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Abstract

We propose a generative model based on
Temporal Restricted Boltzmann Machines for
transition based dependency parsing. The
parse tree is built incrementally using a shift-
reduce parse and an RBM is used to model
each decision step. The RBM at the current
time step induces latent features with the help
of temporal connections to the relevant previ-
ous steps which provide context information.
Our parser achieves labeled and unlabeled at-
tachment scores of 88.72% and 91.65% re-
spectively, which compare well with similar
previous models and the state-of-the-art.

1 Introduction

There has been significant interest recently in ma-
chine learning methods that induce generative mod-
els with high-dimensional hidden representations,
including neural networks (Bengio et al., 2003; Col-
lobert and Weston, 2008), Bayesian networks (Titov
and Henderson, 2007a), and Deep Belief Networks
(Hinton et al., 2006). In this paper, we investi-
gate how these models can be applied to dependency
parsing. We focus on Shift-Reduce transition-based
parsing proposed by Nivre et al. (2004). In this class
of algorithms, at any given step, the parser has to
choose among a set of possible actions, each repre-
senting an incremental modification to the partially
built tree. To assign probabilities to these actions,
previous work has proposedmemory-based classi-
fiers(Nivre et al., 2004), SVMs (Nivre et al., 2006b),
and Incremental Sigmoid Belief Networks (ISBN)
(Titov and Henderson, 2007b). In a related earlier

work, Ratnaparkhi (1999) proposed a maximum en-
tropy model for transition-based constituency pars-
ing. Of these approaches, only ISBNs induce high-
dimensional latent representations to encode parse
history, but suffer from either very approximate or
slow inference procedures.

We propose to address the problem of inference
in a high-dimensional latent space by using an undi-
rected graphical model, Restricted Boltzmann Ma-
chines (RBMs), to model the individual parsing
decisions. Unlike the Sigmoid Belief Networks
(SBNs) used in ISBNs, RBMs have tractable infer-
ence procedures for both forward and backward rea-
soning, which allows us to efficiently infer both the
probability of the decision given the latent variables
and vice versa. The key structural difference be-
tween the two models is that the directed connec-
tions between latent and decision vectors in SBNs
become undirected in RBMs. A complete parsing
model consists of a sequence of RBMs interlinked
via directed edges, which gives us a form of Tempo-
ral Restricted Boltzmann Machines (TRBM) (Tay-
lor et al., 2007), but with the incrementally speci-
fied model structure required by parsing. In this pa-
per, we analyze and contrast ISBNs with TRBMs
and show that the latter provide an accurate and
theoretically sound model for parsing with high-
dimensional latent variables.

2 An ISBN Parsing Model

Our TRBM parser uses the same history-
based probability model as the ISBN
parser of Titov and Henderson (2007b):
P (tree) = ΠtP (vt|v1, ..., vt−1), where each
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Figure 1: An ISBN network. Shaded nodes represent
decision variables and ‘H’ represents a vector of latent
variables.W (c)

HH
denotes the weight matrix for directed

connection of typec between two latent vectors.

vt is a parser decision of the typeLeft-Arc,
Right-Arc, Reduceor Shift. These decisions are fur-
ther decomposed into sub-decisions, as for example
P (Left-Arc|v1, ..., vt−1)P (Label|Left-Arc, v1, ..., vt−1).
The TRBMs and ISBNs model these probabilities.

In the ISBN model shown in Figure 1, the de-
cisions are shown as boxes and the sub-decisions
as shaded circles. At each decision step, the ISBN
model also includes a vector of latent variables, de-
noted by ‘H’, which act as latent features of the
parse history. As explained in (Titov and Hender-
son, 2007b), the temporal connections between la-
tent variables are constructed to take into account the
structural locality in the partial dependency struc-
ture. The model parameters are learned by back-
propagating likelihood gradients.

Because decision probabilities are conditioned on
the history, once a decision is made the correspond-
ing variable becomes observed, or visible. In an
ISBN, the directed edges to these visible variables
and the large numbers of heavily inter-connected la-
tent variables make exact inference of decision prob-
abilities intractable. Titov and Henderson (2007a)
proposed two approximation procedures for infer-
ence. The first was a feed forward approximation
where latent variables were allowed to depend only
on their parent variables, and hence did not take into
account the current or future observations. Due to
this limitation, the authors proposed to make latent
variables conditionally dependent also on a set of
explicit features derived from the parsing history,
specifically, the base features defined in (Nivre et al.,
2006b). As shown in our experiments, this addition
results in a big improvement for the parsing task.

The second approximate inference procedure,
called the incremental mean field approximation, ex-
tended the feed-forward approximation by updating
the current time step’s latent variables after each
sub-decision. Although this approximation is more

accurate than the feed-forward one, there is no ana-
lytical way to maximize likelihood w.r.t. the means
of the latent variables, which requires an iterative
numerical method and thus makes inference very
slow, restricting the model to only shorter sentences.

3 Temporal Restricted Boltzmann
Machines

In the proposed TRBM model, RBMs provide an an-
alytical way to do exact inference within each time
step. Although information passing between time
steps is still approximated, TRBM inference is more
accurate than the ISBN approximations.

3.1 Restricted Boltzmann Machines (RBM)

An RBM is an undirected graphical model with a
set of binary visible variablesv, a set of binary la-
tent variablesh, and a weight matrixW for bipar-
tite connections betweenv and h. The probability
of an RBM configuration is given by:p(v, h) =
(1/Z)e−E(v,h) whereZ is the partition function and
E is the energy function defined as:

E(v, h) = −Σiaivi − Σjbjhj − Σi,jvihjwij

whereai and bj are biases for corresponding visi-
ble and latent variables respectively, andwij is the
symmetric weight betweenvi andhj . Given the vis-
ible variables, the latent variables are conditionally
independent of each other, and vice versa:

p(hj = 1|v) = σ(bj + Σiviwij) (1)

p(vi = 1|h) = σ(ai + Σjhjwij) (2)

whereσ(x) = 1/(1 + e−x) (the logistic sigmoid).
RBM based models have been successfully used

in image and video processing, such as Deep Belief
Networks (DBNs) for recognition of hand-written
digits (Hinton et al., 2006) and TRBMs for mod-
eling motion capture data (Taylor et al., 2007). De-
spite their success, RBMs have seen limited use in
the NLP community. Previous work includes RBMs
for topic modeling in text documents (Salakhutdinov
and Hinton, 2009), andTemporal Factored RBMfor
language modeling (Mnih and Hinton, 2007).

3.2 Proposed TRBM Model Structure

TRBMs (Taylor et al., 2007) can be used to model
sequences where the decision at each step requires
some context information from the past. Figure 2
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Figure 2: Proposed TRBM Model. Edges with no arrows
represent undirected RBM connections. The directed
temporal connections between time steps contribute a
bias to the latent layer inference in the current step.

shows our proposed TRBM model with latent to
latent connections between time steps. Each step
has an RBM with weightsWRBM composed of
smaller weight matrices corresponding to different
sub-decisions. For instance, for the actionLeft-Arc,
WRBM consists of RBM weights between the la-
tent vector and the sub-decisions: “Left-Arc” and
“Label”. Similarly, for the actionShift, the sub-
decisions are “Shift”, “Part-of-Speech” and “Word”.
The probability distribution of a TRBM is:

p(vT1 , hT
1 ) = ΠT

t=1p(vt, ht|h(1), ..., h(C))

wherevT1 denotes the set of visible vectors from time
steps1 to T i.e. v1 to vT . The notation for latent
vectorsh is similar. h(c) denotes the latent vector
in the past time step that is connected to the current
latent vector through a connection of typec. To sim-
plify notation, we will denote the past connections
{h(1), ..., h(C)} by historyt. The conditional distri-
bution of the RBM at each time step is given by:

p(vt, ht|historyt) = (1/Z)exp(Σiaiv
t
i + Σi,jv

t
ih

t
jwij

+ Σj(bj + Σc,lw
(c)
HHlj

h
(c)
l )ht

j)

wherevti andht
j denote theith visible andjth latent

variable respectively at time stept. h
(c)
l denotes a

latent variable in the past time step, andw
(c)
HHlj

de-
notes the weight of the corresponding connection.

3.3 TRBM Likelihood and Inference

Section 3.1 describes an RBM where visible vari-
ables can take binary values. In our model, similar to
(Salakhutdinov et al., 2007), we have multi-valued
visible variables which we represent as one-hot bi-
nary vectors and model via a softmax distribution:

p(vtk = 1|ht) =
exp(ak +

∑
j ht

jwkj)
∑

i exp(ai +
∑

j ht
jwij)

(3)

Latent variable inference is similar to equation 1
with an additional bias due to the temporal connec-
tions.

µt
j = p(ht

j = 1|vt, historyt)

= 〈σ(bj + Σc,lw
(c)
HHlj

h
(c)
l + Σiv

t
iwij)〉

≈ σ(b
′

j + Σiv
t
iwij), (4)

b
′

j = bj + Σc,lw
(c)
HHlj

µ
(c)
l .

Here,µ denotes the mean of the corresponding la-
tent variable. To keep inference tractable, we do not
do any backward reasoning across directed connec-
tions to updateµ(c). Thus, the inference procedure
for latent variables takes into account both the parse
history and the current observation, but no future ob-
servations.

The limited set of possible values for the visi-
ble layer makes it possible to marginalize out latent
variables in linear time to compute the exact likeli-
hood. Letvt(k) denote a vector withvtk = 1 and
vt
i(i 6=k) = 0. The conditional probability of a sub-

decision is:

p(vt(k)|historyt) = (1/Z)Σhte−E(vt(k),ht) (5)

= (1/Z)eakΠj(1 + eb
′

j+wkj),

whereZ = Σi∈visiblee
aiΠj∈latent(1 + eb

′

j+wij ).
We actually perform this calculation once for

each sub-decision, ignoring the future sub-decisions
in that time step. This is a slight approximation,
but avoids having to compute the partition function
over all possible combinations of values for all sub-
decisions.1

The complete probability of a derivation is:
p(vT1 ) = p(v1).p(v2|history2)...p(vT |historyT )

3.4 TRBM Training

The gradient of an RBM is given by:
∂ log p(v)/∂wij = 〈vihj〉data− 〈vihj〉model (6)

where 〈〉d denotes the expectation under distribu-
tion d. In general, computing the exact gradient
is intractable and previous work proposed a Con-
trastive Divergence (CD) based learning procedure
that approximates the above gradient using onlyone
step reconstruction(Hinton, 2002). Fortunately, our
model has only a limited set of possible visible val-
ues, which allows us to use a better approximation
by taking the derivative of equation 5:

1In cases where computing the partition function is still not
feasible (for instance, because of a large vocabulary), sampling
methods could be used. However, we did not find this to be
necessary.
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∂ log p(vt(k)|historyt)

∂wij

=

(δki − p(vt(i)|historyt)) σ(b
′

j + wij)

(7)

Further, the weights on the temporal connections
are learned by back-propagating the likelihood gra-
dients through the directed links between steps.
The back-proped gradient from future time steps is
also used to train the current RBM weights. This
back-propagation is similar to the Recurrent TRBM
model of Sutskever et al. (2008). However, unlike
their model, we do not use CD at each step to com-
pute gradients.

3.5 Prediction

We use the same beam-search decoding strategy as
used in (Titov and Henderson, 2007b). Given a
derivation prefix, its partial parse tree and associ-
ated TRBM, the decoder adds a step to the TRBM
for calculating the probabilities of hypothesized next
decisions using equation 5. If the decoder selects a
decision for addition to the candidate list, then the
current step’s latent variable means are inferred us-
ing equation 4, given that the chosen decision is now
visible. These means are then stored with the new
candidate for use in subsequent TRBM calculations.

4 Experiments & Results

We used syntactic dependencies from the English
section of the CoNLL 2009 shared task dataset
(Hajič et al., 2009). Standard splits of training, de-
velopment and test sets were used. To handle word
sparsity, we replaced all the(POS, word)pairs with
frequency less than 20 in the training set with(POS,
UNKNOWN), giving us only 4530 tag-word pairs.
Since our model can work only with projective trees,
we used MaltParser (Nivre et al., 2006a) to projec-
tivize/deprojectivize the training input/test output.

4.1 Results

Table 1 lists the labeled (LAS) and unlabeled (UAS)
attachment scores. Rowa shows that a simple ISBN
model without features, using feed forward infer-
ence procedure, does not work well. As explained
in section 2, this is expected since in the absence of
explicit features, the latent variables in a given layer
do not take into account the observations in the pre-
vious layers. The huge improvement in performance

Model LAS UAS
a. ISBN w/o features 38.38 54.52
b. ISBN w/ features 88.65 91.44
c. TRBM w/o features 86.01 89.78
d. TRBM w/ features 88.72 91.65

e. MST (McDonald et al., 2005) 87.07 89.95
f . Malt−→AE (Hall et al., 2007) 85.96 88.64
g. MSTMalt (Nivre and McDonald, 2008) 87.45 90.22
h. CoNLL 2008 #1(Johansson and Nugues, 2008) 90.13 92.45
i. ensemble3100% (Surdeanu and Manning, 2010) 88.83 91.47
j. CoNLL 2009 #1(Bohnet, 2009) 89.88 unknown

Table 1: LAS and UAS for different models.

on adding the features (rowb) shows that the feed
forward inference procedure for ISBNs relies heav-
ily on these feature connections to compensate for
the lack of backward inference.

The TRBM model avoids this problem as the in-
ference procedure takes into account the current ob-
servation, which makes the latent variables much
more informed. However, as rowc shows, the
TRBM model without features falls a bit short of
the ISBN performance, indicating that features are
indeed a powerful substitute for backward inference
in sequential latent variable models. TRBM mod-
els would still be preferred in cases where such fea-
ture engineering is difficult or expensive, or where
the objective is to compute the latent features them-
selves. For a fair comparison, we add the same set
of features to the TRBM model (rowd) and the per-
formance improves by about 2% to reach the same
level (non-significantly better) as ISBN with fea-
tures. The improved inference in TRBM does how-
ever come at the cost of increased training and test-
ing time. Keeping the same likelihood convergence
criteria, we could train the ISBN in about 2 days and
TRBM in about 5 days on a 3.3 GHz Xeon proces-
sor. With the same beam search parameters, the test
time was about 1.5 hours for ISBN and about 4.5
hours for TRBM. Although more code optimization
is possible, this trend is likely to remain.

We also tried a Contrastive Divergence based
training procedure for TRBM instead of equation
7, but that resulted in about an absolute 10% lower
LAS. Further, we also tried a very simple model
without latent variables where temporal connections
are between decision variables themselves. This
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model gave an LAS of only 60.46%, which indi-
cates that without latent variables, it is very difficult
to capture the parse history.

For comparison, we also include the performance
numbers for some state-of-the-art dependency pars-
ing systems. Surdeanu and Manning (2010) com-
pare different parsing models using CoNLL 2008
shared task dataset (Surdeanu et al., 2008), which
is the same as our dataset. Rowse− i show the per-
formance numbers of some systems as mentioned in
their paper. Rowj shows the best syntactic model
in CoNLL 2009 shared task. The TRBM model has
only 1.4% lower LAS and 0.8% lower UAS com-
pared to the best performing model.

4.2 Latent Layer Analysis

We analyzed the latent layers in our models to see if
they captured semantic patterns. A latent layer is a
vector of 100 latent variables. EveryShiftoperation
gives a latent representation for the corresponding
word. We took all the verbs in the development set2

and partitioned their representations into 50 clus-
ters using the k-means algorithm. Table 2 shows
some partitions for the TRBM model. The partitions
look semantically meaningful but to get a quantita-
tive analysis, we computed pairwise semantic simi-
larity between all word pairs in a given cluster and
aggregated this number over all the clusters. The se-
mantic similarity was calculated using two different
similarity measures on the wordnet corpus (Miller
et al., 1990):pathandlin. pathsimilarity is a score
between 0 and 1, equal to the inverse of the shortest
path length between the two word senses.lin simi-
larity (Lin, 1998) is a score between 0 and 1 based
on theInformation Contentof the two word senses
and of the Least Common Subsumer. Table 3 shows
the similarity scores.3 We observe that TRBM la-
tent representations give a slightly better clustering
than ISBN models. Again, this is because of the fact
that the inference procedure in TRBMs takes into ac-
count the current observation. However, at the same
time, the similarity numbers for ISBN with features

2Verbs are words corresponding to POS tags: VB, VBD,
VBG, VBN, VBP, VBZ. We selected verbs as they have good
coverage in Wordnet.

3To account for randomness in k-means clustering, the clus-
tering was performed 10 times with random initializations,sim-
ilarity scores were computed for each run and a mean was taken.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
says needed pressing renewing

contends expected bridging cause
adds encouraged curing repeat

insists allowed skirting broken
remarked thought tightening extended

Table 2: K-means clustering of words according to their
TRBM latent representations. Duplicate words in the
same cluster are not shown.

Model path lin
ISBN w/o features 0.228 0.381
ISBN w/features 0.366 0.466
TRBM w/o features 0.386 0.487
TRBM w/ features 0.390 0.489

Table 3: Wordnet similarity scores for clusters given by
different models.

are not very low, which shows that features are a
powerful way to compensate for the lack of back-
ward inference. This is in agreement with their good
performance on the parsing task.

5 Conclusions & Future Work

We have presented a Temporal Restricted Boltz-
mann Machines based model for dependency pars-
ing. The model shows how undirected graphical
models can be used to generate latent representa-
tions of local parsing actions, which can then be
used as features for later decisions.

The TRBM model for dependency parsing could
be extended to a Deep Belief Network by adding
one more latent layer on top of the existing one
(Hinton et al., 2006). Furthermore, as done for
unlabeled images (Hinton et al., 2006), one could
learn high-dimensional features from unlabeled text,
which could then be used to aid parsing. Parser la-
tent representations could also help other tasks such
as Semantic Role Labeling (Henderson et al., 2008).

A free distribution of our implementation is avail-
able athttp://cui.unige.ch/ ˜ garg .
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Non-projective dependency parsing using spanning
tree algorithms. InProceedings of the conference on
Human Language Technology and Empirical Methods

in Natural Language Processing, pages 523–530. As-
sociation for Computational Linguistics.

G.A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K.J. Miller. 1990. Introduction to wordnet: An on-
line lexical database.International Journal of lexicog-
raphy, 3(4):235.

A. Mnih and G. Hinton. 2007. Three new graphical mod-
els for statistical language modelling. InProceedings
of the 24th international conference on Machine learn-
ing, pages 641–648. ACM.

J. Nivre and R. McDonald. 2008. Integrating graph-
based and transition-based dependency parsers.Pro-
ceedings of ACL-08: HLT, pages 950–958.

J. Nivre, J. Hall, and J. Nilsson. 2004. Memory-based
dependency parsing. InProceedings of CoNLL, pages
49–56.

J. Nivre, J. Hall, and J. Nilsson. 2006a. MaltParser: A
data-driven parser-generator for dependency parsing.
In Proceedings of LREC, volume 6.

J. Nivre, J. Hall, J. Nilsson, G. Eryiit, and S. Marinov.
2006b. Labeled pseudo-projective dependency pars-
ing with support vector machines. InProceedings
of the Tenth Conference on Computational Natural
Language Learning, pages 221–225. Association for
Computational Linguistics.

A. Ratnaparkhi. 1999. Learning to parse natural
language with maximum entropy models.Machine
Learning, 34(1):151–175.

R. Salakhutdinov and G. Hinton. 2009. Replicated soft-
max: an undirected topic model.Advances in Neural
Information Processing Systems, 22.

R. Salakhutdinov, A. Mnih, and G. Hinton. 2007. Re-
stricted Boltzmann machines for collaborative filter-
ing. In Proceedings of the 24th international confer-
ence on Machine learning, page 798. ACM.

M. Surdeanu and C.D. Manning. 2010. Ensemble mod-
els for dependency parsing: cheap and good? InHu-
man Language Technologies: The 2010 Annual Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics, pages 649–652.
Association for Computational Linguistics.

M. Surdeanu, R. Johansson, A. Meyers, L. Màrquez, and
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