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Abstract

Building on earlier work that integrates dif-
ferent factors in language modeling, we view
() backing off to a shorter history and (ii)
class-based generalization as two complemen-
tary mechanisms of using a larger equivalence
class for prediction when the default equiv-
alence class is too small for reliable estima-
tion. This view entails that the classes in a
language model should be learned from rare
events only and should be preferably applied
to rare events. We construct such a model
and show that both training on rare events and
preferable application to rare events improve
perplexity when compared to a simple direct
interpolation of class-based with standard lan-
guage models.

Introduction

and using classes as part of the model. But an
equally important reason is that most models that
integrate class-based information do so by way of a
simple interpolation and achieve only a modest im-
provement in performance.

In this paper, we propose a new type of class-
based language model. The key novelty is that we
recognize that certain probability estimates are hard
to improve based on classes. In particular, the best
probability estimate for frequent events is often the
maximum likelihood estimator and this estimator is
hard to improve by using other information sources
like classes or word similarity. We therefore design a
model that attempts to focus the effect of class-based
generalization on rare events.

Specifically, we propose to employ the same
strategy for this that history-length interpo-
lated (HI) models use. We define HI models
as models that interpolate the predictions of

Language models, probability distributions ovedifferent-length histories, e.g.p(ws|lwiwy) =
strings of words, are fundamental to many apA;(wjwe)p’ (wslunwse) + Ae(wiws)p' (wslwa) +
plications in natural language processing.
main challenge in language modeling is to estimatsimple estimate; in this section, we use= pyL,
string probabilities accurately given that even veryghe maximum likelihood estimate, as an example.
large training corpora cannot overcome the inheredelinek-Mercer (Jelinek and Mercer, 1980) and
sparseness of word sequence data. One way to imodified Kneser-Ney (Kneser and Ney, 1995)
prove the accuracy of estimationdass-based gen-
eralization. The idea is that even though a particular HI models address the challenge that frequent
word sequence may not have occurred in the train-events are best estimated by a method close to max-
ing set (or too infrequently for accurate estimation)imum likelihood by selecting appropriate values for
the occurrence of sequences similastwan help us the interpolation weights. For exampleuif wows
better estimate(s).

Thél — A\j(wiwa) — Aa(wiw2))p’ (ws) wherep' is a

models are examples of HI models.

is frequent, them\; will be close to 1, thus ensur-

Plausible though this line of reasoning is, the laning thatp(ws|w;ws) ~ pmL (ws|wiwz) and that the

guage models most commonly used today do n@bmponentgpy (ws|ws) and py (ws), which are
incorporate class-based generalization. This is pamnhelpful in this case, will only slightly change the
tially due to the additional cost of creating classeseliable estimatewy (ws|w;ws).
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The main contribution of this paper is to proposeprobability, p(g(u)|g(w))p(ulg(u)), whereg(u) is
the same mechanism for class language models. time class of.. Other approaches condition the prob-
fact, we will use the interpolation weights of a KN ability of a class on n-grams of lexical items (as op-
model to determine how much weight to give to eaclposed to classes) (Whittaker and Woodland, 2001,
component of the interpolation. The difference to &mami and Jelinek, 2005; Uszkoreit and Brants,
KN model is merely that the lower-order distribution2008). In this work, we use the Brown type of
is not the lower-order KN distribution (as in KN), model: it is simpler and has fewer parameters. Mod-
but instead an interpolation of the lower-order KNels that condition classes on lexical n-grams could be
distribution and a class-based distribution. We wilextended in a way similar to what we propose here.
show that this method of integrating history interpo- Classes have been used with good results in a
lation and classes significantly increases the perfonumber of applications, e.g., in speech recognition
mance of a language model. (Yokoyama et al., 2003), sentiment analysis (Wie-
Focusing the effect of classes on rare events hgand and Klakow, 2008), and question answering
another important consequence: if this is the rightMomtazi and Klakow, 2009). Classes have also
way of using classes, then they should not be formeaeen shown to improve the performance of exponen-
based orall eventsin the training set, but only based tial models (Chen, 2009).
on rare events. We show that doing this increases Our use of classes of lexicalgrams forn > 1
performance. has several precedents in the literature (Suhm and
Finally, we introduce a second discountingVaibel, 1994; Kuo and Reichl, 1999; Deligne and
method into the model that differs from KN. This Sagisaka, 2000; Justo and Torres, 2009). The nov-
can be motivated by the fact that with two source§lty of our approach is that we integrate phrase-level
of generalization (history-length and classes) morélasses into a KN model.
probability mass should be allocated to these two Hierarchical clustering (McMahon and Smith,
sources than to the single source used in KN. W&996; Zitouni and Zhou, 2007; Zitouni and Zhou,
propose goolynomial discount and show a signifi- 2008) has the advantage that the size of the class to
cant improvement compared to using KN discounte used in a specific context is not fixed, but can be
ing only. chosen at an optimal level of the hierarchy. There is
This paper is structured as follows. Section 210 reason why our non-hierarchical flat model could
discusses related work. Section 3 reviews the KROt be replaced with a hierarchical model and we
model and introduces two models, the Dupontwould expect this to improve results.
Rosenfeld model (a “recursive” model) and a top- The key novelty of our clustering method is that
level interpolated model, that integrate the KNclusters are formed based on rare events in the train-
model (a history interpolation model) with a clasdNg corpus. This type of clustering has been applied
model. Section 4 details our experimental setug® Other problems before, in particular to unsuper-
Results are presented in Section 5. Based on ¥ff€d part-of-speech tagging (Schiitze, 1995; Clark,
analysis of strengths and weaknesses of Dupor#003; Reichart et al., 2010). However, the impor-
Rosenfeld and top-level interpolated models, wnce of rare events for clustering in language mod-
present a new polynomial discounting mechanisrling has not been investigated before.
that does better than either in Section 6. Section 7 Our work is most similar to the lattice-based lan-

presents our conclusions. guage models proposed by Dupont and Rosenfeld
(1997). Bilmes and Kirchhoff (2003) generalize
2 Related work lattice-based language models further by allowing

arbitrary factors in addition to words and classes.
A large number of different class-based models hawd/e use a special case of lattice-based language mod-
been proposed in the literature. The well-knowrels in this paper. Our contributions are that we intro-
model by Brown et al. (1992) is a class sequencduce the novel idea of rare-event clustering into lan-
model, in whichp(u|w) is computed as the prod- guage modeling and that we show that the modified
uct of a class transition probability and an emissiomodel performs better than a strong word-trigram
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symbol \denotation 3.2 Dupont-Rosenfeld model

ZHZT”H 2, (SUM lpver all unigrama) History-interpolated models attempt to find a good
c(wj) count ofw;

; - . ; tradeoff between using a maximally informative his-
n“('wﬂ' ) | # of distinctw occurring beforaw; tory for accurate prediction of frequent events and
Table 1: Notation used for Kneser-Ney:. generalization for rare events by using lower-order
distributions; they employ this mechanism recur-
sively by progressively shortening the history.

The key idea of the improved model we will adopt
3 Models is that class generalization ought to play the same

_ _ _ role in history-interpolated models as the lower-
In this section, we introduce the three models tha§ger gistributions: they should improve estimates

we compare in our experiments: Kneser-Ney modelor ynseen and rare events. Following Dupont and
Dupont-RosenfeId model, and top-level |nterpoIaRosenfe|d (1997), we implement this idea by lin-
tion model. early interpolating the class-based distribution with
the lower order distribution, recursively at each

] ) N level. For a trigram model, this means that we in-
Our baseline model is the modified Kneser'Ne¥erpoIatepKN(w3|w2) andpg (ws|wyws) on the first

(KN) trigram modelias proposed by Chen and G,oc_)dﬁackoff level andpkn (ws) and pg(ws|ws) on the
man (1999). We give a comprehensive descriptioByng packoff level, wheps; is the (Brown) class
of our implementation of KN because the detailg, Jq (see Section 4 for details pg). We call this

are important for the integration of the class mod odelppr for Dupont-Rosenfeld model and define
given below. We use the notation in Table 1.

baseline.

3.1 Kneser-Ney model

) A it as follows:
We estimatenkn on the training set as follows.
3 (ol o clwd) = d"(c(w})
pauslu) = =) poR(uslvl) = T e(w?u)
+'73(w%)pKN (w3|w2) + 73(w%)[ﬁ1 (Uﬁ)pB(lUﬂwl)
o +(1 = B1(w7))por(ws|ws)]
’)/3(1112) — Z[[w]] d (C(wlw))
U Sl ewiw) ) o o)
. ni+ ow2 — ni+ ow2
i (w3 |ws) ni (owf) — d” (ns (o)) por(usfez) = Y l[w]] ni4 (ewaw)
2l[w]] ni4 (ewaw) + y2(w2)[B2(wa)ps(ws|w2)
+72(w2)prn (w3) +(1 — B2 (ws))por(ws3)]
Y2 (we) = 2wl a7 (swaw)) whereg; (v) is equal to a parametey; if the history
Z[[ﬂ/}]] n (ewzw) (w? orws) is part of a cluster and 0 otherwise:
o = { R 1 o>
PrN\W3 ) = o if C(wg) =0 ﬂ(’U) _ { 841 if h’U S B2—(i—l)
(] t H
_ S]] & (s (sw)) OTETSe
Yl[wl]] ni4 (ew) By (resp.Bs) is the set of unigram (resp. bigram) his-

The parameterd’, d’, andd” are the discounts tories that is covered by the clusters. We cluster bi-
for unigrams, bigrams and trigrams, respectively, agram histories and unigram histories separately and
defined by Chen and Goodman (1996, p. 20, (26)vrite pg(ws|w;wy) for the bigram cluster model and
Note that our notation deviates from C&G in thatpg(ws|ws) for the unigram cluster model. Cluster-
they use the single symba}), for the three different ing and the estimation of these two distributions are
valuesd’'(1), d"(1), andd"” (1) etc. described in Section 4.
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The wunigram distribution of the Dupont- 256,873 unique unigrams and 4,494,222 unique bi-
Rosenfeld model is set to the unigram distributiograms. Unknown words in validation and test sets
of the KN model:ppr(w) = pkn(w). are mapped to a special unknown ward

The model (or family of models) defined by We use the SRILM toolkit (Stolcke, 2002) for
Dupont and Rosenfeld (1997) is more general thaclustering. An important parameter of the class-
our versionppr. Most importantly, it allows a truly based model is siz@;| of the base set, i.e., the total
parallel backoff whereas in our model the recursiveumber ofn-grams (or ratheg-grams) to be clus-
backoff distributionppr is interpolated with a class tered. As part of the experiments we va;| sys-
distributionpg that is not backed off. We prefer this tematically to investigate the effect of base set size.
version because it makes it easier to understand thi¢e cluster unigrams: (= 1) and bigramsi = 2).
contribution that unique-event vs. all-event classeBor all experiments|B;| = |B| (except in cases
make to improved language modeling; the parameavhere| ;| exceeds the number of unigrams, see be-
tersg are a good indicator of this effect. low). SRILM does not directly support bigram clus-

An alternative way of setting up the Dupont-tering. We therefore represent a bigram as a hyphen-
Rosenfeld model would be to interpolateated word in bigram clustering; e.dan Amis rep-
prN (w3 |wiwsy) and pg(ws|wiws) etc — but this is  resented aBan-Am.
undesirable. The strength of history interpolation is The input to the clustering is the vocabulafy
that estimates for frequent events are close to Mland the cluster training corpus. For a particular base
e.g., pkn(sharécents & ~ pyi (sharécents a for  set sizeb, the unigram input vocabular; is set to
our corpus. An ML estimate is accurate for largehe b most frequent unigrams in the training set and
counts and we should not interpolate it directlythe bigram input vocabulari; is set to theh most
with pg(ws|wiws). For ppr, the discound” that frequent bigrams in the training set.
is subtracted frome(w;wows) is small relative to In this section, we call the WSJ training corpus
c(wjwews) and thereforeppr ~ pwm in this case the raw corpus and the cluster training corpus the
(exactly as irpkn)- cluster corpus to be able to distinguish them. We
run four different clusterings for each base set size
(except for the large sets, see below). The cluster
Class-based models are often combined with othebrpora are constructed as follows.
models by interpolation, starting with the work by
Brown et al. (1992). Since we cluster both unigrams e All-event unigram clustering. The cluster
and bigrams, we interpolate three models: corpus is simply the raw corpus.

3.3 Top-level interpolation

prop(ws|wiws) e All-event bigram clustering. The cluster cor-
pus is constructed as follows. A sentence of the
raw corpus that contains words is included
twice, once as a sequence of fg2] bigrams

= 1 (wiw2)pe (ws|wiws) + pa(w2)ps(wslws)
+ (1 — pr(wiws) — p2(we))prn (w3|wiws)

where ; (wywy) = Ap if wywy € By and 0 other- “wi—wy wy—wy ws—we ..." and once as a
wise, jip(ws) = Ao if wy € By and 0 otherwise and sequence of th¢(s — 1)/2] bigrams ‘wy—ws
A1 and )\, are parameters. We call this ttap-level Wy—ws We—wWr ..."

model ptop because it interpolates the three models
at the top level. Most previous work on class-based *
model has employed some form of top-level inter-
polation.

Unique-event unigram clustering. The clus-

ter corpus is the set of all sequences of two un-
igramse B; that occur in the raw corpus, one
sequence per line. Each sequence occurs only

4 Experimental Setup once in this cluster corpus.

We run experiments on a Wall Street Journal (WSJ) e Unique-event bigram clustering. The cluster
corpus of 50M words, split 8:1:1 into training, val- corpus is the set of all sequences of two bi-
idation and test sets. The training set contains gramse BB, that occur in the training corpus,
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one sequence per line. Each sequence occursmL maximum likelihood

only once in this cluster corpus. PB Brown cluster model
PE cluster emission probability
As mentioned above, we need both unigram andpr cluster transition probability
bigram clusters because we want to incorporatepkn KN model
class-based generalization for histories of lengths Ippr Dupont-Rosenfeld model

and 2. As we will show below this significantly in- prop top-level interpolation

creases performance. Since the focus of this paper ispokn KN and polynomial discounting
not on clustering algorithms, reformatting the train- ppolo  polynomial discounting only
ing corpus as described above (as a sequence of hy-
phenated bigrams) is a simple way of using SRILM
for bigram clustering.

The unique-event clusterings are motivated by the It is important to note that the same intu-
fact that in the Dupont-Rosenfeld model, frequenition underlies unique-event clustering that
events are handled by discounted ML estimatealso motivates using the “unique-event” dis-
Classes are only needed in cases where an event wisutions ~ ny (ew3) /(3 niy (ewow)) and
not seen or was not frequent enough in the train:;, (ews)/(>"ni4(ew)) for the backoff distri-
ing set. Consequently, we should form clusters ndiutions in KN. Viewed this way, the basic KN
based on all events in the training corpus, but onlynodel also uses a unique-event corpus (although a
on events that are rare — because this is the type different one) for estimating backoff probabilities.
event that classes will then be applied to in predic- In all cases, we set the number of clusters to
tion. k = 512. Our main goal in this paper is to compare

The two unique-event corpora can be thoughtiifferent ways of setting up history-length/class in-
of as reweighted collections in which each uniqueerpolated models and we do not attempt to optimize
event receives the same weight. In practice this. We settled on a fixed number bf= 512 because
means that clustering is mostly influenced by rar8rown et al. (1992) used a total of 1000 classes. 512
events since, on the level of types, most events atmigram classes and 512 bigram classes roughly cor-
rare. As we will see below, rare-event clusteringsespond to this number. We prefer powers of 2 to
perform better than all-event clusterings. This idacilitate efficient storage of cluster ids (one such
not surprising as the class-based component of tletuster id must be stored for each unigram and each
model can only benefit rare events and it is theredigram) and therefore chooge= 512. Clustering
fore reasonable to estimate this component based was performed on an Opteron 8214 processor and
a corpus dominated by rare events. took from several minutes for the smallest base sets

We started experimenting with reweighted corto more than a week for the largest set of 400,000
pora because class sizes become very lopsided iiams.
regular SRILM clustering as the size of the base set To estimate n-gram emission probabilitigs we
increases. The reason is that the objective functidirst introduce an additional cluster for all unigrams
maximizes mutual information. Highly differenti- that are not in the base set; emission probabilities
ated classes for frequent words contribute substaare then estimated by maximum likelihood. Cluster
tially to this objective function whereas putting alltransition probabilitiegt are computed using add-
rare words in a few large clusters does not hurt thene smoothing. Botlpe and pt are estimated on
objective much. However, our focus is on usinghe raw corpus. The two class distributions are then
clustering for improving prediction for rare events;defined as follows:
this means that the objective function is counter-
productive when contexts are frequency-weighted as (ws|wiw2) = pr(g(ws)|g(wiws))pe(ws|g(ws))
they occur in the corpus. After overweighting rare  pg(ws|ws) = pr(g(ws)|g(ws))pe(ws|g(ws))
contexts, the objective function is more in sync with
what we use clusters for in our model. whereg(v) is the class of the uni- or bigram

Table 2: Key to probability distributions
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PDR PTOP
all events unique events all events unique events

|B;| a1 ap  perp.| a; as  perp. |B;| A1 Ao operp.| A1 A perp.
lalx10* | .20 .40 87.42] 2 4 87.41 1b1x10* | .020 .03 87.65 .02 .02 87.71
2a2x10* | .20 .50 86.97 .5 86.88 2b2x10* | .030 .04 87.43 .03 .03 87.47
3a3x10* | .10 .40 87.14 .5 86.57 3b3x10* | .020 .03 87.52 .03 .03 87.34
5
6

4a4x10* | .10 .40 87.22 86.31 4b4x10* | .010 .04 87.58 .03 .04 87.24
5a5x10* | .05 .30 87.54 .6 86.10 5b5x10* | .003 .03 87.74 .03 .04 87.15
6a6x10* | .01 .30 87.71 .6 85.96 6b6x10* | .000 .02 87.82 .03 .04 87.09

Perplexity of KN model: 88.03

wwwiN N

Table 3: Optimal parameters for Dupont-Rosenfeld (left) top-level (right) models on the validation set and per-
plexity on the validation set. The two tables compare pentorce when using a class model trained on all events vs a
class model trained on unique evens,| = |B;| is the number of unigrams and bigrams in the clusters; éngs fLa

and 1b are for models that cluster 10,000 unigrams and 1®ig0&ms.

Table 2 is a key to the probability distributions weto .01 and .30 (6a), indicating that with larger base

use. sets, less and less value can be derived from classes.
This again is evidence that rare-event clustering is

5 Results the correct approach: only clusters derived in rare-
event clustering receive high weightgin the inter-

Table 3 shows the performancepgir andpropfor a
range of base set sizgs;| and for classes trained on _
all events and on unique events. Parameterand | Nis effect can also be observed fofop: the

); are optimized on the validation set. Perplexity ialue of A1 (the weight of bigrams) is higher for
reported for the validation set. All following tables Unidue-event clustering than for all-event clustering
also optimize on the validation set and report rt—:‘sult@,’_‘”th the exception of lines 1b&2b). The quality of
on the validation set. The last table, Table 7, alsBigram clusters seems to be low in all-event cluster-
reports perplexity for the test set, ing when the base set becomes too large.

Table 3 confirms previous findings that classes Perplexity is generally lower for unique-event
improve language model performance. All model§lustering than for all-event clustering: this is the
have a perplexity that is lower than KN (88.03).  case for all values off3;| for ppr (1a—6a); and for

When comparing all-event and unique-event clugZil > 20000 for prop (3b—6b).
terings, a clear tendency is apparent. In all-event Table 4 compares the two models in two different
clustering, the best performance is reached faonditions: (i) b-: using unigram clusters only and
|B;| = 20000: perplexity is 86.97 with this base (ii) b+: using unigram clusters and bigram clusters.
set size forppr (line 2a) and 87.43 foprop (line  For all events, there is no difference in performance.
2b). In unique-event clustering, performance keepdowever, for unique events, the model that includes
improving with larger and larger base sets; the besigrams (b+) does better than the model without bi-
perplexities are obtained fdi3;| = 60000: 85.96 grams (b-). The effect is larger fqipr than for
for ppr and 87.09 foprop (lines 6a, 6b). prop because (for unigue events) a larger weight for

The parameter values also reflect this differencthe unigram modelX; = .05 instead ofA; = .04)
between all-event and unique-event clustering. F@pparently partially compensates for the missing bi-
unique-event results gfpr, we havea; > .2 and gram clusters.
ag > .4 (la—6a). This indicates that classes and his- Table 3 shows that rare-event models do better
tory interpolation are both valuable when the modehan all-event models. Given that training large class
is backing off. But for all-event clustering, the val-models with SRILM on all events would take sev-
ues ofq; decrease: from a peak of .20 and .50 (2a@ral weeks or even months, we restrict our direct

polation.
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PDR PTOP

all unique all unique
a1 Qo perp.| a; ag  pPerp.| A1 Ag  perp.| A1 Ao perp.
b- 3 87.71 .5 86.62 .02 87.82 .05 87.26
b+|.01 .3 8771 .3 .6 8596 0 .02 87.82| .03 .04 87.09

Table 4: Using both unigram and bigram clusters is better tis&ng unigrams only. Results f#;| = 60,000.

PDR PTOP 6 Polynomial discounting

|BZ| a1 g perp. A1 A9 perp. . .
1 6X1O4 0.306 85.96 0.030.04 87.09 Further Comparatlve analyS|S pf)R and pTop le-

21x10° |0.3 0.6 85.59 0.04 0.04 86.93 vealed thatppgr is not uniformly better thamrop.
39%10° |0.3 0.6 85.20 0.05 0.04 86.77 e found thaprop does poorly on frequent events.

44x10° |0.3 0.7 85.14 0.05 0.04 86.74  Or example, for the history,w, = cents a, the
continuationws = share dominatesppr deals well

Table 5: Dupont-Rosenfeld and top-level models fowith this situation becaugeg (ws|w;w-) is the dis-
Bi] € {60000, 100000, 200000,400000}. Clustering counted ML estimate, with a discount that is small
trained on unique-event corpora. relative to the 10,768 occurrences aehts a share
in the training set. In thetop model on the last line
in Table 5, the discounted ML estimate is multiplied
1—.05—.04 = .91, which results in a much less
curate estimate @frop(sharecents .
In contrast,ptop does well for productive histo-
ries, for which it is likely that a continuation unseen
As we can see in Table 5, the trends observed in the training set will occur. An example is the his-
Table 3 continue agB;| is increased further. For toryinthe—almost any adjective or noun can follow.
both models, perplexity steadily decrease§hbis There are 6251 different words that (i) occur after
increased from 60,000 to 400,000. (Note that fothe in the validation set, (ii) did not occur aftén
|B;| = 400000, the actual size o3; is 256,873 thein the training set, and (iii) occurred at least 10
since there are only that many words in the trainingimes in the training set. Because their training set
corpus.) The improvements in perplexity becomeinigram frequency is at least 10, they have a good
smaller for larger base set sizes, but it is reassurirghance of being assigned to a class that captures
to see that the general trend continues for large batieeir distributional behavior well angk (w3 |w;ws)
set sizes. Our explanation is that the class compis then likely to be a good estimate. For a history
nent is focused on rare events and the items that amith these properties, it is advantageous to further
being added to the clustering for large base sets agléscount the discounted ML estimates by multiply-
all rare events. ing them with .91. prop then gives the remaining
i i probability mass of .09 to wordss whose proba-
The perplexity forpor is clearly lower than that bility would otherwise be underestimated.
of prop, indicating the superiority of the Dupont- vt e have just described is already partially
Rosenteld model. addressed by the KN model »{v) will be rela-
tively large for a productive history likee = in
the. However, it looks like the KN discounts are
'Dupont and Rosenfeld (1997) found a relatively large imnot large enough for productive histories, at least not
pro"teme_“t ?f the "gg?]i’agrggetifti':‘;el;g‘;g?r?e"V%C;del”topgr‘ in a combined history-length/class model. Appar-
?OL:rrmng:ansIZ?N%?I%n ouregperiments. One possible Z?(%?a%éﬁo ently, when mcorporatmg the strengths Qf a class-
that our KN baseline is stronger than the word trigram baseli Pased model into KN, the default discounting mech-
they used. anism does not reallocate enough probability mass

. by
comparison of all-event and rare-event models tgc
|B;] < 60,000 in Tables 3-4 and report only rare-
event numbers foj3;| > 60, 000 in what follows.
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from high-frequency to low-frequency events. We | oa/hi aaldy  p ¢ perp.
conclude from this analysis that we need to increasel prop .05 .04 86.74
the discount valueg for large counts. 2 ppbRr .30 .70 85.14
We could add a constant t§ but one of the ba- 3 PrPoOLKN .30 .70 .05 .89 85.01
sic premises of the KN model, derived from the as-4 proLo .30 .70 .80 .41 84.98

sumption that n-gram marginals should be equal

relative frequencies, is that the discount is larger forro por andprop. |Bi| = 400,000, clusters trained on

able 6: Results for polynomial discounting compared

more frequent n-grams although in many implemenynigue events.

tations of KN only the casegw?) = 1, c(w?}) = 2,
andc(w?) > 3 are distinguished.

. . . . : erplexit
This suggests that the ideal discod(it) in an in- . perplextty
. tb:l model |5;] val test
tegrated history-length/class language model should
tonically withe(v). The simplest ; 13 pkn 88.03 88.28
e ety ooty 230808 bl b 677167
; pleme 'hg ! d” Istically | t oy t' | 3 3:6appr  6x10* ue b+ 85.96 86.22
orm pz” wherep andr are parameters: controls 4 3:6bprop  6x10° ae b+ 87.82 88.08
the rate of growth of the discount as a functioneof , 4
is & factor that can b led for ontimal perfor- 5 3:6bptop  6x10* ue b+ 87.09 87.35
f;;nieaco at can be scaled for optimal perior g 4 por  6x10* ae b-| 87.71 87.97
Th | i f the additional ool il 74 ppr  6x10* ue b-| 86.62 86.88
“The incorporation of the additional polynomia 84 prop 6x10' ae b-| 87.8288.08
discount into KN is straightforward. We use a dis- 4
funct hat is th , dth 94 prop 6x10* ueb-| 87.26 87.51
comlmt ur.mlt_lone(a:) that is the sum ofl(z) and the 10 5:4 ppr  2x10° ue b+| 85.14 85.39
polynomia 11 5:4 prop  2x10° ue b+ 86.74 86.98
" ofor x> 4 12 6:3 ppoLkN 4x10° ue b+ 85.01 85.26
o pPT xr = . 5 +
e(x) =d(z) + { 0 otherwise 13 6:4 pporo 4x10° ue b+ 84.98 85.22

Table 7: Performance of key models on validation and
test sets. th:I = Table and line the validation result istake
from. ae/ue = all-event/unique-event. b- = unigrams only.
b+ = bigrams and unigrams.

where (e,d) € {(e/,d),(e",d"),(e",d")}. This
model is identical tgpr except thatd is replaced
with e. We call this modeppoikn. ppoLkn directly
implements the insight that, when using class-based
generalization, discounts for counts> 4 should be ) ) . .
larger than they are in KN The linear interpolatiomvp + (1 — «)q of two dis-
. o . tributions p and g is a form of linear discounting:

We also experiment with a second version of the .~
model: p is discounted byl — o and g by a. See (Katz,
' 1987; Jelinek, 1990; Ney et al., 1994). It can thus
be viewed as polynomial discounting for = 1.

This second model, callegboL o, is simpler and does Absolute discounting could be viewed as a form of
not use KN discounts. It allows us to determing?Olynomial discounting for = 0. We know of no
whether a polynomial discount by itself (without us-Otheér work that has explored exponents between 0
ing KN discounts in addition) is sufficient. and 1 and shown that for this type of exponent, one
Results for the two models are shown in Table §btains competitive discounts that could be argued
and compared with the two best models from Tal° be simpler than more complex discounts like KN
ble 5, for|B;| = 400,000, classes trained on unique discounts.
events.ppoLkn andppoLo achieve a small improve-
ment in perplexity when comparedgr (line 3&4
vs 2). This shows that using discounts that are larg&¥e report the test set performance of the key mod-
than KN discounts for large counts is potentially adels we have developed in this paper in Table 7. The
vantageous. experiments were run with the optimal parameters

e(z) = pz”

6.1 Test set performance
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on the validation set as reported in the table refe? Conclusion

enced in column “tb:l”; e.g., on line 2 of Table 7, _ o
(a1,a2) = (.01,.3) as reported on line 6a of Ta- OUr hypothesis was that classes are a generalization

ble 3. mechanism for rare events that serves the same func-
tion as history-length interpolation and that classes
There is an almost constant difference betweeghould therefore be (i) primarily trained on rare
validation and test set perplexities, ranging from +.2vents and (ii) receive high weight only if it is likely
to +.3, indicating that test set results are consisteffiat a rare event will follow and be weighted in a
with validation set results. To test Significance, WQvay ana|ogous to the Weighting of lower-order dis-
assigned the 2.8M positions in the test set to 48 ditributions in history-length interpolation.
ferent bins according to the majority part-of-speech \we found clear statistically significant evidence
tag of the word in the training sét.We can then for hoth (i) and (ii). (i) Classes trained on unique-
compute perplexity for each bin, compare perplexiayent corpora perform better than classes trained on
ties for different experiments and use the sign test fQfj|.event corpora. (ii) Thepr model (which ad-
determining significance. We indicate results thgysts the interpolation weight given to classes based
were significant ap < .05 (n = 48, k > 32 SUC- o the prevalence of nonfrequent events following)
cesses) using a star, e.§<*2 means that test set j5 petter than top-level modelrop (Which uses a
perplexity on line 3 is significantly lower than testfived weight for classes). Most previous work on
set perplexity on line 2. class-based models has employed top-level interpo-

The main findings on the validation set also hold2tion. Our results strongly suggest that the Dupont-

for the test set: (i) Trained on unique events and witiR0Senfeld model is a superior model.
ter than KN:10<*1, 11<*1. (ii) Training on unique results suggested that the KN discount mechanism

events is better than training on all evengs<*2, d0es not discount high-frequency events enough.
5<*4, 7<*6, 9<*8. (iii) For unique events, using V& eémpirically determined that better discounts are

bigram and unigram classes gives better results th@Rtained by letting the discount grow as a func-
using unigram classes onlg:i<*7. Not significant; tion of the count of the discounted event and im-
5 < 9. (iv) The Dupont-Rosenfeld modghg is bet- plement(_ed this as pol){nomial_ discounting, an ar-
ter than the top-level modekop: 10<*11. (v) The guably simpler way of discounting than Kneser-Ney

model POLO (polynomial discounting) is the besgliscounting. The improvement of polynomial dis-
model overall: Not significanti3 < 12. (vi) Poly- counts vs. KN discounts was small, but statistically

nomial discounting is significantly better than KNSignificant.

discounting for the Dupont-Rosenfeld moggk al- In fut.u're \(vork, we would I.ik'e to find a theoreti-
though the absolute difference in perplexity is small¢al justification for the surprising fact that polyno-
13<*10. mial discounting does at least as well as Kneser-Ney

discounting. We also would like to look at other
Overall, ppr @nd pporo achieve considerable re- packoff mechanisms (in addition to history length

ductions in test set perplexity from 88.28 to 85.3% g classes) and incorporate them into the model,
and 85.22, respectively. The main result of the exs g similarity and topic. Finally, training classes on
periments is that Dupont-Rosenfeld models (Whiclgmique events is an extreme way of highly weight-
focus on rare events) are better than the standarqh/g rare events. We would like to explore training
used top-level models; and that training classes q@gimes that lie between unique-event clustering and
unique events is better than training classes on &l||-event clustering and upweight rare events less.
events. Acknowledgements. This research was funded

by Deutsche Forschungsgemeinschaft (grant SFB

732). We are grateful to Thomas Miller, Helmut
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