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Abstract

Text mining and data harvesting algorithms
have become popular in the computational lin-
guistics community. They employ patterns
that specify the kind of information to be har-
vested, and usually bootstrap either the pat-
tern learning or the term harvesting process (or
both) in a recursive cycle, using data learned
in one step to generate more seeds for the next.
They therefore treat the source text corpus as
a network, in which words are the nodes and
relations linking them are the edges. The re-
sults of computational network analysis, espe-
cially from the world wide web, are thus ap-
plicable. Surprisingly, these results have not
yet been broadly introduced into the computa-
tional linguistics community. In this paper we
show how various results apply to text mining,
how they explain some previously observed
phenomena, and how they can be helpful for
computational linguistics applications.

1 Introduction

Text mining / harvesting algorithms have been ap-
plied in recent years for various uses, including
learning of semantic constraints for verb participants
(Lin and Pantel, 2002) related pairs in various rela-
tions, such as part-whole (Girju et al., 2003), cause
(Pantel and Pennacchiotti, 2006), and other typical
information extraction relations, large collections
of entities (Soderland et al., 1999; Etzioni et al.,
2005), features of objects (Pasca, 2004) and ontolo-
gies (Carlson et al., 2010). They generally start with
one or more seed terms and employ patterns that
specify the desired information as it relates to the

seed(s). Several approaches have been developed
specifically for learning patterns, including guided
pattern collection with manual filtering (Riloff and
Shepherd, 1997) automated surface-level pattern in-
duction (Agichtein and Gravano, 2000; Ravichan-
dran and Hovy, 2002) probabilistic methods for tax-
onomy relation learning (Snow et al., 2005) and ker-
nel methods for relation learning (Zelenko et al.,
2003). Generally, the harvesting procedure is recur-
sive, in which data (terms or patterns) gathered in
one step of a cycle are used as seeds in the following
step, to gather more terms or patterns.

This method treats the source text as a graph or
network, consisting of terms (words) as nodes and
inter-term relations as edges. Each relation type in-
duces a different network1. Text mining is a process
of network traversal, and faces the standard prob-
lems of handling cycles, ranking search alternatives,
estimating yield maxima, etc.

The computational properties of large networks
and large network traversal have been studied inten-
sively (Sabidussi, 1966; Freeman, 1979; Watts and
Strogatz, 1998) and especially, over the past years,
in the context of the world wide web (Page et al.,
1999; Broder et al., 2000; Kleinberg and Lawrence,
2001; Li et al., 2005; Clauset et al., 2009). Surpris-
ingly, except in (Talukdar and Pereira, 2010), this
work has not yet been related to text mining research
in the computational linguistics community.

The work is, however, relevant in at least two
ways. It sometimes explains why text mining algo-

1These networks are generally far larger and more densely
interconnected than the world wide web’s network of pages and
hyperlinks.
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rithms have the limitations and thresholds that are
empirically found (or suspected), and it may suggest
ways to improve text mining algorithms for some
applications.

In Section 2, we review some related work. In
Section 3 we describe the general harvesting proce-
dure, and follow with an examination of the various
statistical properties of implicit semantic networks
in Section 4, using our implemented harvester to
provide illustrative statistics. In Section 5 we dis-
cuss implications for computational linguistics re-
search.

2 Related Work

The Natural Language Processing knowledge har-
vesting community has developed a good under-
standing of how to harvests various kinds of se-
mantic information and use this information to im-
prove the performance of tasks such as information
extraction (Riloff, 1993), textual entailment (Zan-
zotto et al., 2006), question answering (Katz et
al., 2003), and ontology creation (Suchanek et al.,
2007), among others. Researchers have focused
on the automated extraction of semantic lexicons
(Hearst, 1992; Riloff and Shepherd, 1997; Girju et
al., 2003; Pasca, 2004; Etzioni et al., 2005; Kozareva
et al., 2008). While clustering approaches tend to
extract general facts, pattern based approaches have
shown to produce more constrained but accurate lists
of semantic terms. To extract this information, (Lin
and Pantel, 2002) showed the effect of using differ-
ent sizes and genres of corpora such as news and
Web documents. The latter has been shown to pro-
vide broader and more complete information.

Researchers outside computational linguistics
have studied complex networks such as the World
Wide Web, the Social Web, the network of scien-
tific papers, among others. They have investigated
the properties of these text-based networks with the
objective of understanding their structure and ap-
plying this knowledge to determine node impor-
tance/centrality, connectivity, growth and decay of
interest, etc. In particular, the ability to analyze net-
works, identify influential nodes, and discover hid-
den structures has led to important scientific and
technological breakthroughs such as the discovery
of communities of like-minded individuals (New-

man and Girvan, 2004), the identification of influ-
ential people (Kempe et al., 2003), the ranking of
scientists by their citation indexes (Radicchi et al.,
2009), and the discovery of important scientific pa-
pers (Walker et al., 2006; Chen et al., 2007; Sayyadi
and Getoor, 2009). Broder et al. (2000) demon-
strated that the Web link structure has a “bow-tie”
shape, while (2001) classified Web pages into au-
thorities (pages with relevant information) and hubs
(pages with useful references). These findings re-
sulted in the development of the PageRank (Page et
al., 1999) algorithm which analyzes the structure of
the hyperlinks of Web documents to find pages with
authoritative information. PageRank has revolution-
ized the whole Internet search society.

However, no-one has studied the properties of the
text-based semantic networks induced by semantic
relations between terms with the objective of un-
derstanding their structure and applying this knowl-
edge to improve concept discovery. Most relevant
to this theme is the work of Steyvers and Tenen-
baum (Steyvers and Tenenbaum, 2004), who stud-
ied three manually built lexical networks (associa-
tion norms, WordNet, and Roget’s Thesaurus (Ro-
get, 1911)) and proposed a model of the growth of
the semantic structure over time. These networks are
limited to the semantic relations among nouns.

In this paper we take a step further to explore the
statistical properties of semantic networks relating
proper names, nouns, verbs, and adjectives. Under-
standing the semantics of nouns, verbs, and adjec-
tives has been of great interest to linguists and cog-
nitive scientists such as (Gentner, 1981; Levin and
Somers, 1993; Gasser and Smith, 1998). We imple-
ment a general harvesting procedure and show its re-
sults for these word types. A fundamental difference
with the work of (Steyvers and Tenenbaum, 2004)
is that we study very large semantic networks built
‘naturally’ by (millions of) users rather than ‘artifi-
cially’ by a small set of experts. The large networks
capture the semantic intuitions and knowledge of the
collective mass. It is conceivable that an analysis
of this knowledge can begin to form the basis of a
large-scale theory of semantic meaning and its inter-
connections, support observation of the process of
lexical development and usage in humans, and even
suggest explanations of how knowledge is organized
in our brains, especially when performed for differ-
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ent languages on the WWW.

3 Inducing Semantic Networks in the Web

Text mining algorithms such as those mentioned
above raise certain questions, such as: Why are some
seed terms more powerful (provide a greater yield)
than others?, How can one find high-yield terms?,
How many steps does one need, typically, to learn
all terms for a given relation?, Can one estimate the
total eventual yield of a given relation?, and so on.
On the face of it, one would need to know the struc-
ture of the network a priori to be able to provide an-
swers. But research has shown that some surpris-
ing regularities hold. For example, in the text min-
ing community, (Kozareva and Hovy, 2010b) have
shown that one can obtain a quite accurate estimate
of the eventual yield of a pattern and seed after only
five steps of harvesting. Why is this? They do not
provide an answer, but research from the network
community does.

To illustrate the properties of networks of the kind
induced by semantic relations, and to show the ap-
plicability of network research to text harvesting, we
implemented a harvesting algorithm and applied it
to a representative set of relations and seeds in two
languages.

Since the goal of this paper is not the development
of a new text harvesting algorithm, we implemented
a version of an existing one: the so-called DAP
(doubly-anchored pattern) algorithm (Kozareva et
al., 2008), because it (1) is easy to implement, (2)
requires minimum input (one pattern and one seed
example), (3) achieves very high precision com-
pared to existing methods (Pasca, 2004; Etzioni et
al., 2005; Pasca, 2007), (4) enriches existing se-
mantic lexical repositories such as WordNet and
Yago (Suchanek et al., 2007), (5) can be formulated
to learn semantic lexicons and relations for noun,
verb and verb+preposition syntactic constructions;
(6) functions equally well in different languages.
Next we describe the knowledge harvesting proce-
dure and the construction of the text-mined semantic
networks.

3.1 Harvesting to Induce Semantic Networks

For a given semantic class of interest say singers, the
algorithm starts with a seed example of the class, say

Madonna. The seed term is inserted in the lexico-
syntactic pattern “class such as seed and *”, which
learns on the position of the ∗ new terms of type
class. The newly learned terms are then individually
placed into the position of the seed in the pattern,
and the bootstrapping process is repeated until no
new terms are found. The output of the algorithm
is a set of terms for the semantic class. The algo-
rithm is implemented as a breadth-first search and
its mechanism is described as follows:

1. Given:
a language L={English, Spanish}
a pattern Pi={such as, including, verb prep,
noun}
a seed term seed for Pi

2. Build a query for Pi using template Ti ‘class such
as seed and *’, ‘class including seed and *’, ‘*
and seed verb prep’, ‘* and seed noun’, ‘seed
and * noun’

3. Submit Ti to Yahoo! or other search engine
4. Extract terms occupying the * position
5. Feed terms from 4. into 2.
6. Repeat steps 2–5. until no new terms are found

The output of the knowledge harvesting algorithm
is a network of semantic terms interconnected by
the semantic relation captured in the pattern. We
can represent the traversed (implicit) network as a
directed graph G(V,E) with nodes V (|V | = n)
and edges E(|E| = m). A node u in the net-
work corresponds to a term discovered during boot-
strapping. An edge (u, v) ∈ E represents an ex-
isting link between two terms. The direction of the
edge indicates that the term v was generated by the
term u. For example, given the sentence (where
the pattern is in italics and the extracted term is un-
derlined) “He loves singers such as Madonna and
Michael Jackson”, two nodes Madonna and Michael
Jackson with an edge e=(Madonna, Michael Jack-
son) would be created in the graph G. Figure 1
shows a small example of the singer network. The
starting seed term Madonna is shown in red color
and the harvested terms are in blue.

3.2 Data

We harvested data from the Web for a representa-
tive selection of semantic classes and relations, of
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Figure 1: Harvesting Procedure.

the type used in (Etzioni et al., 2005; Pasca, 2007;
Kozareva and Hovy, 2010a):

• semantic classes that can be learned using dif-
ferent seeds (e.g., “singers such as Madonna
and *” and “singers such as Placido Domingo
and *”);

• semantic classes that are expressed through dif-
ferent lexico-syntactic patterns (e.g., “weapons
such as bombs and *” and “weapons including
bombs and *”);

• verbs and adjectives characterizing the seman-
tic class (e.g., “expensive and * car”, “dogs
run and *”);

• semantic relations with more complex lexico-
syntactic structure (e.g., “* and Easyjet fly to”,
“* and Sam live in”);

• semantic classes that are obtained in differ-
ent languages, such as English and Spanish
(e.g., “singers such as Madonna and *” and
“cantantes como Madonna y *”);

While most of these variations have been explored
in individual papers, we have found no paper that
covers them all, and none whatsoever that uses verbs
and adjectives as seeds.

Using the above procedure to generate the data,
each pattern was submitted as a query to Ya-
hoo!Boss. For each query the top 1000 text snippets
were retrieved. The algorithm ran until exhaustion.
In total, we collected 10GB of data which was part-
of-speech tagged with Treetagger (Schmid, 1994)
and used for the semantic term extraction. Table 1
summarizes the number of nodes and edges learned
for each semantic network using pattern Pi and the
initial seed shown in italics.

Lexico-Syntactic Pattern Nodes Edges
P1=“singers such as Madonna and *” 1115 1942
P2=“singers such as Placido Domingo and *” 815 1114
P3=“emotions including anger and *” 113 250
P4=“emotions such as anger and *” 748 2547
P5=“diseases such as malaria and *” 3168 6752
P6=“drugs such as ibuprofen and *” 2513 9428
P7=“expensive and * cars” 4734 22089
P8=“* and tasty fruits” 1980 7874
P9=“whales swim and *” 869 2163
P10=“dogs chase and *” 4252 20212
P11=“Britney Spears dances and *” 354 540
P12=“John reads and *” 3894 18545
P13=“* and Easyjet fly to” 3290 6480
P14=“* and Charlie work for” 2125 3494
P15=“* and Sam live in” 6745 24348
P16=“cantantes como Madonna y *” 240 318
P17=“gente como Jorge y *” 572 701

Table 1: Size of the Semantic Networks.

4 Statistical Properties of Text-Mined
Semantic Networks

In this section we apply a range of relevant mea-
sures from the network analysis community to the
networks described above.

4.1 Centrality
The first statistical property we explore is centrality.
It measures the degree to which the network struc-
ture determines the importance of a node in the net-
work (Sabidussi, 1966; Freeman, 1979).

We explore the effect of two centrality measures:
indegree and outdegree. The indegree of a node
u denoted as indegree(u)=

∑
(v, u) considers the

sum of all incoming edges to u and captures the abil-
ity of a semantic term to be discovered by other se-
mantic terms. The outdegree of a node u denoted
as outdegree(u)=

∑
(u, v) considers the number of

outgoing edges of the node u and measures the abil-
ity of a semantic term to discover new terms. In-
tuitively, the more central the node u is, the more
confident we are that it is a correct term.

Since harvesting algorithms are notorious for ex-
tracting erroneous information, we use the two cen-
trality measures to rerank the harvested elements.
Table 2 shows the accuracy2 of the singer seman-
tic terms at different ranks using the in and out
degree measures. Consistently, outdegree outper-
forms indegree and reaches higher accuracy. This

2Accuracy is calculated as the number of correct terms at
rank R divided by the total number of terms at rank R.
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shows that for the text-mined semantic networks, the
ability of a term to discover new terms is more im-
portant than the ability to be discovered.

@rank in-degree out-degree
10 .92 1.0
25 .91 1.0
50 .90 .97
75 .90 .96

100 .89 .96
150 .88 .95

Table 2: Accuracy of the Singer Terms.

This poses the question “What are the terms with
high and low outdegree?”. Table 3 shows the top
and bottom 10 terms of the semantic class.

Semantic Class top 10 outDegree bottom 10 outDegree
Singers Frank Sinatra Alanis Morisette

Ella Fitzgerald Christine Agulera
Billie Holiday Buffy Sainte-Marie
Britney Spears Cece Winans
Aretha Franklin Wolfman Jack
Michael Jackson Billie Celebration

Celine Dion Alejandro Sanz
Beyonce France Gall

Bessie Smith Peter
Joni Mitchell Sarah

Table 3: Singer Term Ranking with Centrality Measures.

The nodes with high outdegree correspond to fa-
mous or contemporary singers. The lower-ranked
nodes are mostly spelling errors such as Alanis
Morisette and Christine Agulera, less known singers
such as Buffy Sainte-Marie and Cece Winans, non-
American singers such as Alejandro Sanz and
France Gall, extractions due to part-of-speech tag-
ging errors such as Billie Celebration, and general
terms such as Peter and Sarah. Potentially, know-
ing which terms have a high outdegree allows one to
rerank candidate seeds for more effective harvesting.

4.2 Power-law Degree Distribution
We next study the degree distributions of the net-
works. Similarly to the Web (Broder et al., 2000)
and social networks like Orkut and Flickr, the text-
mined semantic networks also exhibit a power-law
distribution. This means that while a few terms have
a significantly high degree, the majority of the se-
mantic terms have small degree. Figure 2 shows the
indegree and outdegree distributions for different
semantic classes, lexico-syntactic patterns, and lan-
guages (English and Spanish). For each semantic

network, we plot the best-fitting power-law function
(Clauset et al., 2009) which fits well all degree dis-
tributions. Table 4 shows the power-law exponent
values for all text-mined semantic networks.

Patt. γin γout Patt. γin γout

P1 2.37 1.27 P10 1.65 1.12
P2 2.25 1.21 P11 2.42 1.41
P3 2.20 1.76 P12 1.60 1.13
P4 2.28 1.18 P13 2.26 1.20
P5 2.49 1.18 P14 2.43 1.25
P6 2.42 1.30 P15 2.51 1.43
P7 1.95 1.20 P16 2.74 1.31
P8 1.94 1.07 P17 2.90 1.20
P9 1.96 1.30

Table 4: Power-Law Exponents of Semantic Networks.

It is interesting to note that the indegree power-
law exponents for all semantic networks fall within
the same range (γin ≈ 2.4), and similarly for the
outdegree exponents (γout ≈ 1.3). However, the
values of the indegree and outdegree exponents
differ from each other. This observation is consistent
with Web degree distributions (Broder et al., 2000).
The difference in the distributions can be explained
by the link asymmetry of semantic terms: A discov-
ering B does not necessarily mean that B will dis-
cover A. In the text-mined semantic networks, this
asymmetry is caused by patterns of language use,
such as the fact that people use first adjectives of the
size and then of the color (e.g., big red car), or prefer
to place male before female proper names. Harvest-
ing patterns should take into account this tendency.

4.3 Sparsity

Another relevant property of the semantic networks
concerns sparsity. Following Preiss (Preiss, 1999), a
graph is sparse if |E| = O(|V |k) and 1 < k < 2,
where |E| is the number of edges and |V | is the num-
ber of nodes, otherwise the graph is dense. For the
studied text-semantic networks, k is ≈ 1.08. Spar-
sity can be also captured through the density of the
semantic network which is computed as |E|

V (V−1) . All
networks have low density which suggests that the
networks exhibit a sparse connectivity pattern. On
average a node (semantic term) is connected to a
very small percentage of other nodes. Similar be-
havior was reported for the WordNet and Roget’s se-
mantic networks (Steyvers and Tenenbaum, 2004).
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Figure 2: Degree Distributions of Semantic Networks.

4.4 Connectedness

For every network, we computed the strongly con-
nected component (SCC) such that for all nodes (se-
mantic terms) in the SCC, there is a path from any
node to another node in the SCC considering the di-
rection of the edges between the nodes. For each
network, we found that there is only one SCC. The
size of the component is shown in Table 5. Un-
like WordNet and Roget’s semantic networks where
the SCC consists 96% of all semantic terms, in the
text-mined semantic networks only 12 to 55% of the
terms are in the SCC. This shows that not all nodes
can reach (discover) every other node in the net-
work. This also explains the findings of (Kozareva
et al., 2008; Vyas et al., 2009) why starting with a
good seed is important.

4.5 Path Lengths and Diameter

Next, we describe the properties of the shortest paths
between the semantic terms in the SCC. The dis-
tance between two nodes in the SCC is measured as

the length of the shortest path connecting the terms.
The direction of the edges between the terms is taken
into consideration. The average distance is the aver-
age value of the shortest path lengths over all pairs
of nodes in the SCC. The diameter of the SCC is
calculated as the maximum distance over all pairs of
nodes (u, v), such that a node v is reachable from
node u. Table 5 shows the average distance and the
diameter of the semantic networks.

Patt. #nodes in SCC SCC Average Distance SCC Diameter
P1 364 (.33) 5.27 16
P2 285 (.35) 4.65 13
P3 48 (.43) 2.85 6
P4 274 (.37) 2.94 7
P5 1249 (.38) 5.99 17
P6 1471 (.29) 4.82 15
P7 2255 (.46 ) 3.51 11
P8 1012 (.50) 3.87 11
P9 289 (.33) 4.93 13
P10 2342 (.55) 4.50 12
P11 87 (.24) 5.00 11
P12 1967 (.51) 3.20 13
P13 1249 (.38) 4.75 13
P14 608 (.29) 7.07 23
P15 1752 (.26) 5.32 15
P16 56 (.23) 4.79 12
P17 69 (.12 ) 5.01 13

Table 5: SCC, SCC Average Distance and SCC Diameter
of the Semantic Networks.

The diameter shows the maximum number of
steps necessary to reach from any node to any other,
while the average distance shows the number of
steps necessary on average. Overall, all networks
have very short average path lengths and small di-
ameters that are consistent with Watt’s finding for
small-world networks. Therefore, the yield of har-
vesting seeds can be predicted within five steps ex-
plaining (Kozareva and Hovy, 2010b; Vyas et al.,
2009).

We also compute for any randomly selected node
in the semantic network on average how many hops
(steps) are necessary to reach from one node to an-
other. Figure 3 shows the obtained results for some
of the studied semantic networks.
4.6 Clustering
The clustering coefficient (C) is another measure
to study the connectivity structure of the networks
(Watts and Strogatz, 1998). This measure captures
the probability that the two neighbors of a randomly
selected node will be neighbors. The clustering co-
efficient of a node u is calculated as Cu= |eij |

ku(ku−1)
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Figure 3: Hop Plot of the Semantic Networks.

: vi, vj ∈ Nu, eij ∈ E, where ku is the total degree
of the node u and Nu is the neighborhood of u. The
clustering coefficient C for the whole semantic net-
work is the average clustering coefficient of all its
nodes, C= 1

n

∑
Ci. The value of the clustering coef-

ficient ranges between [0, 1], where 0 indicates that
the nodes do not have neighbors which are them-
selves connected, while 1 indicates that all nodes are
connected. Table 6 shows the clustering coefficient
for all text-mined semantic networks together with
the number of closed and open triads3. The analysis
suggests the presence of a strong local cluster, how-
ever there are few possibilities to form overlapping
neighborhoods of nodes. The clustering coefficient
of WordNet (Steyvers and Tenenbaum, 2004) is sim-
ilar to those of the text-mined networks.

4.7 Joint Degree Distribution

In social networks, understanding the preferential at-
tachment of nodes is important to identify the speed
with which epidemics or gossips spread. Similarly,
we are interested in understanding how the nodes of
the semantic networks connect to each other. For
this purpose, we examine the Joint Degree Distribu-
tion (JDD) (Li et al., 2005; Newman, 2003). JDD
is approximated by the degree correlation function
knn which maps the outdegree and the average

3A triad is three nodes that are connected by either two (open
triad) or three (closed triad) directed ties.

Patt. C ClosedTriads OpenTriads
P1 .01 14096 (.97) 388 (.03)
P2 .01 6487 (.97) 213 (.03)
P3 .30 1898 (.94) 129 (.06)
P4 .33 60734 (.94) 3944 (.06)
P5 .10 79986 (.97) 2321 (.03)
P6 .11 78716 (.97) 2336 (.03)
P7 .17 910568 (.95) 43412 (.05)
P8 .19 21138 (.95) 10728 (.05)
P9 .20 27830 (.95) 1354 (.05)
P10 .15 712227 (.96) 62101(.04)
P11 .09 3407 (.98) 63 (.02)
P12 .15 734724 (.96) 32517 (.04)
P13 .06 66162 (.99) 858 (.01)
P14 .05 28216 (.99) 408 (.01)
P15 .09 1336679 (.97) 47110 (.03)
P16 .09 1525 (.98) 37 ( .02)
P17 .05 2222 (.99) 21 (.01)

Table 6: Clustering Coefficient of the Semantic Networks.

indegree of all nodes connected to a node with
that outdegree. High values of knn indicate that
high-degree nodes tend to connect to other high-
degree nodes (forming a “core” in the network),
while lower values of knn suggest that the high-
degree nodes tend to connect to low-degree ones.
Figure 4 shows the knn for the singer, whale, live
in, cars, cantantes, and gente networks. The figure
plots the outdegree and the average indegree of the
semantic terms in the networks on a log-log scale.
We can see that for all networks the high-degree
nodes tend to connect to other high-degree ones.
This explains why text mining algorithms should fo-
cus their effort on high-degree nodes.

4.8 Assortivity

The property of the nodes to connect to other nodes
with similar degrees can be captured through the as-
sortivity coefficient r (Newman, 2003). The range of
r is [−1, 1]. A positive assortivity coefficient means
that the nodes tend to connect to nodes of similar
degree, while negative coefficient means that nodes
are likely to connect to nodes with degree very dif-
ferent from their own. We find that the assortivi-
tiy coefficient of our semantic networks is positive,
ranging from 0.07 to 0.20. In this respect, the se-
mantic networks differ from the Web, which has a
negative assortivity (Newman, 2003). This implies
a difference in text mining and web search traver-
sal strategies: since starting from a highly-connected
seed term will tend to lead to other highly-connected
terms, text mining algorithms should prefer depth-
first traversal, while web search algorithms starting

1622



 1

 10

 100

 1  10  100

kn
n

Outdegree

singer (seed is Madonna)

 1

 10

 100

 1  10  100

kn
n

Outdegree

whale (verb harvesting)

 1

 10

 100

 1  10  100

kn
n

Outdegree

live in

 1

 10

 100

 1  10  100

kn
n

Outdegree

cars (adjective harvesting)

 1

 10

 1  10

kn
n

Outdegree

cantantes

 1

 10

 1  10

kn
n

Outdegree

gente

Figure 4: Joint Degree Distribution of the Semantic Net-
works.

from a highly-connected seed page should prefer a
breadth-first strategy.

5 Discussion

The above studies show that many of the proper-
ties discovered of the network formed by the web
hold also for the networks induced by semantic rela-
tions in text mining applications, for various seman-
tic classes, semantic relations, and languages. We
can therefore apply some of the research from net-
work analysis to text mining.

The small-world phenomenon, for example, holds
that any node is connected to any other node in at
most six steps. Since as shown in Section 4.5 the se-
mantic networks also exhibit this phenomenon, we
can explain the observation of (Kozareva and Hovy,
2010b) that one can quite accurately predict the rel-
ative ‘goodness’ of a seed term (its eventual total
yield and the number of steps required to obtain that)
within five harvesting steps. We have shown that due

to the strongly connected components in text min-
ing networks, not all elements within the harvested
graph can discover each other. This implies that har-
vesting algorithms have to be started with several
seeds to obtain adequate Recall (Vyas et al., 2009).
We have shown that centrality measures can be used
successfully to rank harvested terms to guide the net-
work traversal, and to validate the correctness of the
harvested terms.

In the future, the knowledge and observations
made in this study can be used to model the lexi-
cal usage of people over time and to develop new
semantic search technology.

6 Conclusion

In this paper we describe the implicit ‘hidden’ se-
mantic network graph structure induced over the text
of the web and other sources by the semantic rela-
tions people use in sentences. We describe how term
harvesting patterns whose seed terms are harvested
and then applied recursively can be used to discover
these semantic term networks. Although these net-
works differ considerably from the web in relation
density, type, and network size, we show, some-
what surprisingly, that the same power-law, small-
world effect, transitivity, and most other character-
istics that apply to the web’s hyperlinked network
structure hold also for the implicit semantic term
graphs—certainly for the semantic relations and lan-
guages we have studied, and most probably for al-
most all semantic relations and human languages.

This rather interesting observation leads us to sur-
mise that the hyperlinks people create in the web are
of essentially the same type as the semantic relations
people use in normal sentences, and that they form
an extension of normal language that was not needed
before because people did not have the ability within
the span of a single sentence to ‘embed’ structures
larger than a clause—certainly not a whole other
page’s worth of information. The principal excep-
tion is the academic citation reference (lexicalized
as “see”), which is not used in modern webpages.
Rather, the ‘lexicalization’ now used is a formatting
convention: the hyperlink is colored and often un-
derlined, facilities offered by computer screens but
not available to speech or easy in traditional typeset-
ting.
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