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Abstract tions, its probability of error is bound by twice the

Bayes probability of error (Cover and Hart, 1967).
This paper introduces a new training set con-  \emory-based learning has been applied to a wide
densation technique designed for mixtures range of natural language processing tasks including

of labeled and unlabeled data. It finds a -
condensed set of labeled and unlabeled data part-of-speech tagging (Daelemans et al., 1996), de-

points, typically smaller than what is obtained pendency parsing (Nivre, 2003) and word sense dis-

using condensed nearest neighbor on the la- ambiguation (Kubler and Zhekova, 2009). Memory-

beled data only, and improves classification based learning algorithms are said to be lazy be-

accuracy. We evaluate the algorithm on semi-  cause no model is learned from the labeled data
supervised part-of-speech tagging and present  noints. The labeled data poirdse the model. Con-

the best published result on the Wall Street g4 ently, classification time is proportional to the
Journal data set. . L .

number of labeled data points. This is of course im-

practical. Many algorithms have been proposed to

1 Introduction make memory-based learning more efficient. The

é?uition behind many of them is that the set of la-

Labeled data for natural language processing tas led dat int be reduced q d si
such as part-of-speech tagging is often in short sup~ o cata POINTS can be reduced or condensed, since

ply. Semi-supervised learing algorithms are dena"y labeled data points are more or less redundant.

signed to learn from a mixture of labeled and un:I'he algorithms try to extract a subset of the overall

labeled data. Many different semi-supervised algot_ralnlng set that correctly classifies all the discarded

rithms have been applied to natural language préil-_ata} pct)rl]nts th(rjmljghdthe nejlrest nelgrgbt(_)r rulef. Ilntu-
cessing tasks, but the simplest algorithm, name Vely, the model inds good representatives ot clus-

self-training, is the one that has attracted most atte grsin the daFa.or discards _the data points t.h atare far
tion, together with expectation maximization (Ab_from the decision boundaries. Such algorithms are

ney, 2008). The idea behind self-training is simplfa”ed training set condensation algorithms.
to let a model trained on the labeled data label the The need for training set condensation is partic-
unlabeled data points and then to retrain the modalarly important in semi-supervised learning where
on the mixture of the original labeled data and theve rely on a mixture of labeled and unlabeled data
newly labeled data. points. While the number of labeled data points
The nearest neighbor algorithm (Cover and Harts typically limited, the number of unlabeled data
1967) is a memory-based or so-called lazy learrpoints is typically high. In this paper, we intro-
ing algorithm. It is one of the most extensivelyduce a new semi-supervised learning algorithm that
used nonparametric classification algorithms, sincombines self-training and condensation to produce
ple to implement yet powerful, owing to its theo-small subsets of labeled and unlabeled data points
retical properties guaranteeing that for all distributhat are highly relevant for determining good deci-
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sion boundaries. T={x,y), - (Xn,yn) }, C =10
for (x;,y;) € T do

2 Semi-supervised condensed nearest if C'(x;) # y; then
neighbor C=CU{{xi,u)}
The nearest neighbor (NN) algorithm (Cover and end if
: . end for
Hart, 1967) is conceptually simple, yet very pow- return O

erful. Given a set of labeled data poirftslabel any
new data point (feature vectog) with y wherex’
is the data point i most similar tox and (x’, y).
Similarity is usually measured in terms of Euclidean 7 — fix, 4}, ..., (xn,yn)}, C =0
distance. The generalization of the nearest neighboror (x; 4.} € T do

Figure 1: CONDENSED NEAREST NEIGHBOR

algorithm, £ nearest neighbor, finds tihemost simi- if C'(x;) # yi Or Po((xi, yi)|x:) < 0.55 then
lar data pointg, to x and assigns the labelj such C=CU{(xi,y)}
that: end if

- I E / I end for

§ = arg max Yo yen, B x)ly" = o/ etumn. C

with E(-,-) Euclidean distance anjd- || = 1 if the Figure 2: WEAKENED CONDENSED NEAREST NEIGH
argument is true (else 0). In other words, thenost ggRr.

similar points take a weighted vote on the class of

Naive implementations of the algorithm store all , _ ,
the labeled data points and compare each of them fethniques such as bagging (Breiman, 1996), CNN

the data point that is to be classified. Several strat& Unstable (Alpaydin, 1997).

gies have been proposed to make nearest neighboVe also introduce a weakened version of the al-
classification more efficient (Ang|u”|’ 2005) In gorlthm Wh|Ch not Only inCIUdeS miSCIaSSiﬁed data
particular, training set condensation techniques haR®ints in the classifie’, but also correctly classi-
been much studied. fied data points which were labeled with relatively

The condensed nearest neighbor (CNN)aIgorithM’W confidence. S@ includes all data points that
was first introduced in Hart (1968). Finding a subWere misclassified and those whose correct label
set of the labeled data points may lead to faste¥as predicted with low confidence. The weakened
and more accurate classification, but finding the beg§pndensed nearest neighbor (WCNN) algorithm is
subset is an intractable problem (Wilfong, 1992)sketched in Figure 2.

CNN can be seen as a simple technique for approxi- C' inspectsk nearest neighbors when labeling
mating such a subset of labeled data points. new data points, wheré is estimated by cross-

The CNN algorithm is defined in Figure 1 with validation. CNN was first generalized 6NN in
the set of labeled data points afit) is label pre- Gates (1972).
dicted fort by a nearest neighbor classifier "trained” Two related condensation techniques, namely re-
onT. moving typical elements and removing elements by

Essentially we discard all labeled data pointglass prediction strength, were argued not to be
whose label we can already predict with the curuseful for most problems in natural language pro-
rent subset of labeled data points. Note that weessing in Daelemans et al. (1999), but our experi-
have simplified the CNN algorithm a bit comparedments showed that CNN often perform about as well
to Hart (1968), as suggested, for example, in Alpayas NN, and our semi-supervised CNN algorithm
din (1997), iterating only once over data rather thateads to substantial improvements. The condensa-
waiting for convergence. This will give us a smallertion techniques are also very different; While re-
set of labeled data points, and therefore classificaoving typical elements and removing elements by
tion requires less space and time. Note that whilelass prediction strength are methods for removing
the NN rule is stable, and cannot be improved bgata points close to decision boundaries, CNN ide-
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LT= {<X17y1>7 ceey <Xnyyn>}' C=0,C"=90
2: U ={(x1),...,(x'm)} # unlabeled data
g 3: for (x;,y;) € T do
4. if C(x;) # yi or Po({x;,y:)|xi) < 0.55
S then
s : Good 5: ¢C=CU {<Xi7 yz>}
: ! : representative 6: end if
Bl Y | 7: end for
e 8: for (x';) € U do
9: if Pr((x's, T(x';))|w;) > 0.90 then
) 10: C=CU{{xy,,Tx))}
11:  endif
12: end for

13: for (x;,y;) € C do
Figure 3: Unlabeled data may help find better representd4:  if C'(x;) # y; then

tives in condensed training sets. 15: C'=C"U{(xi,yi)}
16: endif
17: end for

ally only removes elements close to decision boundg. return ¢’
aries when the classifier has no use of them.
Intuitively, with relatively simple problems, Figure 4: $MI-SUPERVISED CONDENSED NEAREST
e.g. mixtures of Gaussians, CNN and WCNN try tgVEIGHBOR.
find the best possible representatives for each clus-

ter in the distribution of data, i.e. finding the pointsthat are labeled with confidence greater than 90%.
closest to the center of each cluster. Ideally, CNNve then obtain a new WCNK" from the new data

returns one point for each cluster, namely the cerset which is a mixture of labeled and unlabeled data
ter of each cluster. However, a sample of labelegoints. See Figure 4 for details.

data may not include data points that are near the

center of a cluster. Consequently, CNN sometime8 Part-of-speech tagging

needs several points to stabilize the representation of

a cluster; e.g. the two positives in Figure 3. Our part-of-speech tagging data set is the standard

When a large number of unlabeled data pointgata set from Wall Street Journal included in Pen_n-
that are labeled according to nearest neighbors poli (Marcus et al., 1993). We use the standard splits
ulates the clusters, chances increase that we find &3 construct our data set in the following way, fol-
points near the centers of our clusters, e.g. the "god@Wing Segaard (2010): Each word in thel d%m
representative” in Figure 3. Of course the centers ¢F assoclzl_ated with a feature vecter = (x;, z7)
our clusters may move, but the positive results op¥Nerez; isthe prediction onv; of a supervised part-
tained experimentally below suggest that it is mor@-SPeech tagger, in our case SVMTb@Gimenez
likely that labeling unlabeled data by nearest neigh?"

d Marquez, 2004) trained on Sect. 0-18, aﬁd
bors will enable s to do better training set conder!S @ Prediction ony; from an unsupervised part-of-
sation.

speech tagger (a cluster label), in our case Unsu-
This is exactly what semi-supervised Condense%os (Biemann, 2006) trained on the British National
nearest neighbor (SCNN) does. We first run a

orpus?  We train a semi-supervised condensed

WCNN ¢ and obtain a condensed set of labeled CI(,jlgﬂearest neighbor classifier on Sect. 19 of the devel-
points. To this set of labeled data points we add gpment data and unlabeled data from the Brown cor-
large number of unlabeled data points labeled by RUs and apply it to Sect. 22-24. The labeled data

NN classifier?" on the original data set. We use @ thtp:/mww.lsi.upc.estnip/SVMTool/
simple selection criterion and include all data points 2nttp://wortschatz.uni-leipzig.deichiemann/software/
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points are thus of the form (one data point or wort
per line):

JJ JJ 17* e
NNS NNS 1 0T -

IN IN 428 &

DT DT 425 4

where the first column is the class labels or th ¢
gold tags, the second column the predicted tags al |
the third column is the "tags” provided by the unsu-
pervised tagger. Words marked by ™" are out-of-
vocabulary words, i.e. words that did not occur ir
the British National Corpus. The unsupervised tac
ger is used to cluster tokens in a meaningful way.
Intuitively, we try to learn part-of-speech tagging byrigyre 5: Normalized accuracy (range: 92.62-94.82) and

learning when to rely on SVMTool. condensation (range: 310-512 data points).
The best reported results in the literature on Wall

Street Journal Sect. 22—24 are 97.40% in Suzuki e} ters in the dat King it ier to identi
al. (2009) and 97.44% in Spoustova et al. (2009) USt€rs In the data, making it €asier o iden ify rep-

both systems use semi-supervised learning tecf€Sentative data points. Since we can easier identify

niques. Our semi-supervised condensed neare}(}g{)resentative data p_oints, training set condensation
neighbor classifier achieves an accuracy of 97.509 pecomes more effective.

Equally importantly it condensates the available data
points, from Sect. 19 and the Brown corpus, that
is more than 1.2M data points, to only 2249 datd he implementation used in the experiments builds
points, making the classifier very fast. CNN alone i®n Orange 2.0b for Mac OS X (Python and C++).
a lot worse than the input tagger, with an accuracin particular, we made use of the implementations
of 95.79%. Our approach is also significantly betteef Euclidean distance and random sampling in their
than Sggaard (2010) who apply tri-training (Li andpackage. Our code is available at:

Zhou, 2005) to the output of SVMTool and Unsu-

Implementation

cst. dk/ ander s/ sccn/

pos.
| acc (%) data points err.red 5 Conclusions
CNN 95.79 3,811 . We have introduced a new learning algorithm that
g\c/mom g;ig 2’2_49 40.6% simultane_ously condensates labeled data and learns
Segaard 97 27 i from a mixture of Iabeled. and unlabeled data. We
Suzuki et al. 97.40 . have compared the algorithm to condensed nearest
Spoustovaetal| 97.44 - neighbor (Hart, 1968; Alpaydin, 1997) and showed

In our second experiment, where we vary th
amount of unlabeled data points, we only train ou
ensemble on the first 5000 words in Sect. 19 anglfe
evaluate on the first 5000 words in Sect. 22—24'"9:
The derived learning curve for the semi-supervise

éhat the algorithm leads to more condensed models,
gnd that it performs significantly better than con-

nsed nearest neighbor. For part-of-speech tag-
the error reduction over condensed nearest
aeighbor is more than 40%, and our model is 40%

learner is depicted in Figure 5. The immediate droﬁmaller than the one induced by condensed nearest

in the red scatter plot illustrates the condensation el

eighbor. While we have provided no theory for

fect of semi-supervised learning: when we begin téemi-supervised condensed nearest neighbor, we be-

add unlabeled data, accuracy increases by more th

Ig;]ve that these results demonstrate the potential of

1.5% and the data set becomes more condenséli'f proposed method.
Semi-supervised learning means that we populate

51



References Jun Suzuki, Hideki Isozaki, Xavier Carreras, and Michael
Collins. 2009. An empirical study of semi-supervised
structured conditional models for dependency parsing.
In EMNLP.

G. Wilfong. 1992. Nearest neighbor problentisterna-
tional Journal of Computational Geometry and Appli-
cations 2(4):383-416.

Steven Abney. 2008Semi-supervised learning for com-
putational linguistics Chapman & Hall.

Ethem Alpaydin. 1997. \oting over multiple con-
densed nearest neighborawrtificial Intelligence Re-
view, 11:115-132.

Fabrizio Angiulli. 2005. Fast condensed nearest neigh-
bor rule. InProceedings of the 22nd International
Conference on Machine Learning

Chris Biemann. 2006. Unsupervised part-of-speech
tagging employing efficient graph clustering. In
COLING-ACL Student Session

Leo Breiman. 1996. Bagging predictorsMachine
Learning 24(2):123-140.

T. Cover and P. Hart. 1967. Nearest neighbor pattern
classification|EEE Transactions on Information The-
ory, 13(1):21-27.

Walter Daelemans, Jakub Zavrel, Peter Berck, and Steven
Gillis. 1996. MBT: a memory-based part-of-speech
tagger generator. IRroceedings of the 4th Workshop
on Very Large Corpora

Walter Daelemans, Antal Van Den Bosch, and Jakub Za-
vrel. 1999. Forgetting exceptions is harmful in lan-
guage learningMachine Learning34(1-3):11-41.

W Gates. 1972. The reduced nearest neighbor rule.
IEEE Transactions on Information Theoy8(3):431—
433.

Jesus Gimenez and Lluis Marquez. 2004. SVMTool: a
general POS tagger generator based on support vector
machines. ILREC

Peter Hart. 1968. The condensed nearest neighbor rule.
IEEE Transactions on Information Theqr§4:515—
516.

Sandra Kubler and Desislava Zhekova. 2009. Semi-
supervised learning for word-sense disambiguation:
guality vs. quantity. I'RANLP.

Ming Li and Zhi-Hua Zhou. 2005. Tri-training: ex-
ploiting unlabeled data using three classifietEEE
Transactions on Knowledge and Data Engineeying
17(11):1529-1541.

Mitchell Marcus, Mary Marcinkiewicz, and Beatrice
Santorini. 1993. Building a large annotated corpus
of English: the Penn TreebankComputational Lin-
guistics 19(2):313-330.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. Rroceedings of the 8th In-
ternational Workshop on Parsing Technologipages
149-160.

Anders Sggaard. 2010. Simple semi-supervised training
of part-of-speech taggers. ACL.

Drahomira Spoustova, Jan Hajic, Jan Raab, and Miroslav
Spousta. 2009. Semi-supervised training for the aver-
aged perceptron POS tagger.HACL

52



