (x|r) =

∑
r∈R

P (r)
n∏

i=1

(1− Ii,r)P (xi) + Ii,r
∏

j<i:ri=rj

P (xi|xj) (1)

3.2 Learning
We denote our data by X , a set of stanzas. Each
stanza x is represented as a sequence of its line-end
words, xi, . . . xlen(x). We are also given a large set
R of all possible rhyme schemes.3

If each stanza in the data is generated indepen-
dently (an assumption we relax in §4), the log-
likelihood of the data is

∑
x∈X logP (x). We would

like to maximize this over all possible rhyme scheme
assignments, under the latent variables θ, which rep-
resents pairwise rhyme strength, and ρ, the distribu-
tion of rhyme schemes. θv,w is defined for all words
v and w as a non-negative real value indicating how
strongly the words v and w rhyme, and ρr is P (r).

The expectation maximization (EM) learning al-
gorithm for this formulation is described below. The
intuition behind the algorithm is this: after one iter-
ation, θv,w = 0 for all v and w that never occur to-
gether in a stanza. If v and w co-occur in more than
one stanza, θv,w has a high pseudo-count, reflecting
the fact that they are likely to be rhymes.

Initialize: ρ and θ uniformly (giving θ the same
positive value for all word pairs).

Expectation Step: Compute P (r|x) =
P (x|r)ρr/

∑
q∈R P (x|q)ρq, where

P (x|r) =
n∏

i=1

(1− Ii,r)P (xi) +

Ii,r
∏

j<i:ri=rj

θxi,xj
/

∑
w

θw,xi
(2)

3While the number of rhyme schemes of length n is tech-
nically the number of partitions of an n- element set (the Bell
number), only a subset of these are typically used.
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P (xi) is simply the relative frequency of the
word xi in the data.

Maximization Step: Update θ and ρ:

θv,w =
∑

r,x:v rhymes with w

P (r|x) (3)

ρr =
∑
x∈X

P (r|x)/
∑

q∈R,x∈X

P (q|x) (4)

After Convergence: Label each stanza x with the
best rhyme scheme, arg maxr∈R P (r|x).

3.3 Data

We test the algorithm on rhyming poetry in En-
glish and French. The English data is an edited ver-
sion of the public-domain portion of the corpus used
by Sonderegger (2011), and consists of just under
12000 stanzas spanning a range of poets and dates
from the 15th to 20th centuries. The French data
is from the ARTFL project (Morrissey, 2011), and
contains about 3000 stanzas. All poems in the data
are manually annotated with rhyme schemes.

The set R is taken to be all the rhyme schemes
from the gold standard annotations of both corpora,
numbering 462 schemes in total, with an average of
6.5 schemes per stanza length. There are 27.12 can-
didate rhyme schemes on an average for each En-
glish stanza, and 33.81 for each French stanza.

3.4 Results

We measure the accuracy of the discovered rhyme
schemes relative to the gold standard. We also eval-
uate for each word token xi, the set of words in
{xi+1, xi+2, . . .} that are found to rhyme with xi by
measuring precision and recall. This is to account
for partial correctness – if abcb is found instead of
abab, for example, we would like to credit the algo-
rithm for knowing that the 2nd and 4th lines rhyme.

Table 1 shows the results of the algorithm for the
entire corpus in each language, as well as for a few
sub-corpora from different time periods.

3.5 Orthographic Similarity Bias

So far, we have relied on the repetition of rhymes,
and have made no assumptions about word pronun-
ciations. Therefore, the algorithm’s performance

is strongly correlated4 with the predictability of
rhyming words. For writing systems where the
written form of a word approximates its pronunci-
ation, we have some additional information about
rhyming: for example, English words ending with
similar characters are most probably rhymes. We
do not want to assume too much in the interest of
language-independence – following from our earlier
point in §1 about the nebulous definition of rhyme
– but it is safe to say that rhyming words involve
some orthographic similarity (though this does not
hold for writing systems like Chinese). We therefore
initialize θ at the start of EM with a simple similarity
measure: (Eq. 5). The addition of ε = 0.001 ensures
that words with no letters in common, like new and
you, are not eliminated as rhymes.

θv,w =
# letters common to v & w

min(len(v), len(w))
+ ε (5)

This simple modification produces results that
outperform the naı̈ve baselines for most of the data
by a considerable margin, as detailed in Table 2.

3.6 Using Pronunciation, Rhyming Definition

How does our algorithm compare to a standard sys-
tem where rhyme schemes are determined by pre-
defined rules of rhyming and dictionary pronunci-
ations? We use the accepted definition of rhyme
in English: two words rhyme if their final stressed
vowels and all following phonemes are identical.
For every pair of English words v, w, we let θv,w =
1 + ε if the CELEX (Baayen et al., 1995) pronun-
ciations of v and w rhyme, and θv,w = 0 + ε if not
(with ε = 0.001). If either v or w is not present
in CELEX, we set θv,w to a random value in [0, 1].
We then find the best rhyme scheme for each stanza,
using Eq. 2 with uniformly initialized ρ.

Figure 1 shows that the accuracy of this system
is generally much lower than that of our model for
the sub-corpora from before 1750. Performance is
comparable for the 1750-1850 data, after which we
get better accuracies using the rhyming definition
than with our model. This is clearly a reflection of
language change; older poetry differs more signifi-
cantly in pronunciation and lexical usage from con-

4For the five English sub-corpora,R2 = 0.946 for the nega-
tive correlation of accuracy with entropy of rhyming word pairs.
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Table 1: Rhyme scheme accuracy and F-Score (computed from average precision and recall over all lines) using our algorithm
for independent stanzas, with uniform initialization of θ. Rows labeled ‘All’ refer to training and evaluation on all the data in the
language. Other rows refer to training and evaluating on a particular sub-corpus only. Bold indicates that we outperform the naı̈ve
baseline, where most common scheme of the appropriate length from the gold standard of the entire corpus is assigned to every
stanza, and italics that we outperform the ‘less naı̈ve’ baseline, where we assign the most common scheme of the appropriate length
from the gold standard of the given sub-corpus.

Sub-corpus Sub-corpus overview Accuracy (%) F-Score
(time- # of Total # # of line- EM Naı̈ve Less naı̈ve EM Naı̈ve Less

period) stanzas of lines end words induction baseline baseline induction baseline naı̈ve

En

All 11613 93030 13807 62.15 56.76 60.24 0.79 0.74 0.77
1450-1550 197 1250 782 17.77 53.30 97.46 0.41 0.73 0.98
1550-1650 3786 35485 7826 67.17 62.28 74.72 0.82 0.78 0.85
1650-1750 2198 20110 4447 87.58 58.42 82.98 0.94 0.68 0.91
1750-1850 2555 20598 5188 31.00 69.16 74.52 0.65 0.83 0.87
1850-1950 2877 15587 4382 50.92 37.43 49.70 0.81 0.55 0.68

Fr
All 2814 26543 10781 40.29 39.66 64.46 0.58 0.57 0.80

1450-1550 1478 14126 7122 28.21 58.66 77.67 0.59 0.83 0.89
1550-1650 1336 12417 5724 52.84 18.64 61.23 0.70 0.28 0.75

temporary dictionaries, and therefore, benefits more
from a model that assumes no pronunciation knowl-
edge. (While we may get better results on older
data using dictionaries that are historically accurate,
these are not easily available, and require a great
deal of effort and linguistic knowledge to create.)

Initializing θ as specified above and then running
EM produces some improvement compared to or-
thographic similarity (Table 2).

4 Accounting for Stanza Dependencies

So far, we have treated stanzas as being indepen-
dent of each other. In reality, stanzas in a poem are
usually generated using the same or similar rhyme
schemes. Furthermore, some rhyme schemes span
multiple stanzas – for example, the Italian form terza
rima has the scheme aba bcb cdc... (the 1st and 3rd

lines rhyme with the 2nd line of the previous stanza).

4.1 Generative Model

We model stanza generation within a poem as a
Markov process, where each stanza is conditioned
on the previous one. To generate a poem y consist-
ing of m stanzas, for each k ∈ [1,m], generate a
stanza xk of length nk as described below:

1. If k = 1, pick a rhyme scheme rk of length nk

with probability P (rk), and generate the stanza
as in the previous section.

Figure 1: Comparison of EM with a definition-based system
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(a) Accuracy and F-Score ratios of the rhyming-definition-
based system over that of our model with orthographic sim-
ilarity. The former is more accurate than EM for post-1850
data (ratio > 1), but is outperformed by our model for older
poetry (ratio< 1), largely due to pronunciation changes like
the Great Vowel Shift that alter rhyming relations.

Found by EM Found by definitions
1450-1550 left/craft, shone/done edify/lie, adieu/hue
1550-1650 appeareth/weareth, obtain/vain, amend/

speaking/breaking, depend, breed/heed,
proue/moue, doe/two prefers/hers

1650-1750 most/cost, presage/ see/family, blade/
rage, join’d/mind shade, noted/quoted

1750-1850 desponds/wounds, gore/shore, ice/vice,
o’er/shore, it/basket head/tread, too/blew

1850-1950 of/love, lover/ old/enfold, within/
half-over, again/rain win, be/immortality

(b) Some examples of rhymes in English found by EM but not
the definition-based system (due to divergence from the contem-
porary dictionary or rhyming definition), and vice-versa (due to
inadequate repetition).
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Table 2: Performance of EM with θ initialized by orthographic similarity (§3.5), pronunciation-based rhyming definitions (§3.6),
and the HMM for stanza dependencies (§4). Bold and italics indicate that we outperform the naı̈ve baselines shown in Table 1.

Sub-corpus Accuracy (%) F-Score
(time- HMM Rhyming Orthographic Uniform HMM Rhyming Ortho. Uniform

period) stanzas definition init. initialization initialization stanzas defn. init. init. init.

En

All 72.48 64.18 63.08 62.15 0.88 0.84 0.83 0.79
1450-1550 74.31 75.63 69.04 17.77 0.86 0.86 0.82 0.41
1550-1650 79.17 69.76 71.98 67.17 0.90 0.86 0.88 0.82
1650-1750 91.23 91.95 89.54 87.58 0.97 0.97 0.96 0.94
1750-1850 49.11 42.74 33.62 31.00 0.82 0.77 0.70 0.65
1850-1950 58.95 57.18 54.05 50.92 0.90 0.89 0.84 0.81

Fr
All 56.47 - 48.90 40.29 0.81 - 0.75 0.58

1450-1550 61.28 - 35.25 28.21 0.86 - 0.71 0.59
1550-1650 67.96 - 63.40 52.84 0.79 - 0.77 0.70

2. If k > 1, pick a scheme rk of length nk with
probability P (rk|rk−1). If no rhymes in rk

are shared with the previous stanza’s rhyme
scheme, rk−1, generate the stanza as before.
If rk shares rhymes with rk−1, generate the
stanza as a continuation of xk−1. For exam-
ple, if xk−1 = [dreams, lay, streams], and rk−1

and rk = aba and bcb, the stanza xk should be
generated so that xk

1 and xk
3 rhyme with lay.

4.2 Learning
This model for a poem can be formalized as an au-
toregressive HMM, an hidden Markov model where
each observation is conditioned on the previous ob-
servation as well as the latent state. An observation
at a time step k is the stanza xk, and the latent state at
that time step is the rhyme scheme rk. This model is
parametrized by θ and ρ, where ρr,q = P (r|q) for all
schemes r and q. θ is initialized with orthographic
similarity. The learning algorithm follows from EM
for HMMs and our earlier algorithm.

Expectation Step: Estimate P (r|x) for each
stanza in the poem using the forward-backward
algorithm. The ‘emission probability’ P (x|r)
for the first stanza is same as in §3, and for
subsequent stanzas xk, k > 1 is given by:

P (xk|xk−1, rk) =
nk∏
i=1

(1− Ii,rk)P (xk
i ) +

Ii,rk

∏
j<i:rk

i =rk
j

P (xk
i |xk

j )
∏

j:rk
i =rk−1

j

P (xk
i |xk−1

j ) (6)

Maximization Step: Update ρ and θ analogously
to HMM transition and emission probabilities.

4.3 Results
As Table 2 shows, there is considerable improve-
ment over models that assume independent stanzas.
The most gains are found in French, which contains
many instances of ‘linked’ stanzas like the terza
rima, as well as English data containing long poems
made of several stanzas with the same scheme.

5 Future Work

Some possible extensions of our work include au-
tomatically generating the set of possible rhyme
schemes R, and incorporating partial supervision
into our algorithm as well as better ways of using
and adapting pronunciation information when avail-
able. We would also like to test our method on a
range of languages and texts.

To return to the motivations, one could use
the discovered annotations for machine translation
of poetry, or to computationally reconstruct pro-
nunciations, which is useful for historical linguis-
tics as well as other applications involving out-of-
vocabulary words.
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