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Abstract

In this paper, we present a novel approach
which incorporates the web-derived selec-
tional preferences to improve statistical de-
pendency parsing. Conventional selectional
preference learning methods have usually fo-
cused on word-to-class relations, e.g., a verb
selects as its subject a given nominal class.
This paper extends previous work to word-
to-word selectional preferences by using web-
scale data. Experiments show that web-scale
data improves statistical dependency pars-
ing, particularly for long dependency relation-
ships. There is no data like more data, perfor-
mance improves log-linearly with the number
of parameters (unique N-grams). More impor-
tantly, when operating on new domains, we
show that using web-derived selectional pref-
erences is essential for achieving robust per-
formance.

1 Introduction

Dependency parsing is the task of building depen-
dency links between words in a sentence, which has
recently gained a wide interest in the natural lan-
guage processing community. With the availabil-
ity of large-scale annotated corpora such as Penn
Treebank (Marcus et al., 1993), it is easy to train
a high-performance dependency parser using super-
vised learning methods.

However, current state-of-the-art statistical de-
pendency parsers (McDonald et al., 2005; McDon-
ald and Pereira, 2006; Hall et al., 2006) tend to have
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lower accuracies for longer dependencies (McDon-
ald and Nivre, 2007). The length of a dependency
from word wi to word wj is simply equal to |i − j|.
Longer dependencies typically represent the mod-
ifier of the root or the main verb, internal depen-
dencies of longer NPs or PP-attachment in a sen-
tence. Figure 1 shows the F1 score1 relative to the
dependency length on the development set by using
the graph-based dependency parsers (McDonald et
al., 2005; McDonald and Pereira, 2006). We note
that the parsers provide very good results for adja-
cent dependencies (96.89% for dependency length
=1), while the dependency length increases, the ac-
curacies degrade sharply. These longer dependen-
cies are therefore a major opportunity to improve the
overall performance of dependency parsing. Usu-
ally, these longer dependencies can be parsed de-
pendent on the specific words involved due to the
limited range of features (e.g., a verb and its mod-
ifiers). Lexical statistics are therefore needed for
resolving ambiguous relationships, yet the lexical-
ized statistics are sparse and difficult to estimate di-
rectly. To solve this problem, some information with
different granularity has been investigated. Koo et
al. (2008) proposed a semi-supervised dependency
parsing by introducing lexical intermediaries at a
coarser level than words themselves via a cluster
method. This approach, however, ignores the se-
lectional preference for word-to-word interactions,
such as head-modifier relationship. Extra resources

1Precision represents the percentage of predicted arcs of
length d that are correct, and recall measures the percentage
of gold-standard arcs of length d that are correctly predicted.
F1 = 2× precision× recall/(precision + recall)
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Figure 1: F score relative to dependency length.

beyond the annotated corpora are needed to capture
the bi-lexical relationship at the word-to-word level.

Our purpose in this paper is to exploit web-
derived selectional preferences to improve the su-
pervised statistical dependency parsing. All of our
lexical statistics are derived from two kinds of web-
scale corpus: one is the web, which is the largest
data set that is available for NLP (Keller and Lap-
ata, 2003). Another is a web-scale N-gram corpus,
which is a N-gram corpus with N-grams of length 1-
5 (Brants and Franz, 2006), we call it Google V1 in
this paper. The idea is very simple: web-scale data
have large coverage for word pair acquisition. By
leveraging some assistant data, the dependency pars-
ing model can directly utilize the additional informa-
tion to capture the word-to-word level relationships.
We address two natural and related questions which
some previous studies leave open:

Question I: Is there a benefit in incorporating
web-derived selectional preference features for sta-
tistical dependency parsing, especially for longer de-
pendencies?

Question II: How well do web-derived selec-
tional preferences perform on new domains?

For Question I, we systematically assess the value
of using web-scale data in state-of-the-art super-
vised dependency parsers. We compare dependency
parsers that include or exclude selectional prefer-
ence features obtained from web-scale corpus. To
the best of our knowledge, none of the existing stud-
ies directly address long dependencies of depen-
dency parsing by using web-scale data.

Most statistical parsers are highly domain depen-
dent. For example, the parsers trained on WSJ text
perform poorly on Brown corpus. Some studies have
investigated domain adaptation for parsers (Mc-
Closky et al., 2006; Daumé III, 2007; McClosky et
al., 2010). These approaches assume that the parsers
know which domain it is used, and that it has ac-
cess to representative data in that domain. How-
ever, in practice, these assumptions are unrealistic
in many real applications, such as when processing
the heterogeneous genre of web texts. In this paper
we incorporate the web-derived selectional prefer-
ence features to design our parsers for robust open-
domain testing.

We conduct the experiments on the English Penn
Treebank (PTB) (Marcus et al., 1993). The results
show that web-derived selectional preference can
improve the statistical dependency parsing, partic-
ularly for long dependency relationships. More im-
portantly, when operating on new domains, the web-
derived selectional preference features show great
potential for achieving robust performance (Section
4.3).

The remainder of this paper is divided as follows.
Section 2 gives a brief introduction of dependency
parsing. Section 3 describes the web-derived selec-
tional preference features. Experimental evaluation
and results are reported in Section 4. Finally, we dis-
cuss related work and draw conclusion in Section 5
and Section 6, respectively.

2 Dependency Parsing

In dependency parsing, we attempt to build head-
modifier (or head-dependent) relations between
words in a sentence. The discriminative parser we
used in this paper is based on the part-factored
model and features of the MSTParser (McDonald et
al., 2005; McDonald and Pereira, 2006; Carreras,
2007). The parsing model can be defined as a con-
ditional distribution p(y|x;w) over each projective
parse tree y for a particular sentence x, parameter-
ized by a vector w. The probability of a parse tree
is

p(y|x;w) =
1

Z(x;w)
exp

{∑
ρ∈y

w ·Φ(x, ρ)
}

(1)

where Z(x;w) is the partition function and Φ are
part-factored feature functions that include head-
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modifier parts, sibling parts and grandchild parts.
Given the training set {(xi, yi)}N

i=1, parameter es-
timation for log-linear models generally resolve
around optimization of a regularized conditional
log-likelihood objective w∗ = arg minwL(w)
where

L(w) = −C

N∑
i=1

logp(yi|xi;w) +
1

2
||w||2 (2)

The parameter C > 0 is a constant dictating the
level of regularization in the model. Since objec-
tive function L(w) is smooth and convex, which is
convenient for standard gradient-based optimization
techniques. In this paper we use the dual exponenti-
ated gradient (EG)2 descent, which is a particularly
effective optimization algorithm for log-linear mod-
els (Collins et al., 2008).

3 Web-Derived Selectional Preference
Features

In this paper, we employ two different feature sets:
a baseline feature set3 which draw upon “normal”
information source, such as word forms and part-of-
speech (POS) without including the web-derived se-
lectional preference4 features, a feature set conjoins
the baseline features and the web-derived selectional
preference features.

3.1 Web-scale resources

All of our selectional preference features described
in this paper rely on probabilities derived from unla-
beled data. To use the largest amount of data possi-
ble, we exploit web-scale resources. one is web, N-
gram counts are approximated by Google hits. An-
other we use is Google V1 (Brants and Franz, 2006).
This N-gram corpus records how often each unique
sequence of words occurs. N-grams appearing 40

2http://groups.csail.mit.edu/nlp/egstra/
3This kind of feature sets are similar to other feature sets in

the literature (McDonald et al., 2005; Carreras, 2007), so we
will not attempt to give a exhaustive description.

4Selectional preference tells us which arguments are plau-
sible for a particular predicate, one way to determine the se-
lectional preference is from co-occurrences of predicates and
arguments in text (Bergsma et al., 2008). In this paper, the
selectional preferences have the same meaning with N-grams,
which model the word-to-word relationships, rather than only
considering the predicates and arguments relationships.

obj

detdet

root

obj

mod

subj

Figure 2: An example of a labeled dependency tree. The
tree contains a special token “$” which is always the root
of the tree. Each arc is directed from head to modifier and
has a label describing the function of the attachment.

times or more (1 in 25 billion) are kept, and appear
in the n-gram tables. All n-grams with lower counts
are discarded. Co-occurrence probabilities can be
calculated directly from the N-gram counts.

3.2 Web-derived N-gram features

3.2.1 PMI
Previous work on noun compounds bracketing

has used adjacency model (Resnik, 1993) and de-
pendency model (Lauer, 1995) to compute associa-
tion statistics between pairs of words. In this pa-
per we generalize the adjacency and dependency
models by including the pointwise mutual informa-
tion (Church and Hanks, 1900) between all pairs of
words in the dependency tree:

PMI(x, y) = log
p(“x y”)

p(“x”)p(“y”)
(3)

where p(“x y”) is the co-occurrence probabilities.
When use the Google V1 corpus, this probabilities
can be calculated directly from the N-gram counts,
while using the Google hits, we send the queries to
the search engine Google5 and all the search queries
are performed as exact matches by using quotation
marks.6

The value of these features is the PMI, if it is de-
fined. If the PMI is undefined, following the work
of (Pitler et al., 2010), we include one of two binary
features:

p(“x y”) = 0 or p(“x”) ∨ p(“y”) = 0
Besides, we also consider the trigram features be-

5http://www.google.com/
6Google only allows automated querying through the

Google Web API, this involves obtaining a license key, which
then restricts the number of queries to a daily quota of 1000.
However, we obtained a quota of 20,000 queries per day by
sending a request to api-support@google.com for research pur-
poses.
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PMI(“hit with”)
xi-word=“hit”, xj-word=“with”, PMI(“hit with”)
xi-word=“hit”, xj-word=“with”, xj-pos=“IN”, PMI(“hit with”)
xi-word=“hit”, xi-pos=“VBD”, xj-word=“with”, PMI(“hit with”)
xi-word=“hit”, b-pos=“ball”, xj-word=“with”, PMI(“hit with”)
xi-word=“hit”, xj-word=“with”, PMI(“hit with”), dir=R, dist=3
. . .

Table 1: An example of the N-gram PMI features and the conjoin features with the baseline.

tween the three words in the dependency tree:

PMI(x, y, z) = log
p(“x y z”)

p(“x y”)p(“y z”)
(4)

This kinds of trigram features, for example in MST-
Parser, which can directly capture the sibling and
grandchild features.

We illustrate the PMI features with an example
of dependency parsing tree in Figure 2. In deciding
the dependency between the main verb hit and its ar-
gument headed preposition with, an example of the
N-gram PMI features and the conjoin features with
the baseline are shown in Table 1.

3.2.2 PP-attachment
Propositional phrase (PP) attachment is one of

the hardest problems in English dependency pars-
ing. An English sentence consisting of a subject, a
verb, and a nominal object followed by a preposi-
tional phrase is often ambiguous. Ambiguity resolu-
tion reflects the selectional preference between the
verb and noun with their prepositional phrase. For
example, considering the following two examples:

(1) John hit the ball with the bat.
(2) John hit the ball with the red stripe.

In sentence (1), the preposition with depends on the
main verb hit; but in sentence (2), the prepositional
phrase is a noun attribute and the preposition with
needs to depends on the word ball. To resolve this
kind of ambiguity, there needs to measure the attach-
ment preference. We thus have PP-attachment fea-
tures that determine the PMI association across the
preposition word “IN”7:

PMIIN (x, z) = log
p(“x IN z”)

p(x)
(5)

7Here, the preposition word “IN” (e.g., “with”, “in”, . . .) is
any token whose part-of-speech is IN

N-gram feature templates
hw, mw, PMI(hw,mw)

hw, ht, mw, PMI(hw,mw)
hw, mw, mt, PMI(hw,mw)

hw, ht, mw, mt, PMI(hw,mw)
. . .

hw, mw, sw
hw, mw, sw, PMI(hw, mw, sw)

hw, mw, gw
hw, mw, gw, PMI(hw, mw, gw)

Table 2: Examples of N-gram feature templates. Each
entry represents a class of indicator for tuples of informa-
tion. For example, “hw, mw” reprsents a class of indi-
cator features with one feature for each possible combi-
nation of head word and modifier word. Abbreviations:
hw=head word, ht= head POS. st, gt=likewise for sibling
and grandchild.

PMIIN (y, z) = log
p(“y IN z”)

p(y)
(6)

where the word x and y are usually verb and noun,
z is a noun which directly depends on the preposi-
tion word “IN”. For example in sentence (1), we
would include the features PMIwith(hit, bat) and
PMIwith(ball, bat). If both PMI features exist and
PMIwith(hit, bat) > PMIwith(ball, bat), indicating
to our dependency parsing model that the preposi-
tion word with depends on the verb hit is a good
choice. While in sentence (2), the features include
PMIwith(hit, stripe) and PMIwith(ball, stripe).

3.3 N-gram feature templates

We generate N-gram features by mimicking the
template structure of the original baseline features.
For example, the baseline feature set includes indi-
cators for word-to-word and tag-to-tag interactions
between the head and modifier of a dependency. In
the N-gram feature set, we correspondingly intro-
duce N-gram PMI for word-to-word interactions.
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The N-gram feature set for MSTParser is shown
in Table 2. Following McDonald et al. (2005),
all features are conjoined with the direction of
attachment as well as the distance between the two
words creating the dependency. In between N-gram
features, we include the form of word trigrams
and PMI of the trigrams. The surrounding word
N-gram features represent the local context of the
selectional preference. Besides, we also present
the second-order feature templates, including the
sibling and grandchild features. These features are
designed to disambiguate cases like coordinating
conjunctions and prepositional attachment. Con-
sider the examples we have shown in section 3.2.2,
for sentence (1), the dependency graph path feature
ball → with → bat should have a lower weight
since ball rarely is modified by bat, but is often
seen through them (e.g., a higher weight should be
associated with hit → with → bat). In contrast,
for sentence (2), our N-gram features will tell us
that the prepositional phrase is much more likely
to attach to the noun since the dependency graph
path feature ball → with → stripe should have a
high weight due to the high strength of selectional
preference between ball and stripe.

Web-derived selectional preference features
based on PMI values are trickier to incorporate
into the dependency parsing model because they
are continuous rather than discrete. Since all the
baseline features used in the literature (McDonald et
al., 2005; Carreras, 2007) take on binary values of 0
or 1, there is a “mis-match” between the continuous
and binary features. Log-linear dependency parsing
model is sensitive to inappropriately scaled feature.
To solve this problem, we transform the PMI
values into a more amenable form by replacing the
PMI values with their z-score. The z-score of a
PMI value x is x−µ

σ , where µ and σ are the mean
and standard deviation of the PMI distribution,
respectively.

4 Experiments

In order to evaluate the effectiveness of our proposed
approach, we conducted dependency parsing exper-
iments in English. The experiments were performed
on the Penn Treebank (PTB) (Marcus et al., 1993),
using a standard set of head-selection rules (Yamada

and Matsumoto, 2003) to convert the phrase struc-
ture syntax of the Treebank into a dependency tree
representation, dependency labels were obtained via
the ”Malt” hard-coded setting.8 We split the Tree-
bank into a training set (Sections 2-21), a devel-
opment set (Section 22), and several test sets (Sec-
tions 0,9 1, 23, and 24). The part-of-speech tags for
the development and test set were automatically as-
signed by the MXPOST tagger10, where the tagger
was trained on the entire training corpus.

Web page hits for word pairs and trigrams are ob-
tained using a simple heuristic query to the search
engine Google.11 Inflected queries are performed
by expanding a bigram or trigram into all its mor-
phological forms. These forms are then submitted as
literal queries, and the resulting hits are summed up.
John Carroll’s suite of morphological tools12 is used
to generate inflected forms of verbs and nouns. All
the search terms are performed as exact matches by
using quotation marks and submitted to the search
engines in lower case.

We measured the performance of the parsers us-
ing the following metrics: unlabeled attachment
score (UAS), labeled attachment score (LAS) and
complete match (CM), which were defined by Hall
et al. (2006). All the metrics are calculated as mean
scores per word, and punctuation tokens are consis-
tently excluded.

4.1 Main results

There are some clear trends in the results of Ta-
ble 3. First, performance increases with the order
of the parser: edge-factored model (dep1) has the
lowest performance, adding sibling and grandchild
relationships (dep2) significantly increases perfor-
mance. Similar observations regarding the effect of
model order have also been made by Carreras (2007)
and Koo et al. (2008).

Second, note that the parsers incorporating the N-
gram feature sets consistently outperform the mod-
els using the baseline features in all test data sets,
regardless of model order or label usage. Another

8http://w3.msi.vxu.se/ nivre/research/MaltXML.html
9We removed a single 249-word sentence from Section 0 for

computational reasons.
10http://www.inf.ed.ac.uk/resources/nlp/local doc/MXPOST.html
11http://www.google.com/
12http://www.cogs.susx.ac.uk/lab/nlp/carroll/morph.html.
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Sec dep1 +hits +V1 dep2 +hits +V1 dep1-L +hits-L +V1-L dep2-L +hits-L +V1-L
00 90.39 90.94 90.91 91.56 92.16 92.16 90.11 90.69 90.67 91.94 92.47 92.42
01 91.01 91.60 91.60 92.27 92.89 92.86 90.77 91.39 91.39 91.81 92.38 92.37
23 90.82 91.46 91.39 91.98 92.64 92.59 90.30 90.98 90.92 91.24 91.83 91.77
24 89.53 90.15 90.13 90.81 91.44 91.41 89.42 90.03 90.02 90.30 90.91 90.89

Table 3: Unlabeled accuracies (UAS) and labeled accuracies (LAS) on Section 0, 1, 23, 24. Abbreviation:
dep1/dep2=first-order parser and second-order parser with the baseline features; +hits=N-gram features derived from
the Google hits; +V1=N-gram features derived from the Google V1; suffix-L=labeled parser. Unlabeled parsers are
scored using unlabeled parent predictions, and labeled parsers are scored using labeled parent predictions.

finding is that the N-gram features derived from
Google hits are slightly better than Google V1 due
to the large N-gram coverage, we will discuss later.
As a final note, all the comparisons between the inte-
gration of N-gram features and the baseline features
in Table 3 are mildly significant using the Z-test of
Collins et al. (2005) (p < 0.08).

Type Systems UAS CM

D

Yamada and Matsumoto (2003) 90.3 38.7
McDonald et al. (2005) 90.9 37.5

McDonald and Pereira (2006) 91.5 42.1
Corston-Oliver et al. (2006) 90.9 37.5

Hall et al. (2006) 89.4 36.4
Wang et al. (2007) 89.2 34.4

Carreras et al. (2008) 93.5 -
GoldBerg and Elhadad (2010)† 91.32 40.41

Ours 92.64 46.61

C

Nivre and McDonald (2008)† 92.12 44.37
Martins et al. (2008)† 92.87 45.51

Zhang and Clark (2008) 92.1 45.4

S
Koo et al. (2008) 93.16 -

Suzuki et al. (2009) 93.79 -
Chen et al. (2009) 93.16 47.15

Table 4: Comparison of our final results with other best-
performing systems on the whole Section 23. Type
D, C and S denote discriminative, combined and semi-
supervised systems, respectively. † These papers were
not directly reported the results on this data set, we im-
plemented the experiments in this paper.

To put our results in perspective, we also com-
pare them with other best-performing systems in Ta-
ble 4. To facilitate comparisons with previous work,
we only use Section 23 as the test data. The re-
sults show that our second order model incorpo-
rating the N-gram features (92.64) performs better
than most previously reported discriminative sys-
tems trained on the Treebank. Carreras et al. (2008)
reported a very high accuracy using information of
constituent structure of TAG grammar formalism,

while in our system, we do not use such knowl-
edge. When compared to the combined systems, our
system is better than Nivre and McDonald (2008)
and Zhang and Clark (2008), but a slightly worse
than Martins et al. (2008). We also compare our
method with the semi-supervised approaches, the
semi-supervised approaches achieved very high ac-
curacies by leveraging on large unlabeled data di-
rectly into the systems for joint learning and decod-
ing, while in our method, we only explore the N-
gram features to further improve supervised depen-
dency parsing performance.

Table 5 shows the details of some other N-gram
sources, where NEWS: created from a large set of
news articles including the Reuters and Gigword
(Graff, 2003) corpora. For a given number of unique
N-gram, using any of these sources does not have
significant difference in Figure 3. Google hits is
the largest N-gram data and shows the best perfor-
mance. The other two are smaller ones, accuracies
increase linearly with the log of the number of types
in the auxiliary data set. Similar observations have
been made by Pitler et al. (2010). We see that the
relationship between accuracy and the number of N-
gram is not monotonic for Google V1. The reason
may be that Google V1 does not make detailed pre-
processing, containing many mistakes in the corpus.
Although Google hits is noisier, it has very much
larger coverage of bigrams or trigrams.

Some previous studies also found a log-linear
relationship between unlabeled data (Suzuki and
Isozaki, 2008; Suzuki et al., 2009; Bergsma et al.,
2010; Pitler et al., 2010). We have shown that this
trend continues well for dependency parsing by us-
ing web-scale data (NEWS and Google V1).

13Google indexes about more than 8 billion pages and each
contains about 1,000 words on average.
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Corpus # of tokens θ # of types
NEWS 3.2B 1 3.7B

Google V1 1,024.9B 40 3.4B
Google hits13 8,000B 100 -

Table 5: N-gram data, with total number of words in the
original corpus (in billions, B). Following (Brants and
Franz, 2006; Pitler et al., 2010), we set the frequency
threshold to filter the data θ, and total number of unique
N-gram (types) remaining in the data.
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Figure 3: There is no data like more data. UAS accu-
racy improves with the number of unique N-grams but
still lower than the Google hits.

4.2 Improvement relative to dependency length

The experiments in (McDonald and Nivre, 2007)
showed a negative impact on the dependency pars-
ing performance from too long dependencies. For
our proposed approach, the improvement relative
to dependency length is shown in Figure 4. From
the Figure, it is seen that our method gives observ-
able better performance when dependency lengths
are larger than 3. The results here show that the
proposed approach improves the dependency pars-
ing performance, particularly for long dependency
relationships.

4.3 Cross-genre testing

In this section, we present the experiments to vali-
date the robustness the web-derived selectional pref-
erences. The intent is to understand how well the
web-derived selectional preferences transfer to other
sources.

The English experiment evaluates the perfor-
mance of our proposed approach when it is trained
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Figure 4: Dependency length vs. F1 score.

on annotated data from one genre of text (WSJ) and
is used to parse a test set from a different genre: the
biomedical domain related to cancer (PennBioIE.,
2005) with 2,600 parsed sentences. We divided the
data into 500 for training, 100 for development and
others for testing. We created five sets of train-
ing data with 100, 200, 300, 400, and 500 sen-
tences respectively. Figure 5 plots the UAS ac-
curacy as function of training instances. WSJ is
the performance of our second-order dependency
parser trained on section 2-21; WSJ+N-gram is the
performance of our proposed approach trained on
section 2-21; WSJ+BioMed is the performance of
the parser trained on WSJ and biomedical data.
WSJ+BioMed+N-gram is the performance of our
proposed approach trained on WSJ and biomedical
data. The results show that incorporating the web-
scale N-gram features can significantly improve the
dependency parsing performance, and the improve-
ment is much larger than the in-domain testing pre-
sented in Section 4.1, the reason may be that web-
derived N-gram features do not depend directly on
training data and thus work better on new domains.

4.4 Discussion

In this paper, we present a novel method to im-
prove dependency parsing by using web-scale data.
Despite the success, there are still some problems
which should be discussed.

(1) Google hits is less sparse than Google V1
in modeling the word-to-word relationships, but
Google hits are likely to be noisier than Google V1.
It is very appealing to carry out a correlation anal-
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Figure 5: Adapting a WSJ parser to biomedical text.
WSJ: performance of parser trained only on WSJ;
WSJ+N-gram: performance of our proposed approach
trained only on WSJ; WSJ+BioMed: parser trained on
WSJ and biomedical text; WSJ+BioMed+N-gram: our
approach trained on WSJ and biomedical text.

ysis to determine whether Google hits and Google
V1 are highly correlated. We will leave it for future
research.

(2) Veronis (2005) pointed out that there had been
a debate about reliability of Google hits due to the
inconsistencies of page hits estimates. However, this
estimate is scale-invariant. Assume that when the
number of pages indexed by Google grows, the num-
ber of pages containing a given search term goes to
a fixed fraction. This means that if pages indexed
by Google doubles, then so do the bigrams or tri-
grams frequencies. Therefore, the estimate becomes
stable when the number of indexed pages grows un-
boundedly. Some details are presented in Cilibrasi
and Vitanyi (2007).

5 Related Work

Our approach is to exploit web-derived selectional
preferences to improve the dependency parsing. The
idea of this paper is inspired by the work of Suzuki
et al. (2009) and Pitler et al. (2010). The former uses
the web-scale data explicitly to create more data for
training the model; while the latter explores the web-
scale N-grams data (Lin et al., 2010) for compound
bracketing disambiguation. Our research, however,
applies the web-scale data (Google hits and Google
V1) to model the word-to-word dependency rela-
tionships rather than compound bracketing disam-
biguation.

Several previous studies have exploited the web-
scale data for word pair acquisition. Keller and
Lapata (2003) evaluated the utility of using web
search engine statistics for unseen bigram. Nakov
and Hearst (2005) demonstrated the effectiveness of
using search engine statistics to improve the noun
compound bracketing. Volk (2001) exploited the
WWW as a corpus to resolve PP attachment ambigu-
ities. Turney (2007) measured the semantic orienta-
tion for sentiment classification using co-occurrence
statistics obtained from the search engines. Bergsma
et al. (2010) created robust supervised classifiers
via web-scale N-gram data for adjective ordering,
spelling correction, noun compound bracketing and
verb part-of-speech disambiguation. Our approach,
however, extends these techniques to dependency
parsing, particularly for long dependency relation-
ships, which involves more challenging tasks than
the previous work.

Besides, there are some work exploring the word-
to-word co-occurrence derived from the web-scale
data or a fixed size of corpus (Calvo and Gel-
bukh, 2004; Calvo and Gelbukh, 2006; Yates et al.,
2006; Drabek and Zhou, 2000; van Noord, 2007)
for PP attachment ambiguities or shallow parsing.
Johnson and Riezler (2000) incorporated the lex-
ical selectional preference features derived from
British National Corpus (Graff, 2003) into a stochas-
tic unification-based grammar. Abekawa and Oku-
mura (2006) improved Japanese dependency pars-
ing by using the co-occurrence information derived
from the results of automatic dependency parsing of
large-scale corpora. However, we explore the web-
scale data for dependency parsing, the performance
improves log-linearly with the number of parameters
(unique N-grams). To the best of our knowledge,
web-derived selectional preference has not been suc-
cessfully applied to dependency parsing.

6 Conclusion

In this paper, we present a novel method which in-
corporates the web-derived selectional preferences
to improve statistical dependency parsing. The re-
sults show that web-scale data improves the de-
pendency parsing, particularly for long dependency
relationships. There is no data like more data,
performance improves log-linearly with the num-
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ber of parameters (unique N-grams). More impor-
tantly, when operating on new domains, the web-
derived selectional preferences show great potential
for achieving robust performance.
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