Event Extraction as Dependency Parsing

David McClosky, Mihai Surdeanu, and Christopher D. Manning
Department of Computer Science
Stanford University
Stanford, CA 94305

{mcclosky,mihais, manning}@stanford.edu

Abstract

Nested event structures are a common occur-
rence in both open domain and domain spe-
cific extraction tasks, e.g., a “crime” event
can cause a “investigation” event, which can
lead to an “arrest” event. However, most cur-
rent approaches address event extraction with
highly local models that extract each event and
argument independently. We propose a simple
approach for the extraction of such structures
by taking the tree of event-argument relations
and using it directly as the representation in a
reranking dependency parser. This provides a
simple framework that captures global prop-
erties of both nested and flat event structures.
We explore a rich feature space that models
both the events to be parsed and context from
the original supporting text. Our approach ob-
tains competitive results in the extraction of
biomedical events from the BioNLP’09 shared
task with a F1 score of 53.5% in development
and 48.6% in testing.

1 Introduction

Event structures in open domain texts are frequently
highly complex and nested: a ‘“crime” event can
cause an “investigation” event, which can lead to an
“arrest” event (Chambers and Jurafsky, 2009). The
same observation holds in specific domains. For ex-
ample, the BioNLP’09 shared task (Kim et al., 2009)
focuses on the extraction of nested biomolecular
events, where, e.g., a REGULATION event causes a
TRANSCRIPTION event (see Figure 1a for a detailed
example). Despite this observation, many state-
of-the-art supervised event extraction models still
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extract events and event arguments independently,
ignoring their underlying structure (Bjorne et al.,
2009; Miwa et al., 2010b).

In this paper, we propose a new approach for su-
pervised event extraction where we take the tree of
relations and their arguments and use it directly as
the representation in a dependency parser (rather
than conventional syntactic relations). Our approach
is conceptually simple: we first convert the origi-
nal representation of events and their arguments to
dependency trees by creating dependency arcs be-
tween event anchors (phrases that anchor events in
the supporting text) and their corresponding argu-
ments.! Note that after conversion, only event an-
chors and entities remain. Figure 1 shows a sentence
and its converted form from the biomedical do-
main with four events: two POSITIVE REGULATION
events, anchored by the phrase “acts as a costim-
ulatory signal,” and two TRANSCRIPTION events,
both anchored on “gene transcription.” All events
take either protein entity mentions (PROT) or other
events as arguments. The latter is what allows for
nested event structures. Existing dependency pars-
ing models can be adapted to produce these seman-
tic structures instead of syntactic dependencies. We
built a global reranking parser model using multiple
decoders from MSTParser (McDonald et al., 2005;
McDonald et al., 2005b). The main contributions of
this paper are the following:

1. We demonstrate that parsing is an attractive ap-
proach for extracting events, both nested and
otherwise.

"While our approach only works on trees, we show how we
can handle directed acyclic graphs in Section 5.
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(a) Original sentence with nested events (b) After conversion to event dependencies
Figure 1: Nested events in the text fragment: “...the HTLV-1 transactivator protein, tax, acts as a costim-

ulatory signal for GM-CSF and IL-2 gene transcription ...” Throughout this paper, bold text indicates
instances of event anchors and italicized text denotes entities (PROTEINS in the BioNLP’09 domain). Note
that in (a) there are two copies of each type of event, which are merged to single nodes in the dependency

tree (Section 3.1).

2. We propose a wide range of features for event
extraction. Our analysis indicates that fea-
tures which model the global event structure
yield considerable performance improvements,
which proves that modeling event structure
jointly is beneficial.

3. We evaluate on the biomolecular event corpus
from the the BioNLP’09 shared task and show
that our approach obtains competitive results.

2 Related Work

The pioneering work of Miller et al. (1997) was
the first, to our knowledge, to propose parsing as
a framework for information extraction. They ex-
tended the syntactic annotations of the Penn Tree-
bank corpus (Marcus et al., 1993) with entity and
relation mentions specific to the MUC-7 evalua-
tion (Chinchor et al., 1997) — e.g., EMPLOYEE OF
relations that hold between person and organization
named entities — and then trained a generative pars-
ing model over this combined syntactic and seman-
tic representation. In the same spirit, Finkel and
Manning (2009) merged the syntactic annotations
and the named entity annotations of the OntoNotes
corpus (Hovy et al., 2006) and trained a discrimina-
tive parsing model for the joint problem of syntac-
tic parsing and named entity recognition. However,
both these works require a unified annotation of syn-
tactic and semantic elements, which is not always
feasible, and focused only on named entities and bi-
nary relations. On the other hand, our approach fo-
cuses on event structures that are nested and have
an arbitrary number of arguments. We do not need
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a unified syntactic and semantic representation (but
we can and do extract features from the underlying
syntactic structure of the text).

Finkel and Manning (2009b) also proposed a
parsing model for the extraction of nested named en-
tity mentions, which, like this work, parses just the
corresponding semantic annotations. In this work,
we focus on more complex structures (events instead
of named entities) and we explore more global fea-
tures through our reranking layer.

In the biomedical domain, two recent papers pro-
posed joint models for event extraction based on
Markov logic networks (MLN) (Riedel et al., 2009;
Poon and Vanderwende, 2010). Both works propose
elegant frameworks where event anchors and argu-
ments are jointly predicted for all events in the same
sentence. One disadvantage of MLN models is the
requirement that a human expert develop domain-
specific predicates and formulas, which can be a
cumbersome process because it requires thorough
domain understanding. On the other hand, our ap-
proach maintains the joint modeling advantage, but
our model is built over simple, domain-independent
features. We also propose and analyze a richer fea-
ture space that captures more information on the
global event structure in a sentence. Furthermore,
since our approach is agnostic to the parsing model
used, it could easily be tuned for various scenarios,
e.g., models with lower inference overhead such as
shift-reduce parsers.

Our work is conceptually close to the recent
CoNLL shared tasks on semantic role labeling,
where the predicate frames were converted to se-
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Figure 2: Overview of the approach. Rounded rect-
angles indicate domain-independent components;
regular rectangles mark domain-specific modules;
blocks in dashed lines surround components not nec-
essary for the domain presented in this paper.

mantic dependencies between predicates and their
arguments (Surdeanu et al., 2008; Hajic et al., 2009).
In this representation the dependency structure is a
directed acyclic graph (DAGQG), i.e., the same node
can be an argument to multiple predicates, and there
are no explicit dependencies between predicates.
Due to this representation, all joint models proposed
for semantic role labeling handle semantic frames
independently.

3 Approach

Figure 2 summarizes our architecture. Our approach
converts the original event representation to depen-
dency trees containing both event anchors and entity
mentions, and trains a battery of parsers to recognize
these structures. The trees are built using event an-
chors predicted by a separate classifier. In this work,
we do not discuss entity recognition because in
the BioNLP’09 domain used for evaluation entities
(PROTEINS) are given (but including entity recog-
nition is an obvious extension of our model). Our
parsers are several instances of MSTParser” (Mc-
Donald et al., 2005; McDonald et al., 2005b) con-
figured with different decoders. However, our ap-
proach is agnostic to the actual parsing models used
and could easily be adapted to other dependency
parsers. The output from the reranking parser is

2http://sourceforge.net/projects/mstparser/
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converted back to the original event representation
and passed to a reranker component (Collins, 2000;
Charniak and Johnson, 2005), tailored to optimize
the task-specific evaluation metric.

Note that although we use the biomedical event
domain from the BioNLP’09 shared task to illustrate
our work, the core of our approach is almost do-
main independent. Our only constraints are that each
event mention be activated by a phrase that serves as
an event anchor, and that the event-argument struc-
tures be mapped to a dependency tree. The conver-
sion between event and dependency structures and
the reranker metric are the only domain dependent
components in our approach.

3.1 Converting between Event Structures and
Dependencies

As in previous work, we extract event structures at
sentence granularity, i.e., we ignore events which
span sentences (Bjorne et al., 2009; Riedel et al.,
2009; Poon and Vanderwende, 2010). These form
approximately 5% of the events in the BioNLP’09
corpus. For each sentence, we convert the
BioNLP’09 event representation to a graph (repre-
senting a labeled dependency tree) as follows. The
nodes in the graph are protein entity mentions, event
anchors, and a virtual ROOT node. Thus, the only
words in this dependency tree are those which par-
ticipate in events. We create edges in the graph in
the following way. For each event anchor, we cre-
ate one link to each of its arguments labeled with the
slot name of the argument (for example, connecting
gene transcription to /L-2 with the label THEME in
Figure 1b). We link the ROOT node to each entity
that does not participate in an event using the ROOT-
LABEL dependency label. Finally, we link the ROOT
node to each top-level event anchor, (those which do
not serve as arguments to other events) again using
the ROOT-LABEL label. We follow the convention
that the source of each dependency arc is the head
while the target is the modifier.

The output of this process is a directed graph,
since a phrase can easily play a role in two or more
events. Furthermore, the graph may contain self-
referential edges (self-loops) due to related events
sharing the same anchor (example below). To guar-
antee that the output of this process is a tree, we
must post-process the above graph with the follow-



ing three heuristics:

Step 1: We remove self-referential edges. An exam-
ple of these can be seen in the text “the domain in-
teracted preferentially with underphosphorylated
TRAF?2, there are two events anchored by the same
underphosphorylated phrase, a NEGATIVE REGU-
LATION and a PHOSPHORYLATION event, and the
latter serves as a THEME argument for the former.
Due to the shared anchor, our conversion compo-
nent creates an self-referential THEME dependency.
By removing these edges, 1.5% of the events in the
training arguments are left without arguments, so we
remove them as well.

Step 2: We break structures where one argument par-
ticipates in multiple events, by keeping only the de-
pendency to the event that appears first in text. For
example, in the fragment “by enhancing its inactiva-
tion through binding to soluble TNF-alpha receptor
type 11,” the protein TNF-alpha receptor type II is
an argument in both a BINDING event (binding) and
in a NEGATIVE REGULATION event (inactivation).
As a consequence of this step, 4.7% of the events in
training are removed.

Step 3: We unify events with the same types an-
chored on the same anchor phrase. For example,
for the fragment “Surface expression of intercellu-
lar adhesion molecule-1, P-selectin, and E-selectin,”’
the BioNLP’09 annotation contains three distinct
GENE EXPRESSION events anchored on the same
phrase (expression), each having one of the proteins
as THEMES. In such cases, we migrate all arguments
to one of the events, and remove the empty events.
21.5% of the events in training are removed in this
step (but no dependencies are lost).

Note that we do not guarantee that the resulting
tree is projective. In fact, our trees are more likely
to be non-projective than syntactic dependency trees
of English sentences, because in our representation
many nodes can be linked directly to the ROOT node.
Our analysis indicates that 2.9% of the dependencies
generated in the training corpus are non-projective
and 7.9% of the sentences contain at least one non-
projective dependency (for comparison, these num-
bers for the English Penn Treebank are 0.3% and
6.7%, respectively).

After parsing, we implement the inverse process,
i.e., we convert the generated dependency trees to
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the BioNLP’09 representation. In addition to the
obvious conversions, this process implements the
heuristics proposed by Bjorne et al. (2009), which
reverse step 3 above, e.g., we duplicate GENE EX-
PRESSION events with multiple THEME arguments.
The heuristics are executed sequentially in the given
order:

1. Since all non-BINDING events can have at
most one THEME argument, we duplicate non-
BINDING events with multiple THEME argu-
ments by creating one separate event for each
THEME.

2. Similarly, since REGULATION events accepts
only one CAUSE argument, we duplicate REG-
ULATION events with multiple CAUSE argu-
ments, obtaining one event per CAUSE.

3. Lastly, we implement the heuristic of Bjorne et
al. (2009) to handle the splitting of BINDING
events with multiple THEME arguments. This is
more complex because these events can accept
one or more THEMEs. In such situations, we
first group THEME arguments by the label of the
first Stanford dependency (Marneffe and Man-
ning, 2008) from the head word of the anchor
to this argument. Then we create one event for
each combination of THEME arguments in dif-
ferent groups.

3.2 Recognition of Event Anchors

For anchor detection, we used a multiclass classifier
that labels each token independently.®> Since over
92% of the anchor phrases in our evaluation domain
contain a single word, we simplify the task by re-
ducing all multi-word anchor phrases in the training
corpus to their syntactic head word (e.g., “acts” for
the anchor “acts as a costimulatory signal”).

We implemented this model using a logistic re-
gression classifier with L2 regularization over the
following features:

3We experimented with using conditional random fields as a
sequence labeler but did not see improvements in the biomed-
ical domain. We hypothesize that the sequence tagger fails to
capture potential dependencies between anchor labels — which
are its main advantage over an i.i.d. classifier — because anchor

words are typically far apart in text. This result is consistent
with observations in previous work (Bjorne et al., 2009).



e Token-level: The form, lemma, and whether
the token is present in a gazetteer of known an-
chor words.*

e Surface context: The above token features ex-
tracted from a context of two words around the
current token. Additionally, we build token bi-
grams in this context window, and model them
with similar features.

e Syntactic context: We model all syntactic de-
pendency paths up to depth two starting from
the token to be classified. These paths are built
from Stanford syntactic dependencies (Marn-
effe and Manning, 2008). We extract token
features from the first and last token in these
paths. We also generate combination features
by concatenating: (a) the last token in each path
with the sequence of dependency labels along
the corresponding path; and (b) the word to be
classified, the last token in each path, and the
sequence of dependency labels in that path.

e Bag-of-word and entity count: Extracted
from (a) the entire sentence, and (b) a window
of five words around the token to be classified.

3.3 Parsing Event Structures

Given the entities and event anchors from the pre-
vious stages in the pipeline, the parser generates la-
beled dependency links between them. Many de-
pendency parsers are available and we chose MST-
Parser for its ability to produce non-projective and
n-best parses directly. MSTParser frames parsing
as a graph algorithm. To parse a sentence, MST-
Parser finds the tree covering all the words (nodes)
in the sentence (graph) with the largest sum of edge
weights, i.e., the maximum weighted spanning tree.
Each labeled, directed edge in the graph represents a
possible dependency between its two endpoints and
has an associated score (weight). Scores for edges
come from the dot product between the edge’s corre-
sponding feature vector and learned feature weights.
As aresult, all features for MSTParser must be edge-
factored, i.e., functions of both endpoints and the la-
bel connecting them. McDonald et al. (2006) ex-
tends the basic model to include second-order de-
pendencies (i.e., two adjacent sibling nodes and their

4“These are automatically extracted from the training corpus.
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parent). Both first and second-order modes include
projective and non-projective decoders.

Our features for MSTParser use both the event
structures themselves as well as the surrounding
English sentences which include them. By map-
ping event anchors and entities back to the original
text, we can incorporate information from the orig-
inal English sentence as well its syntactic tree and
corresponding Stanford dependencies. Both forms
of context are valuable and complementary. MST-
Parser comes with a large number of features which,
in our setup, operate on the event structure level
(since this is the “sentence” from the parser’s point
of view). The majority of additional features that
we introduced take advantage of the original text as
context (primarily its associated Stanford dependen-
cies). Our system includes the following first-order
features:

e Path: Syntactic paths in the original sentence
between nodes in an event dependency (as in
previous work by Bjorne et al. (2009)). These
have many variations including using Stanford
dependencies (‘“collapsed” and “uncollapsed”)
or constituency trees as sources, optionally lex-
icalizing the path, and using words or relation
names along the path. Additionally, we include
the bucketed length of the paths.

e Original sentence words: Words from the full
English sentence surrounding and between the
nodes in event dependencies, and their buck-
eted distances. This additional context helps
compensate for how our anchor detection pro-
vides only the head word of each anchor, which
does not necessarily provide the full context for
event disambiguation.

e Graph: Parents, children, and siblings of
nodes in the Stanford dependencies graph
along with label of the edge. This provides ad-
ditional syntactic context.

e Consistency: Soft constraints on edges be-
tween anchors and their arguments (e.g., only
regulation events can have edges labeled with
CAUSE). These features fire if their constraints
are violated.

e Ontology: Generalized types of the end-
points of edges using a given type hierar-
chy (e.g., POSITIVE REGULATION is a COM-



PLEX EVENT’ is an EVENT). Values of
this feature are coded with the types of each
of the endpoints on an edge, running over
the cross-product of types for each endpoint.
For instance, an edge between a BINDING
event anchor and a POSITIVE REGULATION
could cause this feature to fire with the val-
ues [head:EVENT, child:COMPLEX EVENT] or
[head:SIMPLE EVENT, child:EVENT].® The lat-
ter feature can capture generalizations such as
“simple event anchors cannot take other events
as arguments.”

Both Consistency and Ontology feature classes in-
clude domain-specific information but can be used
on other domains under different constraints and
type hierarchies. When using second-order de-
pendencies, we use additional Path and Ontol-
ogy features. We include the syntactic paths be-
tween sibling nodes (adjacent arguments of the same
event anchor). These Path features are as above
but differentiated as paths between sibling nodes.
The second-order Ontology features use the type
hierarchy information on both sibling nodes and
their parent. For example, a POSITIVE REGULA-
TION anchor attached to a PROTEIN and a BINDING
event would produce an Ontology feature with the
value [parent:COMPLEX EVENT, child;:PROTEIN,
child2:SIMPLE EVENT] (among several other possi-
ble combinations).

To prune the number of features used, we employ
a simple entropy-based measure. Our intuition is
that good features should typically appear with only
one edge label.” Given all edges enumerated during
training and their gold labels, we obtain a distribu-
tion over edge labels (d) for each feature f. Given
this distribution and the frequency of a feature, we
can score the feature with the following:

score(f) = o x logy (freq(f)) — H(dy)

The o parameter adjusts the relative weight of the
two components. The log frequency component fa-
vors more frequent features while the entropy com-
ponent favors features with low entropy in their edge

SWe define complex events are those which can accept other
events are arguments. Simple events can only take PROTEINS.

®We omit listing the other two combinations.

7Labels include ROOT-LABEL, THEME, CAUSE, and NULL.
We assign the NULL label to edges which aren’t in the gold data.
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label distribution. Features are pruned by accepting
all features with a score above a certain threshold.

3.4 Reranking Event Structures

When decoding, the parser finds the highest scoring
tree which incorporates global properties of the sen-
tence. However, its features are edge-factored and
thus unable to take into account larger contexts. To
incorporate arbitrary global features, we employ a
two-step reranking parser. For the first step, we ex-
tend our parser to output its n-best parses instead
of just its top scoring parse. In the second step, a
discriminative reranker rescores each parse and re-
orders the n-best list. Rerankers have been success-
fully used in syntactic parsing (Collins, 2000; Char-
niak and Johnson, 2005; Huang, 2008) and semantic
role labeling (Toutanova et al., 2008).

Rerankers provide additional advantages in our
case due to the mismatch between the dependency
structures that the parser operates on and their cor-
responding event structures. We convert the out-
put from the parser to event structures (Section 3.1)
before including them in the reranker. This al-
lows the reranker to capture features over the ac-
tual event structures rather than their original de-
pendency trees which may contain extraneous por-
tions.® Furthermore, this lets the reranker optimize
the actual BioNLP F1 score. The parser, on the other
hand, attempts to optimize the Labeled Attachment
Score (LAS) between the dependency trees and con-
verted gold dependency trees. LAS is approximate
for two reasons. First, it is much more local than
the BioNLP metric.? Second, the converted gold de-
pendency trees lose information that doesn’t transfer
to trees (specifically, that event structures are really
multi-DAGs and not trees).

We adapt the maximum entropy reranker from
Charniak and Johnson (2005) by creating a cus-
tomized feature extractor for event structures — in
all other ways, the reranker model is unchanged. We
use the following types of features in the reranker:

e Source: Score and rank of the parse from the

8For instance, event anchors with no arguments could be
proposed by the parser. These event anchors are automatically
dropped by the conversion process.

°As an example, getting an edge label between an anchor
and its argument correct is unimportant if the anchor is missing
other arguments.



Unreranked Reranked Unreranked Reranked
Decoder(s) R P F1 R P F1 Decoder(s) R P F1 R P F1
1P 65.6 76.7 70.7 | 68.0 776 725 1P 447 622 520 | 478 59.6 53.1
2P 674 77.1 719|679 773 723 2P 459 618 527|484 575 525
IN 675 767 T1.8 | — — — IN 46.0 612 525 | — — —
2N 689 77.1 127 | — — — 2N 38,6 66.6 488 | — — —
1P, 2P, 2N — — — | 685 782 731 1P, 2P, 2N — — — | 487 593 535

(a) Gold event anchors

(b) Predicted event anchors

Table 1: BioNLP recall, precision, and F1 scores of individual decoders and the best decoder combination
on development data with the impact of event anchor detection and reranking. Decoder names include the
features order (1 or 2) followed by the projectivity (P = projective, N = non-projective).

decoder; number of different decoders produc-
ing the parse (when using multiple decoders).

e Event path: Path from each node in the event
tree up to the root. Unlike the Path features
in the parser, these paths are over event struc-
tures, not the syntactic dependency graphs from
the original English sentence. Variations of the
Event path features include whether to include
word forms (e.g., “binds”), types (BINDING),
and/or argument slot names (THEME). We also
include the path length as a feature.

e Event frames: Event anchors with all their ar-
guments and argument slot names.

e Consistency: Similar to the parser Consis-
tency features, but capable of capturing larger
classes of errors (e.g., incorrect number or
types of arguments). We include the number of
violations from four different classes of errors.

To improve performance and robustness, features
are pruned as in Charniak and Johnson (2005): se-
lected features must distinguish a parse with the
highest F1 score in a n-best list, from a parse with a
suboptimal F1 score at least five times.

Rerankers can also be used to perform model
combination (Toutanova et al., 2008; Zhang et al.,
2009; Johnson and Ural, 2010). While we use a sin-
gle parsing model, it has multiple decoders.!” When
combining multiple decoders, we concatenate their
n-best lists and extract the unique parses.

%We only have n-best versions of the projective decoders.
For the non-projective decoders, we use their 1-best parse.
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4 Experimental Results

Our experiments use the BioNLP’09 shared task
corpus (Kim et al., 2009) which includes 800
biomedical abstracts (7,449 sentences, 8,597 events)
for training and 150 abstracts (1,450 sentences,
1,809 events) for development. The test set includes
260 abstracts, 2,447 sentences, and 3,182 events.
Throughout our experiments, we report BioNLP F1
scores with approximate span and recursive event
matching (as described in the shared task definition).
For preprocessing, we parsed all documents us-
ing the self-trained biomedical McClosky-Charniak-
Johnson reranking parser (McClosky, 2010). We
bias the anchor detector to favor recall, allowing the
parser and reranker to determine which event an-
chors will ultimately be used. When performing n-
best parsing, n = 50. For parser feature pruning,
a = 0.001.

Table 1a shows the performance of each of the de-
coders when using gold event anchors. In both cases
where n-best decoding is available, the reranker im-
proves performance over the 1-best parsers. We also
present the results from a reranker trained from mul-
tiple decoders which is our highest scoring model."!
In Table 1b, we present the output for the predicted
anchor scenario. In the case of the 2P decoder,
the reranker does not improve performance, though
the drop is minimal. This is because the reranker
chose an unfortunate regularization constant during
crossvalidation, most likely due to the small size of
the training data. In later experiments where more

"Including the 1N decoder as well provided no gains, possi-
bly because its outputs are mostly subsumed by the 2N decoder.




data is available, the reranker consistently improves
accuracy (McClosky et al., 2011). As before, the
reranker trained from multiple decoders outperforms
unreranked models and reranked single decoders.
All in all, our best model in Table 1la scores 1 F1
point higher than the best system at the BioNLP’09
shared task, and the best model in Table 1b performs
similarly to the best shared task system (Bjorne et
al., 2009), which also scores 53.5% on development.

We show the effects of each system component
in Table 2. Note how our upper limit is 87.1%
due to our conversion process, which enforces the
tree constraint, drops events spanning sentences, and
performs approximate reconstruction of BINDING
events. Given that state-of-the-art systems on this
task currently perform in the 50-60% range, we are
not troubled by this number as it still allows for
plenty of potential.'? Bjorne et al. (2009) list 94.7%
as the upper limit for their system. Considering
this relatively large difference, we find the results
in the previous table very encouraging. As in other
BioNLP’09 systems, our performance drops when
switching from gold to predicted anchor informa-
tion. Our decrease is similar to the one seen in
Bjorne et al. (2009).

To show the potential of reranking, we provide or-
acle reranker scores in Table 3. An oracle reranker
picks the highest scoring parse from the available
parses. We limit the n-best lists to the top k parses
where £ € {1,2,10,All}. For single decoders,
“All” uses the entire 50-best list. For multiple de-
coders, the n-best lists are concatenated together.
The oracle score with multiple decoders and gold
anchors is only 0.4% lower than our upper limit (see
Table 2). This indicates that parses which could have
achieved that limit were nearly always present. Im-
proving the features in the reranker as well as the
original parsers will help us move closer to the limit.
With predicated anchors, the oracle score is about
13% lower but still shows significant potential.

Our final results on the test set, broken down by
class, are shown in Table 4. As with other systems,
complex events (e.g., REGULATION) prove harder
than simple events. To get a complex event cor-
rect, one must correctly detect and parse all events in

12 Additionally, improvements such as document-level pars-
ing and DAG parsing would eliminate the need for much of the
approximate and lossy portions of the conversion process.
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AD Parse RR Conv R P F1
v v v 459 61.8 52.7
v v v v 48.7 593 535
G v v 68.9 77.1 727
G v v v 68.5 782 73.1
G G G v 81.6 934 87.1

Table 2: Effect of each major component to the over-
all performance in the development corpus. Compo-
nents shown: AD — event anchor detection; Parse
— best individual parsing model; RR — reranking
multiple parsers; Conv — conversion between the
event and dependency representations. ‘G’ indicates
that gold data was used; ‘v"’ indicates that the actual
component was used.

n-best parses considered

Anchors  Decoder(s) 1 2 10 All
1P 70.7 76.6 84.0 85.7

Gold 2P 71.8 775 848 86.2
1P, 2P, 2N — — — 867

1P 52.0 603 69.9 725

Predicted 2P 527 60.7 70.1 725
1P, 2P, 2N — — — 734

Table 3: Oracle reranker BioNLP F1 scores for
our n-best decoders and their combinations before
reranking on the development corpus.

the event subtree allowing small errors to have large
effects. Top systems on this task obtain F1 scores
of 52.0% at the shared task evaluation (Bjorne et
al., 2009) and 56.3% post evaluation (Miwa et al.,
2010a). However, both systems are tailored to the
biomedical domain (the latter uses multiple syntac-
tic parsers), whereas our system has a design that is
virtually domain independent.

5 Discussion

We believe that the potential of our approach is
higher than what the current experiments show. For
example, the reranker can be used to combine not
only several parsers but also multiple anchor rec-
ognizers. This passes the anchor selection decision
to the reranker, which uses global information not
available to the current anchor recognizer or parser.
Furthermore, our approach can be adapted to parse
event structures in entire documents (instead of in-



Event Class Count R P Fl1

Gene Expression 722 686 758 72.0
Transcription 137 423 513 464
Protein Catabolism 14 643 750 692
Phosphorylation 135 80.0 824 81.2
Localization 174 448 788 57.1
Binding 347 429 5177 469
Regulation 291 230 366 283
Positive Regulation 983 284 425 340
Negative Regulation 379 293 435 350
Total 3,182 426 56.6 48.6

Table 4: Results in the test set broken by event class;
scores generated with the main official metric of ap-
proximate span and recursive event matching.

dividual sentences) by using a representation with a
unique ROOT node for all event structures in a doc-
ument. This representation has the advantage that
it maintains cross-sentence events (which account
for 5% of BioNLP’09 events), and it allows for
document-level features that model discourse struc-
ture. We plan to explore these ideas in future work.

One current limitation of the proposed model is
that it constrains event structures to map to trees. In
the BioNLP’09 corpus this leads to the removal of
almost 5% of the events, which generate DAGs in-
stead of trees. Local event extraction models (Bjorne
et al., 2009) do not have this limitation, because
their local decisions are blind to (and hence not
limited by) the global event structure. However,
our approach is agnostic to the actual parsing mod-
els used, so we can easily incorporate models that
can parse DAGs (Sagae and Tsujii, 2008). Addi-
tionally, we are free to incorporate any new tech-
niques from dependency parsing. Parsing using
dual-decomposition (Rush et al., 2010) seems espe-
cially promising in this area.

6 Conclusion

In this paper we proposed a simple approach for the
joint extraction of event structures: we converted
the representation of events and their arguments to
dependency trees with arcs between event anchors
and event arguments, and used a reranking parser to
parse these structures. Despite the fact that our ap-
proach has very little domain-specific engineering,
we obtain competitive results. Most importantly, we
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showed that the joint modeling of event structures is
beneficial: our reranker outperforms parsing models
without reranking in five out of the six configura-
tions investigated.
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