Insertion, Deletion, or Substitution? Normalizing Text Messages without
Pre-categorization nor Supervision

Fei Liu' Fuliang Weng? Bingqing Wang®  Yang Liu!
!Computer Science Department, The University of Texas at Dallas
2Research and Technology Center, Robert Bosch LLC
3School of Computer Science, Fudan University
{feiliu, yangl}@hlt.utdallas.edu!
fuliang.weng@us.bosch.com?, wbg@fudan.edu.cn?

Abstract 2gether (6326) | togetha (919) tgthr (250) togeda (20)
2getha (1266) togather (207) | tOgether (57) | togethaa (10)
L. 2gthr (178) togehter (94) togeter (49) 2getter (10)
Most text message normalization approaches 2qetha (46) togethor (29) | tagether (18) | 2gtr (6)

are based on supervised learning and rely on
human labeled training data. In addition, the
nonstandard words are often categorized into
different types and specific models are de-
signed to tackle each type. In this paper,
we propose a unified letter transformation ap-
proach that requires neither pre-categorization
nor human supervision. Our approach mod-
els the generation process from the dictionary
words to nonstandard tokens under a sequence
labeling framework, where each letter in the
dictionary word can be retained, removed, or
substituted by other letters/digits. To avoid
the expensive and time consuming hand label-
ing process, we automatically collected a large
set of noisy training pairs using a novel web-
based approach and performed character-level
alignment for model training. Experiments on
both Twitter and SMS messages show that our
system significantly outperformed the state-
of-the-art deletion-based abbreviation system
and the jazzy spell checker (absolute accuracy
gain of 21.69% and 18.16% over jazzy spell
checker on the two test sets respectively).

1 Introduction

Recent years have witnessed the explosive growth
of text message usage, including the mobile phone
text messages (SMS), chat logs, emails, and sta-
tus updates from the social network websites such
as Twitter and Facebook. These text message col-
lections serve as valuable information sources, yet
the nonstandard contents within them often degrade
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Table 1: Nonstandard tokens originated from “together”
and their frequencies in the Edinburgh Twitter corpus.

the existing language processing systems, calling
the need of text normalization before applying the
traditional information extraction, retrieval, senti-
ment analysis (Celikyilmaz et al., 2010), or sum-
marization techniques. Text message normalization
is also of crucial importance for building text-to-
speech (TTS) systems, which need to determine pro-
nunciation for nonstandard words.

Text message normalization aims to replace the
non-standard tokens that carry significant mean-
ings with the context-appropriate standard English
words. This is a very challenging task due to the
vast amount and wide variety of existing nonstan-
dard tokens. We found more than 4 million dis-
tinct out-of-vocabulary tokens in the English tweets
of the Edinburgh Twitter corpus (see Section 2.2).
Table 1 shows examples of nonstandard tokens orig-
inated from the word “together”. We can see that
some variants can be generated by dropping let-
ters from the original word (“tgthr”) or substitut-
ing letters with digit (‘“2gether”); however, many
variants are generated by combining the letter in-
sertion, deletion, and substitution operations (“to-
gethaa”, “2gthr”). This shows that it is difficult to
divide the nonstandard tokens into exclusive cate-
gories.

Among the literature of text normalization
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(for text messages or other domains), Sproat et
al. (2001), Cook and Stevenson (2009) employed the
noisy channel model to find the most probable word
sequence given the observed noisy message. Their
approaches first classified the nonstandard tokens
into various categories (e.g., abbreviation, stylistic
variation, prefix-clipping), then calculated the pos-
terior probability of the nonstandard tokens based
on each category. Choudhury et al. (2007) de-
veloped a hidden Markov model using hand anno-
tated training data. Yang et al. (2009), Pennell and
Liu (2010) focused on modeling word abbreviations
formed by dropping characters from the original
word. Toutanova and Moore (2002) addressed the
phonetic substitution problem by extending the ini-
tial letter-to-phone model. Aw et al. (2006), Kobus
et al. (2008) viewed the text message normalization
as a statistical machine translation process from the
texting language to standard English. Beaufort et
al. (2010) experimented with the weighted finite-
state machines for normalizing French SMS mes-
sages. Most of the above approaches rely heavily
on the hand annotated data and involve categorizing
the nonstandard tokens in the first place, which gives
rise to three problems: (1) the labeled data is very
expensive and time consuming to obtain; (2) it is
hard to establish a standard taxonomy for categoriz-
ing the tokens found in text messages; (3) the lack of
optimized way to integrate various category-specific
models often compromises the system performance,
as confirmed by (Cook and Stevenson, 2009).

In this paper, we propose a general letter trans-
formation approach that normalizes nonstandard to-
kens without categorizing them. A large set of noisy
training word pairs were automatically collected via
a novel web-based approach and aligned at the char-
acter level for model training. The system was tested
on both Twitter and SMS messages. Results show
that our system significantly outperformed the jazzy
spell checker and the state-of-the-art deletion-based
abbreviation system, and also demonstrated good
cross-domain portability.

2 Letter Transformation Approach

2.1 General Framework

Given a noisy text message 7', our goal is to nor-
malize it into a standard English word sequence .S.
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Figure 1: Examples of nonstandard tokens generated by
performing letter transformation on the dictionary words.

Under the noisy channel model, this is equivalent to
finding the sequence S that maximizes p(S|T):

S = arg maxg p(S|T) = arg maxs(np(ﬂ\Si))p(S)

where we assume that each non-standard token T;
is dependent on only one English word S;, that is,
we are not considering acronyms (e.g., “bbl” for
“be back later”) in this study. p(S) can be cal-
culated using a language model (LM). We formu-
late the process of generating a nonstandard token
T; from dictionary word S; using a letter transfor-
mation model, and use the model confidence as the
probability p(7;|S;). Figure 1 shows several exam-
ple (word, token) pairs'. To form a nonstandard to-
ken, each letter in the dictionary word can be labeled
with: (a) one of the 0-9 digits; (b) one of the 26 char-
acters including itself; (c) the null character ““-”’; (d)
a letter combination. This transformation process
from dictionary words to nonstandard tokens will be
learned automatically through a sequence labeling
framework that integrates character-, phonetic-, and
syllable-level information.

In general, the letter transformation approach will
handle the nonstandard tokens listed in Table 2 yet
without explicitly categorizing them. Note for the
tokens with letter repetition, we first generate a set
of variants by varying the repetitive letters (e.g. C; =
{“pleas”, “pleeas”, “pleaas”, “plecaas”, ‘pleecaas”}
for T; = {“pleecaas™}), then select the maximum
posterior probability among all the variants:

p(T3|S;) = max p(T;|S;)
T;eC;

IThe ideal transform for example (5) would be “for” to “4”.
But in this study we are treating each letter in the English word
separately and not considering the phrase-level transformation.



(1) abbreviation tgthr, weeknd, shudnt
4got, sumbody, kulture
tOgether, h3r3, Stop, doinq
thimg, macam

betta, hubbie, cutie

pleeeaas, togtherrr

(2) phonetic sub w/- or w/o digit

(3) graphemic sub w/- or w/o digit

(4) typographic error

(5) stylistic variation

(6) letter repetition

l (7) any combination of (1) to (6) luvvvin, 2moro, mOrnin ‘

Table 2: Nonstandard tokens that can be processed by the
unified letter transformation approach.

2.2 Web based Data Collection w/o Supervision

We propose to automatically collect training data
(annotate nonstandard words with the corresponding
English forms) using a web-based approach, there-
fore avoiding the expensive human annotation. We
use the Edinburgh Twitter corpus (Petrovic et al.,
2010) for data collection, which contains 97 mil-
lion Twitter messages. The English tweets were
extracted using the TextCat language identification
toolkit (Cavnar and Trenkle, 1994), and tokenized
into a sequence of clean tokens consisting of letters,
digits, and apostrophe.

For the out-of-vocabulary (OOV) tokens consist-
ing of letters and apostrophe, we form n Google
queries for each of them in the form of either
“wy wo wg” OOV or OOV “wi we w3”, where wq
to ws are consecutive context words extracted from
the tweets that contain this OOV. n is set to 6 in this
study. The first 32 returned snippets for each query
are parsed and the words in boldface that are differ-
ent from both the OOV and the context words are
collected as candidate normalized words. Among
them, we further select the words that have longer
common character sequence with the OOV than with
the context words, and pair each of them with the
OOV to form the training pairs. For the OOV tokens
consisting of both letters and digits, we use simple
rules to recover possible original words. These rules
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include: 1 — “one”, “won”, “1”’; 2 — “to”, “two”,
“t00”; 3 — “e”; 4 — “for”, “fore”, “four”; 5 — “s”;
6 — “b”7; 8 — “ate”, “ait”, “eat”, “eate”, “ight”,
“aight”. The OOV tokens and any resulting words
from the above process are included in the noisy
training pairs. In addition, we add 932 word pairs
of chat slangs and their normalized word forms col-
lected from InternetSlang.com that are not covered
by the above training set.

These noisy training pairs were further expanded
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and purged. We apply the transitive rule on these
initially collected training pairs. For example, if the
two pairs “(cause, cauz)” and “(cauz, coz)” are in the
data set, we will add “(cause, coz)” as another train-
ing pair. We remove the data pairs whose word can-
didate is not in the CMU dictionary. We also remove
the pairs whose word candidate and OOV are simply
inflections of each other, e.g., “(headed, heading)”,
using a set of rules. In total, this procedure generated
62,907 training word pairs including 20,880 unique
candidate words and 46,356 unique OOVs.?

2.3 Automatic Letter-level Alignment

Given a training pair (S;, T;) consisting of a word .S;
and its nonstandard variant 7;, we propose a proce-
dure to align each letter in .S; with zero, one, or more
letters/digits in 7;. First we align the letters of the
longest common sequence between the dictionary
word and the variant (which gives letter-to-letter cor-
respondence in those common subsequences). Then
for the letter chunks in between each of the obtained
alignments, we process them based on the following
three cases:

(a) (many-to-0): a chunk in the dictionary word
needs to be aligned to zero letters in the variant.
In this case, we map each letter in the chunk to
“-” (e.g., “birthday” to “bday”), obtaining letter-
level alignments.

(b) (0-to-many): zero letters in the dictionary word
need to be aligned to a letter/digit chunk in the
variant. In this case, if the first letter in the
chunk can be combined with the previous letter
to form a digraph (such as “wh” when aligning
“sandwich” to “sandwhich’), we combine these
two letters. The remaining letters, or the entire
chunk when the first letter does not form a di-
graph with the previous letter, are put together
with the following aligned letter in the variant.

(c) (many-to-many): non-zero letters in the dictio-
nary word need to be aligned to a chunk in the
variant. Similar to (b), the first letter in the vari-
ant chunk is merged with the previous alignment
if they form a digraph. Then we map the chunk
in the dictionary word to the chunk in the vari-
ant as one alignment, e.g., “someone” aligned to
“somel”.

2Please contact the first author for the collected word pairs.



The (b) and (c) cases above generate chunk-level
(with more than one letter) alignments. To elimi-
nate possible noisy training pairs, such as (“you”,
“haveu”), we keep all data pairs containing digits,
but remove the data pairs with chunks involving
three letters or more in either the dictionary word or
the variant. For the chunk alignments in the remain-
ing pairs, we sequentially align the letters (e.g., “ph”
aligned to “f-”). Note that for those 1-to-2 align-
ments, we align the single letter in the dictionary
word to a two-letter combination in the variant. We
limit to the top 5 most frequent letter combinations,
which are “ck”, “ey”, “ie”, “ou”, “wh”, and the pairs
involving other combinations are removed.

After applying the letter alignment to the col-
lected noisy training word pairs, we obtained
298,160 letter-level alignments. Some example
alignments and corresponding word pairs are:

e — ’_ (have, hav) q — k (iraq, irak)

e — a (another, anotha)  q — g (iraq, irag)

e — 3 (online, Onlin3) w — wh (watch, whatch)

2.4 Sequence Labeling Model for P(T;|S;)

For a letter sequence S;, we use the conditional ran-
dom fields (CRF) model to perform sequence tag-
ging to generate its variant 7T;. To train the model,
we first align the collected dictionary word and its
variant at the letter level, then construct a feature
vector for each letter in the dictionary word, using
its mapped character as the reference label. This la-
beled data set is used to train a CRF model with L-
BFGS (Lafferty et al., 2001; Kudo, 2005). We use
the following features:
e Character-level features
Character n-grams: c_j, cp, ¢1, (c—2 c_1),
(c-1 co), (co c1), (c1 e2), (c-3 c—2 c-1),
(C_Q C_1 CQ), (6_1 Co Cl), (CO C1 CQ), (Cl (&) Cg).
The relative position of character in the word.
e Phonetic-level features
Phoneme n-grams: p_1, po, p1, (P—1 Po),
(po p1). We use the many-to-many letter-
phoneme alignment algorithm (Jiampojamarn
et al,, 2007) to map each letter to multiple
phonemes (1-to-2 alignment). We use three bi-
nary features to indicate whether the current,
previous, or next character is a vowel.
e Syllable-level features
Relative position of the current syllable in the
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word; two binary features indicating whether
the character is at the beginning or the end of
the current syllable. The English hyphenation
dictionary (Hindson, 2006) is used to mark all

the syllable information.
The trained CRF model can be applied to any En-
glish word to generate its variants with probabilities.

3 Experiments

We evaluate the system performance on both Twitter
and SMS message test sets. The SMS data was used
in previous work (Choudhury et al., 2007; Cook and
Stevenson, 2009). It consists of 303 distinct non-
standard tokens and their corresponding dictionary
words. We developed our own Twitter message test
set consisting of 6,150 tweets manually annotated
via the Amazon Mechanical Turk. 3 to 6 turkers
were required to convert the nonstandard tokens in
the tweets to the standard English words. We extract
the nonstandard tokens whose most frequently nor-
malized word consists of letters/digits/apostrophe,
and is different from the token itself. This results
in 3,802 distinct nonstandard tokens that we use as
the test set. 147 (3.87%) of them have more than
one corresponding standard English words. Similar
to prior work, we use isolated nonstandard tokens
without any context, that is, the LM probabilities
P(S) are based on unigrams.

We compare our system against three approaches.
The first one is a comprehensive list of chat slangs,
abbreviations, and acronyms collected by Internet-
Slang.com; it contains normalized word forms for
6,105 commonly used slangs. The second is the
word-abbreviation lookup table generated by the su-
pervised deletion-based abbreviation approach pro-
posed in (Pennell and Liu, 2010). It contains
477,941 (word, abbreviation) pairs automatically
generated for 54,594 CMU dictionary words. The
third is the jazzy spell checker based on the Aspell
algorithm (Idzelis, 2005). It integrates the phonetic
matching algorithm (DoubleMetaphone) and Leven-
shtein distance that enables the interchanging of two
adjacent letters, and changing/deleting/adding of let-
ters. The system performance is measured using the
n-best accuracy (n=1,3). For each nonstandard to-
ken, the system is considered correct if any of the
corresponding standard words is among the n-best
output from the system.



Twitter (3802 pairs) | SMS (303 pairs)
stem A

System Accuracy 1-best [ 3-best 1-best [ 3-best
InternetSlang 7.94 8.07 4.95 4.95
(Pennell et al. 2010) 20.02 27.09 21.12 28.05
Jazzy Spell Checker 47.19 56.92 43.89 55.45
LetterTran (Trim) 57.44 64.89 58.09 70.63
LetterTran (All) 59.15 67.02 58.09 70.96
LetterTran (All) + Jazzy | 68.88 78.27 62.05 75.91
(Choudhury et al. 2007) n/a n/a 59.9 n/a
(Cook et al. 2009) n/a n/a 594 n/a

Table 3: N-best performance on Twitter and SMS data
sets using different systems.

Results of system accuracies are shown in Ta-
ble 3. For the system “LetterTran (All)”, we first
generate a lookup table by applying the trained CRF
model to the CMU dictionary to generate up to
30 variants for each dictionary word.> To make
the comparison more meaningful, we also trim our
lookup table to the same size as the deletion ta-
ble, namely “LetterTran (Trim)”. The trimming was
performed by selecting the most frequent dictionary
words and their generated variants until the length
limit is reached. Word frequency information was
obtained from the entire Edinburgh corpus. For both
the deletion and letter transformation lookup tables,
we generate a ranked list of candidate words for each
nonstandard token, by sorting the combined score
p(T;|S;) x C(S;), where p(T;]S;) is the model con-
fidence and C(S;) is the unigram count generated
from the Edinburgh corpus (we used counts instead
of unigram probability P(S;)). Since the string sim-
ilarity and letter switching algorithms implemented
in jazzy can compensate the letter transformation
model, we also investigate combining it with our ap-
proach, “LetterTran(All) + Jazzy”. In this configura-
tion, we combine the candidate words from both sys-
tems and rerank them according to the unigram fre-
quency; since the “LetterTran” itself is very effective
in ranking candidate words, we only use the jazzy
output for tokens where “LetterTran” is not very
confident about its best candidate ((p(7;|.S;) x C(.S;)
is less than a threshold § = 100).

We notice the accuracy using the InternetSlang
list is very poor, indicating text message normal-
ization is a very challenging task that can hardly

3We heuristically choose this large number since the learned
letter/digit insertion, substitution, and deletion patterns tend to
generate many variants for each dictionary word.
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be tackled by using a hand-crafted list. The dele-
tion table has modest performance given the fact
that it covers only deletion-based abbreviations and
letter repetitions (see Section 2.1). The “Letter-
Tran” approach significantly outperforms all base-
lines even after trimming. This is because it han-
dles different ways of forming nonstandard tokens
in an unified framework. Taking the Twitter test
set for an example, the lookup table generated by
“LetterTran” covered 69.94% of the total test to-
kens, and among them, 96% were correctly normal-
ized in the 3-best output, resulting in 67.02% over-
all accuracy. The test tokens that were not covered
by the “LetterTrans” model include those generated
by accidentally switching and inserting letters (e.g.,
“absolotuely” for “absolutely”) and slangs (“addy”
or “address”). Adding the output from jazzy com-
pensates these problems and boosts the 1-best ac-
curacy, achieving 21.69% and 18.16% absolute per-
formance gain respectively on the Twitter and SMS
test sets, as compared to using jazzy only. We also
observe that the “LetterTran” model can be easily
ported to the SMS domain. When combined with
the jazzy module, it achieved 62.05% 1-best accu-
racy, outperforming the domain-specific supervised
system in (Choudhury et al., 2007) (59.9%) and
the pre-categorized approach by (Cook and Steven-
son, 2009) (59.4%). Regarding different feature cat-
egories, we found the character-level features are
strong indicators, and using phonetic- and syllabic-
level features also slightly benefits the performance.

4 Conclusion

In this paper, we proposed a generic letter trans-
formation approach for text message normaliza-
tion without pre-categorizing the nonstandard to-
kens into insertion, deletion, substitution, etc. We
also avoided the expensive and time consuming hand
labeling process by automatically collecting a large
set of noisy training pairs. Results in the Twitter
and SMS domains show that our system can signif-
icantly outperform the state-of-the-art systems and
have good domain portability. In the future, we
would like to compare our method with a statistical
machine translation approach performed at the let-
ter level, evaluate the system using sentences by in-
corporating context word information, and consider
many-to-one letter transformation in the model.
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