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Abstract

Beginning with Goldsmith (1976), the phono-
logical tier has a long history in phonological
theory to describe non-local phenomena. This
paper defines a class of formal languages, the
Tier-based Strictly Local languages, which be-
gin to describe such phenomena. Then this
class is located within the Subregular Hier-
archy (McNaughton and Papert, 1971). Itis
found that these languages contain the Strictly
Local languages, are star-free, are incompa-
rable with other known sub-star-free classes,
and have other interesting properties.

addresses the expressivity or properties of tier-based
patterns in terms of formal language theory.

This paper begins to fill this gap by defining Tier-
Based Strictly Local (TSL) languages, which gen-
eralize the Strictly Local languages (McNaughton
and Papert, 1971). It is shown that TSL languages
are necessarily star-free, but are incomparable with
other known sub-star-free classes, and that natural
groups of languages within the class are string exten-
sion learnable (Heinz, 2010b; Kasprzik and Kotzing,
2010). Implications and open questions for learn-
ability and Optimality Theory are also discussed.

Section 2 reviews notation and key concepts. Sec-
tion 3 reviews major subregular classes and their re-
lationships. Section 4 defines the TSL languages,
relates them to known subregular classes, and sec-

The phonological tier is a level of representationion 5 discusses the results. Section 6 concludes.
where not all speech sounds are present. For ex-

ample, the vowel tier of the Finnish wonghivaa 2 Preliminaries
‘Hello’ is simply the vowels in order without the
consonantsaiaa. We assume familiarity with set notation. A finite al-
Tiers were originally introduced to describe tongohabet is denote®. Let %7, X=", 3* denote all
systems in languages (Goldsmith, 1976), and subsgequences over this alphabet of lengthof length
guently many variants of the theory were proposet#ss than or equal ta, and of any finite length, re-
(Clements, 1976; Vergnaud, 1977; McCarthy, 197%pectively. The empty string is denot&@nd|w| de-
Poser, 1982: Prince, 1984; Mester, 1988; Oddenptes the length of word. For all stringsw and all
1994; Archangeli and Pulleyblank, 1994; Clementgonempty strings, |w|,, denotes the number of oc-
and Hume, 1995). Although these theories differ ircurrences ot. in w. For instancejaaaale, = 3. A
their details, they each adopt the premise that repr&nguagel is a subset oE*. The concatenation of
sentational levels exist which exclude certain speedivo languaged.; Ly = {uv : u € Ly andv € Lo}.
sounds. For L C ¥* ando € X, we often writeLo instead
Computational work exists which incorporatesof L{c}.
and formalizes phonological tiers (Kornai, 1994; We define generalized regular expressions
Bird, 1995; Eisner, 1997). There are also learninGRESs) recursively.  GREs include, () and
algorithms which employ them (Hayes and Wilsongach letter of¥. If R and S are GREs then
2008; Goldsmith and Riggle, to appear). HoweverRS, R + S, R x S, R, and R* are also GREs.
there is no work of which the authors are aware thathe language of a GRE is defined as follows.

1 Introduction

58

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:shortpapers, pages 58—64,
Portland, Oregon, June 19-24, 2011. (©2011 Association for Computational Linguistics



L) = 0. Forallo € S U{\}, L(o) = {o}.

/— PT—SP

If R and S are regular expressions then o o
and L(R x S) = L(R) n L(S). Also,
L(R) = ¥ — L(R) and L(R*) = L(R)". TSL

For example, the GRE denotes the language". Figure 1: Proper inclusion relationships among subreg-
A language isregular iff there is a GRE defin- ular language classes (indicated from left to right). This
ing it. A language isstar-freeiff there is a GRE paper establishes the TSL class and its place in the figure.

defining it which contains no instances of the Kleene

star (*). Itis well known that the star-free languagesippear; Rogers et al., 2010). Figure 1 summarizes
(1) are a proper subset of the regular languages, (ose earlier results as well as the ones made in
are closed under Boolean operations, and (3) haveis paper. This section defines the Strictly Local

multiple characterizations, including logical and al{SL), Locally Threshold Testable (LTT) and Piece-

gebraic ones (McNaughton and Papert, 1971).

String u is afactor of string w iff dz,y € X*
such thatw = zuy. If also |u| = k thenwu is ak-
factor of w. For examplegab is a 2-factor oluaabbb.
The functionF}, maps words to the set @ffactors
within them.

F(w) = {u : uis ak-factor ofw}

For example f(abc) = {ab, be}.

The domainF}, is generalized to languagds C
¥* in the usual way:Fj(L) = UyerFi(w). We
also consider the function whictountsk-factors up
to some threshold.

Fi+(w) = {(u,n) : uis ak-factor ofw and

n = |wl, iff |w|, <telsen =t}

For examplers 3(aaaaab) = {(aa,3), (ab,1)}.

A stringu = o109 --- 0 IS asubsequencef a
stringw iff w € Y*01 X 03" - -- X¥opX*. Since
|u| = k we also say is ak-subsequencef w. For
example,ab is a 2-subsequence ohicceceeechee.

wise Testable (PT) classes. The Locally Testable
(LT) languages and the Strictly Piecewise (SP) lan-
guages are discussed by Rogers and Pullum (to ap-
pear) and Rogers et al. (2010), respectively. Readers
are referred to these papers for additional details on
all of these classes. The Tier-based Strictly Local
(TSL) class is defined in Section 4.

Definition 1 A language L is Strictly k-Local iff
there exists a finite st C Fj(xX*x) such that

L={weX": Fp(xwx) C S}

The symbolsx and x invoke left and right word
boundaries, respectively. A language is said to be
Strictly Local iff there is somek for which it is
Strictly k-Local. For example, lef = {a,b,c} and
L = aa*(b+ c). ThenL is Strictly 2-Local because
for S = {xa,ab,ac,aa,bx,cx} and everyw € L,
every2-factor of xwix belongs taS.

The elements ob can be thought of as thaer-
missiblek-factors and the elements i, (x¥X*x) —

By definition \ is a subsequence of every string in® are theforbiddenk-factors. For eiamplebb and
5*. The functionP<;, maps words to the set of sub- > are forbidden 2-factors fak = aa”(b + ¢).

sequences up to lengthfound in those words.
Pi(w) = {u € ©=F : u is a subsequence af}

For exampleP<5(abc) = {\, a,b, c,ab,ac,bc}. As

More generally, any SL languagde excludes ex-
actly those words with any forbidden factors; i.B.,
is the intersection of the complements of sets defined
to be those words whickontain a forbidden fac-

above, the domains df;. ; and P~ are extended to tor. Note the set of forbidden factors is finite. This

languages in the usual way.

3 Subregular Hierarchies

Several important subregular classes of languages C(w)
have been identified and their inclusion relation-

provides another characterization of SL languages
(given below in Theorem 1).
Formally, let thecontainerof w € xX>*x be

= {u € ¥* : wis afactor of x uix}

ships have been established (McNaughton and Pler example(C'(xa) = aX*. Then, by the immedi-
pert, 1971; Simon, 1975; Rogers and Pullum, tately preceding argument, Theorem 1 is proven.
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Theorem 1 Consider any Strictl-Local language  To illustrate, let¥ = {a,b,c}, T = {b,c}, and

L. Then there exists a finite set of forbidden factor§ = {xb, xc,be, cb,bx,cx}. Elements ofS are

S C Fj(xX*x) such thatl = N, C(w). the permissiblek-factors on tier7. Elements of
Definition 2 A languageL is Locally ¢-Threshold £2(*T7x) — 5 = {bb, cc} are the forbidden fac-
k-Testableiff 3¢,k € N such thatvw,v € X, if tors on_tlerT. The language this describe mchdes
words likeaabaaacaaabaa, but excludes words like
aabaaabaaacaa sincebd is a forbidden 2-factor on
A language is Locally Threshold Testable iff thergjor 7 This example captures the nature of long-

is somek andt for which it is Locally ¢-Threshold  gisiance dissimilation patterns found in phonology

Fi, 1(w) = Fj4(v) thenw € L < v € L.

k-Testable. (Suzuki, 1998; Frisch et al., 2004; Heinz, 2010a).
Definition 3 A languageL is Piecewisek-Testable Let Lp stand for this particular dissimilatory lan-
iff 3k € N such thatvw,v € ¥*, if P<x(w) = guage.

Poi(v)thenw € L & v e L. Like SL languages, TSL languages can also be

characterized in terms of the forbidden factors. Let

A language is Piecewise Testable iff there is sdme
guag thetier-based containeof w € xT*x beCr(w) =

for which it is Piecewisd:-Testable.

4 Tier-based Strictly Local Languages {u e X" : wisafactor on tie” of x ux}

This section provides the main results of this paper 0" €xamplelr(xb) = (X — T)*b*. In general
ifw=o0y-- 0, € T*thenCp(w) =
4.1 Definition

The definition of Tier-based Strictly Local lan-

guages is similar to the one for SL languages witih the case wherev begins (ends) with a word
the exception that forbiddet+factors only apply to boundary symbol then the first (lasfy in the pre-
elements on a tief’ C X, all other symbols are ig- vious GRE must be replaced witlt — 7')*.

nored. In order to define the TSL languages, it IS heorem 2 For any L € TSL, let T,k S be

necessary to introduce an “erasing” function (somei-he tier, length, and permissible factors, respec-

times called strl'ng projection), which erases Symfively, and S the forbidden factors. Thed, —
bols not on the tier. R

S0 (S — T)oo(8 = T)* - (8 — T) 0, 5"

Nwes Cr(w).
Er(or--op) =ur--uy Proof The structure of the proof is identical to the
one for Theorem 1. d

whereu; = o; iff o; € T andu,; = X otherwise.
For example, ifY = {a,b,c} andT = {b,c}
then Er(aabaaacaaabaa) = beb. A stringu = 42  Relations to other subregular classes
o1 -0 € XT*x is afactor on tier Tof a stringw
iff » is a factor of Ep(w).
Then the TSL languages are defined as follows.

This section establishes that TSL languages prop-
erly include SL languages and are properly star-free.

Theorem 3 shows SL languages are necessarily TSL.
Definition 4 A languageL is Strictly k-Local on  Thegrems 4 and 5 show that TSL languages are not
Tier T' iff there exists a tiefl” C X and finite set pecessarily LTT nor PT, but Theorem 6 shows that

S C Fj(xT*x) such that TSL languages are necessarily star-free.

L={weX: F(xEp(w)x) C S} Theorem 3 SL languages are TSL.

Again, S represents the permissibiefactors on the Proof Inclusion follows immediately from the defi-

tier 7', and elements ifFy(x7T*x) — S represent hitions by setting the tief” = .. _ =
the forbidderk-factors on tiefl’. A languagel, isa | he fact that TSL languages properly include SL

Tier-based Strictly Locaiff it is Strictly k-Local on ©nes follows from the next theorem.
Tier T for somel’ C ¥ andk € N. Theorem 4 TSL languages are not LTT.
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Proof It is sufficient to provide an example of a TSLboundary symbol, the fiit(lasﬁ)in the GRE above

language which is not LTT. Consider any thresholdhould be replaced witd70. Since everyCr(w)

t and lengthk. Consider the TSL languagep dis-  can be expressed as a GRE without the Kleene-star,
cussed in Section 4.1, and consider the words every TSL language is star-free. 0

w = a*ba*ba*ca® andv = a*ba*ca*ba” _
Together Theorems 1-4 establish that TSL lan-

Clearly w ¢ Lp andv € Lp. However, guages generalize the SL languages in a different

F(xwx) = Fi(xvx); i.e., they have the same way than the LT and LTT languages do (Figure 1).
k-factors. In fact for any factof € Fi(xwx),

it is the case thatjw|; = |v[;. Therefore 4.3 Other Properties
Fii(xwx) = Fp(xvx). If Lp were LTT,
it would follow by definition that either both
w,v € Lp or neitherw, v belong toLp, which is
clearly false. Hencd.p ¢ LTT. O

There are two other properties of TSL languages
worth mentioning. First, TSL languages are closed
under suffix and prefix. This follows immediately
because no word of any TSL language contains
any forbidden factors on the tier and so neither does
Theorem 5 TSL languages are not PT. any prefix or suffix ofw. SL and SP languages—but
_not LT or PT ones—also have this property, which has
§;1teresting algebraic consequences (Fu et al., 2011).
Next, consider that the choice @ C X and

k € N define systematic classes of languages which
w = a¥(ba*bakcakca®)*  and are TSL. LetLr, denote such a class. It follows
ik immediately thatlr . is a string extension class

) (Heinz, 2010b). A string extension class is one
Clearlyw ¢ Lp andv € Lp. But observe that Which can be defined by a functiofi whose do-
P<p(w) = P<x(v). Hence, even though the two main is ¥* and whose codomain is the set of all
words have exactly the same k-subsequences (ffite subsets of some set. A grammarG is a
any k), both words are not ifip. It follows thatL,  particular finite subset oft and the language of the
does not belong to PT. O grammar is all words whiclf maps to a subset of
G. For L}, the grammar can be thought of as the

Although TSL languages are neither LTT nor PTS€t Of permissible factors on tiéf and the func-
Theorem 6 establishes that they are star-free. ~ tionisw — Fi(xEp(w)x). In other words, every

Theorem 6 TSL languages are star-free. word is mapped to the set bffactors present on tier
T. (So here the codomain-the possible grammars—is
Proof Consider any language which is Strictlyk-  the powerset of 7, (xT*x).)
Local on TierT" for someT" C ¥ andk € N. By String extension classes have quite a bit of
Theorem 2, there exists a finite SetC Fj, (17" x)  structure, which faciliates learning (Heinz, 2010b;
such thatl, = N5 Cr(w). Since the star-free lan- Kasprzik and Koétzing, 2010). They are closed un-
guages are closed under finite intersection and corger intersection, and have a lattice structure under
plement, it is sufficient to show th&tr(w) is star-  the partial ordering given by the inclusion relation
free for allw € xT™x. (C). Additionally, these classes are identifiable in
First consider anyw = oy ---0, € T*. Since the limit from positive data (Gold, 1967) by an in-
(X —=T)* = X*Ty* andx* = (), the selCr(w) can  cremental learner with many desirable properties.
be written as In the case just mentioned, the tier is known in
0070 oy 070 00 0T0 -+ 0, advance. Learners V\_/hich identify in the limit a class
of TSL languages with an unknown tier but known
This is a regular expression without the Kleene-stak exist in principle (since such a class is of finite
In the cases where begins (ends) with a word size), but it is unknown whether any such learner is

Proof As above, it is sufficient to provide an exam
ple of a TSL language which is not PT. Consider an
lengthk and the languagé p. Let

v = a¥(ba*cakbak ca
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efficient in the size of the input sample. the tier; i.e. by forbidding factor$odu, o, W, 0d}
on tierT ={0,u,a}. Thus words likdulolilu are ac-
5 Discussion ceptable since [i] is not on the relevant tier. The rea-
sonable hypothesis which follows from this discus-

Having established the main results, this section digjon is that all humanly possible segmental phono-
cusses some implications for phonology in generajgctic patterns are TSL (since TSL contains SL).
Optimality Theory in particular, and future research. Additionally, the fact thaC 7, is closed under in-

There are three classes of phonotactic constrainigrsection has interesting consequences for Optimal-
in phonology: local segmental patterns, longity Theory (OT) (Prince and Smolensky, 2004). The
distance segmental patterns, and stress patteiRgersection of two languages drawn from the same
(Heinz, 2007). Local segmental patterns are Sktring extension class is only as expensive as the in-
(Heinz, 2010a). Long-distance segmental phonQersection of finite sets (Heinz, 2010b). It is known
tactic patterns are those derived from processes §fat the generation problem in OT is NP-hard (Eis-
consonant harmony and disharmony and vowel hager, 1997; Idsardi, 2006) and that the NP-hardness is
mony. Below we show each of these patterns belonge to the problem of intersecting arbitrarily many
to TSL. For exposition, assum&={l,r,i,0,u,0}. arbitrary regular sets (Heinz et al., 2009). It is un-

Phonotactic patterns derived from attested longnown whether intersecting arbitrarily many TSL
distance consonantal assimilation patterns (Rosets is expensive, but the results here suggest that
and Walker, 2004; Hansson, 2001) are SP; on thiemay only be the intersections across distifigty,
other hand, phonotactic patterns derived from atlasses that are problematic. In this way, this work
tested long-distance consonantidsimilation pat- suggests a way to factor OT constraints characteri-
terns (Suzuki, 1998) are not (Heinz, 2010a). Howzable as TSL languages in a manner originally sug-
ever, both belong to TSL. Assimilation is obtainedgested by Eisner (1997).
by forbidding disagreeing factors on the tier. For Future work includes determining automata-
example, forbiddinglr and r on the liquid tier theoretic characterizations of TSL languages and
T = {l,r} yields only words which do not contain procedures for deciding whether a regular set be-
both [I] and [r]. Dissimilation is obtained by for- |ongs to TSL, and if so, for whal’ and k. Also,
bidding agreeing factors on the tier; e.g. forbiddinghe erasing function may be used to generalize other
[l andrr on the liquid tier yields a language of thesubregular classes.
same character dsp.

The phonological literature distinguishes threé® Conclusion
kinds of vowel harmony patterns: those without neu-

tral vowels, those with opaque vowels and thos-erhe TSL languages generalize the SL languages

with transparent vowels (Bakovi¢, 2000; Nevinsand have wide application within phonology. Even

2010). Formally, vowel harmony patterns wﬂhoutthm{gh V|rtuaIIy_ al segmenta_l phonotactic 1con
_ straints present in the phonologies of the world’s lan-
neutral vowels are the same as assimilatory conso- : .
uages, both local and non-local, fall into this class,

nant harmony. For example, a case of back harmaon

can be described by forbidding disagreeing factor'siS striking how highly restricted (sub-star-free) and

T R, . well-structured the TSL languages are.
{iu, io, 6u, 60, ui, W, oi, A} on the vowel tier
T :«_[i,'o,u,o}. If'a vgwel is opaque, it does: not har’AcknowIedgementS
monize but begins its own harmony domain. For ex-
ample if [i] is opaque, this can be described by forWe thank the anonymous reviewers for carefully
bidding factors{iu, io du, 6o, W, b} on the vowel checking the proofs and for their constructive crit-
tier. Thus words likdulolil 6 are acceptable becauseicism. We also thank the participants in the Fall
oi is a permissible factor. If a vowel is transpar-2010 Formal Models in Phonology seminar at the
ent, it neither harmonizes nor begins its own hardJniversity of Delaware for valuable discussion, es-
mony domain. For example if [i] is transparent (as irpecially Jie Fu. This research is supported by grant
Finnish), this can be described by removing it fron#1035577 from the National Science Foundation.
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