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Abstract work, Ratnaparkhi (1999) proposed a maximum en-

_ tropy model for transition-based constituency pars-
We propose a generative model based on  ing. Of these approaches, only ISBNs induce high-
Temporal Restricted Boltzmann Machines for  gimensional latent representations to encode parse

transition based dependency parsing. The it suffer from either very approximate or
parse tree is built incrementally using a shift- .
slow inference procedures.

reduce parse and an RBM is used to model

each decision step. The RBM at the current Ve propose to address the problem _Of inferenc'e
time step induces latent features with the help  in a high-dimensional latent space by using an undi-
of temporal connections to the relevant previ- rected graphical model, Restricted Boltzmann Ma-

ous steps which provide context information.  chines (RBMs), to model the individual parsing
Our parser achieves Iabeleod and unlabe(l)ed at-  decisions. Unlike the Sigmoid Belief Networks
tachment scores of 88.72% and 91.65% re-  gpNq) ysed in ISBNs, RBMs have tractable infer-
spectively, which compare well with similar d for both f d and backward
previous models and the state-of-the-art. encg proce' ures for bo orV\{ar an ) ackward rea-
soning, which allows us to efficiently infer both the
_ probability of the decision given the latent variables
1 Introduction and vice versa. The key structural difference be-

There has been significant interest recently in mé_Wee” the two models is that the directed connec-

chine learning methods that induce generative mod{ons between latent and decision vectors in SBNs

els with high-dimensional hidden representationg?ecome unc_jirected in RBMs. A comple'_[e pa_rsing
including neural networks (Bengio et al., 2003; colmodel consists of a sequence of RBMs interlinked

lobert and Weston, 2008), Bayesian networks (Tit0\\/ia direct_ed edges, which gives usa form of Tempo-
and Henderson, 2007a), and Deep Belief Networl(fII Restricted Boltzmann Machines (TRBM) (Tay-

(Hinton et al., 2006). In this paper, we investi-l_or et al., 2007), but with_ the increm_entally speci—
gate how these models can be applied to dependeg%zd model structure required by parsing. In this pa-
parsing. We focus on Shift-Reduce transition-bas r, we analyze and contrast _ISBNS with TRBMs
parsing proposed by Nivre et al. (2004). In this clas nd Sh_OW that the latter provide an acc_urate_ and
of algorithms, at any given step, the parser has .eoretl'cally sound mpdel for parsing with high-
choose among a set of possible actions, each rep mensional latent variables.

senting an incremental modification to the partially2 An ISBN Parsing Model

built tree. To assign probabilities to these actions,

previous work has proposademory-based classi- Our TRBM parser uses the same history-
fiers(Nivre et al., 2004), SVMs (Nivre et al., 2006b),based  probability model as the ISBN
and Incremental Sigmoid Belief Networks (ISBN)parser of Titov and Henderson (2007b):
(Titov and Henderson, 2007b). In a related earlieP(tree) = TILP(Vi|v!,...,vi™1), where each
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Wy, accurate than the feed-forward one, there is no ana-
W ]Tﬁ ” WHH‘“[ o e [ HW ) lytical way to maximize likelihood w.r.t. the means
0o Hé)l oo HEDl e o HE>| e o HEDl of the latent variables, which requires an iterative
numerical method and thus makes inference very
Figure 1: An ISBN network. Shaded nodes represer@low, restricting the model to only shorter sentences.
decision variables and ‘H’ represents a vector of latent

variables. W), denotes the weight matrix for directed 3 Temppral Restricted Boltzmann
connection of type between two latent vectors. Machines

In the proposed TRBM model, RBMs provide an an-

vl is a parser decision of the typeeft-Arg \ ) o _
Right-Arc Reduceor Shift These decisions are fur- alytical way to do exact inference within each time
ep. Although information passing between time

ther decomposed into sub-decisions, as for examp?é o _ ) )
P(Left-Ardv?, ..., vi~1) P(LabelLeft-Arc V., ..., vi—1) steps is still approximated, TRBM inference is more

The TRBMs and ISBNs model these probabilities. accurate than the ISBN approximations.
In the ISBN model shown in Figure 1, the de-3.1 Restricted Boltzmann Machines (RBM)
cisions are shown as boxes and the sub-decisions , . . .
. . N RBM is an undirected graphical model with a
as shaded circles. At each decision step, the ISB grap

del also includ tor of latent variabl dset of binary visible variables, a set of binary la-
mode asc? 'f‘c u _es a vector otlatent variables, dee, ¢ variablesh, and a weight matrixV for bipar-
noted by ‘H’, which act as latent features of th

St tions bet dh. The probabil
parse history. As explained in (Titov and Hender—I © connections betweanan © probability

son, 2Q07b), the temporal connectio.ns between IOlc /Zr;eRBM h?i\:}:frg;t;g?hsp%:\rﬁ?ofﬁ rg\éilz)n and
tent variables are F:onstructeq to take into account t is the energy function defined as:
structural locality in the partial dependency struc-
ture. The model parameters are learned by back- E(V,h) = =Xia;v; — X;b;h; — X; juihjw;
propagating likelihood gradients. wherea; andb; are biases for corresponding visi-

Because decision probabilities are conditioned oble and latent variables respectively, ang is the
the history, once a decision is made the correspondymmetric weight between andh;. Given the vis-
ing variable becomes observed, or visible. In aftble variables, the latent variables are conditionally
ISBN, the directed edges to these visible variableisdependent of each other, and vice versa:
and the'large numbers of heavny mter-con'n_ected la- p(h; = 1v) = o(b; + Sivgws;) 1)
tent variables make exact inference of decision prob-
abilities intractable. Titov and Henderson (2007a) p(vi = 1|h) = o(a; + X;h;jwi;) 2
proposed two approximation procedures for inferyherec () = 1/(1 + %) (the logistic sigmoid).
ence. The first was a feed forward approximation RBM based models have been successfully used
where latent variables were allowed to depend only, image and video processing, such as Deep Belief
on their parent variables, and hence did not take intQetworks (DBNSs) for recognition of hand-written
account the current or future observations. Due tgigits (Hinton et al., 2006) and TRBMs for mod-
this limitation, the authors proposed to make latenéling motion capture data (Taylor et al., 2007). De-
variables conditionally dependent also on a set afpite their success, RBMs have seen limited use in
explicit features derived from the parsing historythe NLP community. Previous work includes RBMs
specifically, the base features defined in (Nivre et akgr topic modeling in text documents (Salakhutdinov
2006b). As shown in our experiments, this additiomind Hinton, 2009), an@iemporal Factored RBNbr
results in a blg improvement for the parsing task. |anguage mode”ng (Mmh and Hint0n1 2007)

The second approximate inference procedure,
called the incremental mean field approximation, ex3-2 Proposed TRBM Model Structure
tended the feed-forward approximation by updatingRBMs (Taylor et al., 2007) can be used to model
the current time step’s latent variables after eackequences where the decision at each step requires
sub-decision. Although this approximation is moresome context information from the past. Figure 2
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W “;‘ = p(h’;» = 1|V, history")

[ " WHH(J) ! WHH(J) { " WHH(]) [ . (C) (C) t
|WRBM |WREM |WRBM |Wm = <O‘(bj + ECJwHHlj hl + Eﬂ/iwij»
l© @ 0 [0 o o l© o 9] l© o 9]

~ o(b; + Sviwj), (4)
Figure 2: Proposed TRBM Model. Edges with no arrows b — b + chngcr)H Ml(C)'
gl lj

represent undirected RBM connections. The directed J ]
temporal connections between time steps contribute 4€re, 1 denotes the mean of the corresponding la-
bias to the latent layer inference in the current step.  tent variable. To keep inference tractable, we do not

_ do any backward reasoning across directed connec-
shows our proposed TRBM model with latent (qns 1o ypdates(?). Thus, the inference procedure

latent connections between time steps. Each Stgf atent variables takes into account both the parse

has an RBM with weightSVrpy composed Of pigtqry and the current observation, but no future ob-
smaller weight matrices corresponding to d'ﬁerengervations.

sub-decisions. For instance, for the actleft-Arc The limited set of possible values for the visi-
Whrpy consists of RBM weights between the la-|q |ayer makes it possible to marginalize out latent

tent vector and the sub-decisions: “Left-Arc” and g iaples in linear time to compute the exact likeli-
“Label”. Similarly, for the actionShift the sub- hood. Letvt(k) denote a vector witht = 1 and
decisions are “Shift”, “Part-of-Speech” and “Word”. _ ¢ W

R , Viizry = 0. The conditional probability of a sub-
The probability distribution of a TRBM is: deci3|>on is:
p(vi,hT) =TI p(v!, hh™), . h(©)) p(VH (k) |history!) = (1/2)Spe” BV BN (5)
wherev! denotes the set of visible vectors from time )
stepsl to T i.e. v! to v?. The notation for latent = (1/2)e™T1;(1 + %),

vectorsh is similar. h© denotes the latent VeCtor yhereZ — Sicuisibiee® jclatent] + eb;—i—wij)
in the past time step that is connected to the current g actually perform this calculation once for
latent vector through a connection of typ€To Sim-  each sub-decision, ignoring the future sub-decisions
pll%notatl(%r)l, we will derzote the past connectionsy that time step. This is a slight approximation,
{h™,...,n™7} by history’. The conditional distri- yt avoids having to compute the partition function
bution of the RBM at each time step is given by:  gyer all possible combinations of values for all sub-
p(V!, ht|history') = (1/2)exp(S;a:0! + Zi,jvfh’;wij decisions:
The complete probability of a derivation is:
+55(b; + Sl BYRL
(0 Wi he)h) p(vh) = p(v1).p(V3|history?)...p(vT |history™)

J

wherev} andh} denote theth visible andjth latent

variable respectively at time step hl(c) denotes a

latent variable in the past time step, azméf)Hlj de-
notes the weight of the corresponding connection.

34 TRBM Training

The gradient of an RBM is given by:

dlog p(v)/0wi; = (vihj)data— (vikj)model (6)
where ()4 denotes the expectation under distribu-
3.3 TRBM Likelihood and Inference tion d. In general, computing the exact gradient

Section 3.1 describes an RBM where visible varils intractable and previous work proposed a Con-
ables can take binary values. In our model, similar t§astive Divergence (CD) based learning procedure
(Salakhutdinov et al., 2007), we have multi-valuedhat approximates the above gradient using amlg
visible variables which we represent as one-hot bstep reconstructioiiHinton, 2002). Fortunately, our

nary vectors and model via a softmax distributionmodel has only a limited set of possible visible val-
exp(ag + Zj h§wkj) ues, which allows us to use a better approximation

(3) by taking the derivative of equation 5:
> explai + 35 ; hiwij) - 7
In cases where computing the partition function is still not

Latent Vanat_)le |nfgrence is similar to equation ]Teasible (for instance, because of a large vocabulary)pbagn
with an additional bias due to the temporal conneGnethods could be used. However, we did not find this to be

tions. necessary.

p(vi = 1) =
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0 log p(v' (k)| history") _ Modél LAS UAS

Ow (7) [ | ISBN wio features 38.38 5452

(Oki — p(V' () |history')) o (b; + wi;) b. | ISBN w/ features 88.65 91.44

c. | TRBM w/o features 86.01 89.78

Further, the weights on the temporal connections; | TRBM w/ features 88.72 91.65

are learned by back-propagating the likelihood gra-; | MST weonaid et ar, 2005 87.07 8995

dients through the directed links between steps.; | MaltyZ aietal. 2007 85.96 88.64

The back-proped gradient from future time steps isg_ MS Tait (Nivre and MeDonald, 2008) 87.45 90.22

aISO used tO train the Current RBM We|ghtS This h CoNLL 2008 #l(Johansson and Nugues, 2008) 9013 9245

back-propagation is similar to the Recurrent TRBM 7. ensemblé)o% (Surdeanu and Manning, 2010) 88.83  91.47

model of Sutskever et al. (2008). However, unlike ; | coNLL 2009 #1@ohnet 2009) 89.88  unknown

their model, we do not use CD at each step to com-

pute gradients. Table 1: LAS and UAS for different models.

3.5 Prediction on adding the features (rot) shows that the feed

We use the same beam-search decoding Strategyfgg/vard inference procedure for ISBNs relies heav-
used in (Titov and Henderson, 2007b). Given 4y on these feature connections to compensate for
derivation prefix, its partial parse tree and associhe lack of backward inference.
ated TRBM, the decoder adds a step to the TRBM The TRBM model avoids this problem as the in-
for calculating the probabilities of hypothesized nexference procedure takes into account the current ob-
decisions using equation 5. If the decoder selectssgrvation, which makes the latent variables much
decision for addition to the candidate list, then thenore informed. However, as row shows, the
current step’s latent variable means are inferred u3RBM model without features falls a bit short of
ing equation 4, given that the chosen decision is note ISBN performance, indicating that features are
visible. These means are then stored with the neindeed a powerful substitute for backward inference
candidate for use in subsequent TRBM calculationgn sequential latent variable models. TRBM mod-
) els would still be preferred in cases where such fea-
4 Experiments & Results ture engineering is difficult or expensive, or where

We used syntactic dependencies from the Englidh® objective is to compute the latent features them-
section of the CoNLL 2009 shared task datas&€lves. For a fair comparison, we add the same set
(Hajit et al., 2009). Standard splits of training, deOf features to the TRBM model (ro) and the per-
velopment and test sets were used. To handle wof@Mmance improves by about 2% to reach the same
sparsity, we replaced all t{@0S, word)pairs with level (non-§|gn|f|cant!y better) as ISBN with fea-
frequency less than 20 in the training set wig0s, tures. The improved inference in TRBM does how-
UNKNOWN) giving us only 4530 tag-word pairs. EVer come at the cost of increased training and test-
Since our model can work only with projective treesind time. Keeping the same likelihood convergence

we used MaltParser (Nivre et al., 2006a) to projecgriteria,_ we could train the ISBN in about 2 days and
tivize/deprojectivize the training input/test output. 1 RBM in about 5 days on a 3.3 GHz Xeon proces-
sor. With the same beam search parameters, the test

41 Results time was about 1.5 hours for ISBN and about 4.5

Table 1 lists the labeled (LAS) and unlabeled (UAS§iours for TRBM. Although more code optimization
attachment scores. Rawshows that a simple ISBN IS possible, this trend is likely to remain.

model without features, using feed forward infer- We also tried a Contrastive Divergence based
ence procedure, does not work well. As explainettaining procedure for TRBM instead of equation
in section 2, this is expected since in the absence @f but that resulted in about an absolute 10% lower
explicit features, the latent variables in a given layet AS. Further, we also tried a very simple model
do not take into account the observations in the pravithout latent variables where temporal connections
vious layers. The huge improvement in performancare between decision variables themselves. This
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model gave an LAS of only 60.46%, which indi-| Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4
cates that without latent variables, it is very difficulf  says needed pressing | renewing
to capture the parse history. contends| expected | bridging cause
For comparison, we also include the performance adds encouraged curing repeat
numbers for some state-of-the-art dependency pars- insists allowed skirting | broken
ing systems. Surdeanu and Manning (2010) com-remarked| thought | tightening| extended

pare different parsing models using CoNLL 2008 . . .
shared task dataset (Surdeanu et al., 2008) WhiT ble 2: K-means clustering of words according to their
) Co ’ BM latent representations. Duplicate words in the
is the same as our dataset. Raws i show the per- <, me cluster are not shown.

formance numbers of some systems as mentioned in

their paper. Rowj shows the best syntactic model Model path lin
in CoNLL 2009 shared task. The TRBM model has ISBN w/o features | 0.228 | 0.381
only 1.4% lower LAS and 0.8% lower UAS com- ISBN w/features 0.366| 0.466
pared to the best performing model. TRBM w/o features| 0.386| 0.487
TRBM w/ features | 0.390| 0.489

4.2 Latent Layer Analysis

. Table 3: Wordnet similarity scores for clusters given by
We analyzed the latent layers in our models to see o et models.

they captured semantic patterns. A latent layer is a

vector of 100 latent variables. EveBhiftoperation are not very low, which shows that features are a
gives a latent representation for the correspondinigowerful way to compensate for the lack of back-
word. We took all the verbs in the developmengsetward inference. This is in agreement with their good
and partitioned their representations into 50 clugPerformance on the parsing task.

ters using the k-means algorithm. Table 2 shows

some partitions for the TRBM model. The partitions5 Conclusions & Future Work

look semantically meaningful but to get a quantitayve have presented a Temporal Restricted Boltz-
tive analysis, we computed pairwise semantic Siminann Machines based model for dependency pars-
larity between all word pairs in a given cluster andng. The model shows how undirected graphical
aggregated this number over all the clusters. The Sgrodels can be used to generate latent representa-
mantic similarity was calculated using two differentijons of local parsing actions, which can then be
similarity measures on the wordnet corpus (Millefysed as features for later decisions.

et al., 1990):pathandlin. pathsimilarity is a score  The TRBM model for dependency parsing could
between 0 and 1, equal to the inverse of the shortgsé extended to a Deep Belief Network by adding
path length between the two word sensks.simi-  one more latent layer on top of the existing one
larity (Lin, 1998) is a score between 0 and 1 baseginton et al., 2006). Furthermore, as done for
on thelnformation Contenbf the two word senses | njabeled images (Hinton et al., 2006), one could
and of the Least Common Subsumer. Table 3 showsarm high-dimensional features from unlabeled text,
the similarity scored. We observe that TRBM la- \yhich could then be used to aid parsing. Parser la-
tent representations give a slightly better clusteringsnt representations could also help other tasks such

than ISBN models. Again, this is because of the fagfs semantic Role Labeling (Henderson et al., 2008).
that the inference procedure in TRBMs takes into ac- A free distribution of our implementation is avail-

count the current observation. However, at the samg|e athttp://cui.unige.ch/ ~garg .
time, the similarity numbers for ISBN with features
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