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Abstract

Building on earlier work that integrates dif-
ferent factors in language modeling, we view
(i) backing off to a shorter history and (ii)
class-based generalization as two complemen-
tary mechanisms of using a larger equivalence
class for prediction when the default equiv-
alence class is too small for reliable estima-
tion. This view entails that the classes in a
language model should be learned from rare
events only and should be preferably applied
to rare events. We construct such a model
and show that both training on rare events and
preferable application to rare events improve
perplexity when compared to a simple direct
interpolation of class-based with standard lan-
guage models.

1 Introduction

Language models, probability distributions over
strings of words, are fundamental to many ap-
plications in natural language processing. The
main challenge in language modeling is to estimate
string probabilities accurately given that even very
large training corpora cannot overcome the inherent
sparseness of word sequence data. One way to im-
prove the accuracy of estimation isclass-based gen-
eralization. The idea is that even though a particular
word sequences may not have occurred in the train-
ing set (or too infrequently for accurate estimation),
the occurrence of sequences similar tos can help us
better estimatep(s).

Plausible though this line of reasoning is, the lan-
guage models most commonly used today do not
incorporate class-based generalization. This is par-
tially due to the additional cost of creating classes

and using classes as part of the model. But an
equally important reason is that most models that
integrate class-based information do so by way of a
simple interpolation and achieve only a modest im-
provement in performance.

In this paper, we propose a new type of class-
based language model. The key novelty is that we
recognize that certain probability estimates are hard
to improve based on classes. In particular, the best
probability estimate for frequent events is often the
maximum likelihood estimator and this estimator is
hard to improve by using other information sources
like classes or word similarity. We therefore design a
model that attempts to focus the effect of class-based
generalization on rare events.

Specifically, we propose to employ the same
strategy for this that history-length interpo-
lated (HI) models use. We define HI models
as models that interpolate the predictions of
different-length histories, e.g.,p(w3|w1w2) =
λ1(w1w2)p

′(w3|w1w2) + λ2(w1w2)p
′(w3|w2) +

(1 − λ1(w1w2) − λ2(w1w2))p
′(w3) wherep′ is a

simple estimate; in this section, we usep′ = pML ,
the maximum likelihood estimate, as an example.
Jelinek-Mercer (Jelinek and Mercer, 1980) and
modified Kneser-Ney (Kneser and Ney, 1995)
models are examples of HI models.

HI models address the challenge that frequent
events are best estimated by a method close to max-
imum likelihood by selecting appropriate values for
the interpolation weights. For example, ifw1w2w3

is frequent, thenλ1 will be close to 1, thus ensur-
ing thatp(w3|w1w2) ≈ pML (w3|w1w2) and that the
componentspML (w3|w2) and pML (w3), which are
unhelpful in this case, will only slightly change the
reliable estimatepML (w3|w1w2).
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The main contribution of this paper is to propose
the same mechanism for class language models. In
fact, we will use the interpolation weights of a KN
model to determine how much weight to give to each
component of the interpolation. The difference to a
KN model is merely that the lower-order distribution
is not the lower-order KN distribution (as in KN),
but instead an interpolation of the lower-order KN
distribution and a class-based distribution. We will
show that this method of integrating history interpo-
lation and classes significantly increases the perfor-
mance of a language model.

Focusing the effect of classes on rare events has
another important consequence: if this is the right
way of using classes, then they should not be formed
based onall events in the training set, but only based
on rare events. We show that doing this increases
performance.

Finally, we introduce a second discounting
method into the model that differs from KN. This
can be motivated by the fact that with two sources
of generalization (history-length and classes) more
probability mass should be allocated to these two
sources than to the single source used in KN. We
propose apolynomial discount and show a signifi-
cant improvement compared to using KN discount-
ing only.

This paper is structured as follows. Section 2
discusses related work. Section 3 reviews the KN
model and introduces two models, the Dupont-
Rosenfeld model (a “recursive” model) and a top-
level interpolated model, that integrate the KN
model (a history interpolation model) with a class
model. Section 4 details our experimental setup.
Results are presented in Section 5. Based on an
analysis of strengths and weaknesses of Dupont-
Rosenfeld and top-level interpolated models, we
present a new polynomial discounting mechanism
that does better than either in Section 6. Section 7
presents our conclusions.

2 Related work

A large number of different class-based models have
been proposed in the literature. The well-known
model by Brown et al. (1992) is a class sequence
model, in whichp(u|w) is computed as the prod-
uct of a class transition probability and an emission

probability, p(g(u)|g(w))p(u|g(u)), whereg(u) is
the class ofu. Other approaches condition the prob-
ability of a class on n-grams of lexical items (as op-
posed to classes) (Whittaker and Woodland, 2001;
Emami and Jelinek, 2005; Uszkoreit and Brants,
2008). In this work, we use the Brown type of
model: it is simpler and has fewer parameters. Mod-
els that condition classes on lexical n-grams could be
extended in a way similar to what we propose here.

Classes have been used with good results in a
number of applications, e.g., in speech recognition
(Yokoyama et al., 2003), sentiment analysis (Wie-
gand and Klakow, 2008), and question answering
(Momtazi and Klakow, 2009). Classes have also
been shown to improve the performance of exponen-
tial models (Chen, 2009).

Our use of classes of lexicaln-grams forn > 1
has several precedents in the literature (Suhm and
Waibel, 1994; Kuo and Reichl, 1999; Deligne and
Sagisaka, 2000; Justo and Torres, 2009). The nov-
elty of our approach is that we integrate phrase-level
classes into a KN model.

Hierarchical clustering (McMahon and Smith,
1996; Zitouni and Zhou, 2007; Zitouni and Zhou,
2008) has the advantage that the size of the class to
be used in a specific context is not fixed, but can be
chosen at an optimal level of the hierarchy. There is
no reason why our non-hierarchical flat model could
not be replaced with a hierarchical model and we
would expect this to improve results.

The key novelty of our clustering method is that
clusters are formed based on rare events in the train-
ing corpus. This type of clustering has been applied
to other problems before, in particular to unsuper-
vised part-of-speech tagging (Schütze, 1995; Clark,
2003; Reichart et al., 2010). However, the impor-
tance of rare events for clustering in language mod-
eling has not been investigated before.

Our work is most similar to the lattice-based lan-
guage models proposed by Dupont and Rosenfeld
(1997). Bilmes and Kirchhoff (2003) generalize
lattice-based language models further by allowing
arbitrary factors in addition to words and classes.
We use a special case of lattice-based language mod-
els in this paper. Our contributions are that we intro-
duce the novel idea of rare-event clustering into lan-
guage modeling and that we show that the modified
model performs better than a strong word-trigram
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symbol denotation
∑

[[w]]
∑

w (sum over all unigramsw)
c(wi

j) count ofwi
j

n1+(•wi
j) # of distinctw occurring beforewi

j

Table 1: Notation used for Kneser-Ney.

baseline.

3 Models

In this section, we introduce the three models that
we compare in our experiments: Kneser-Ney model,
Dupont-Rosenfeld model, and top-level interpola-
tion model.

3.1 Kneser-Ney model

Our baseline model is the modified Kneser-Ney
(KN) trigram model as proposed by Chen and Good-
man (1999). We give a comprehensive description
of our implementation of KN because the details
are important for the integration of the class model
given below. We use the notation in Table 1.

We estimatepKN on the training set as follows.

pKN(w3|w
2
1) =

c(w3
1)− d′′′(c(w3

1))
∑

[[w]] c(w2
1w)

+γ3(w
2
1)pKN(w3|w2)

γ3(w
2
1) =

∑

[[w]] d′′′(c(w2
1w))

∑

[[w]] c(w2
1w)

pKN(w3|w2) =
n1+(•w3

2)− d′′(n1+(•w3
2))

∑

[[w]] n1+(•w2w)

+γ2(w2)pKN(w3)

γ2(w2) =

∑

[[w]] d′′(n1+(•w2w))
∑

[[w]] n1+(•w2w)

pKN(w3) =

{

n1+(•w3)−d′(n1+(•w3))
∑

[[w]] n1+(•w)
if c(w3) > 0

γ1 if c(w3) = 0

γ1 =

∑

[[w]] d′(n1+(•w))
∑

[[w]] n1+(•w)

The parametersd′, d′′, andd′′′ are the discounts
for unigrams, bigrams and trigrams, respectively, as
defined by Chen and Goodman (1996, p. 20, (26)).
Note that our notation deviates from C&G in that
they use the single symbolD1 for the three different
valuesd′(1), d′′(1), andd′′′(1) etc.

3.2 Dupont-Rosenfeld model

History-interpolated models attempt to find a good
tradeoff between using a maximally informative his-
tory for accurate prediction of frequent events and
generalization for rare events by using lower-order
distributions; they employ this mechanism recur-
sively by progressively shortening the history.

The key idea of the improved model we will adopt
is that class generalization ought to play the same
role in history-interpolated models as the lower-
order distributions: they should improve estimates
for unseen and rare events. Following Dupont and
Rosenfeld (1997), we implement this idea by lin-
early interpolating the class-based distribution with
the lower order distribution, recursively at each
level. For a trigram model, this means that we in-
terpolatepKN(w3|w2) andpB(w3|w1w2) on the first
backoff level andpKN(w3) and pB(w3|w2) on the
second backoff level, wherepB is the (Brown) class
model (see Section 4 for details onpB). We call this
modelpDR for Dupont-Rosenfeld model and define
it as follows:

pDR(w3|w
2
1) =

c(w3
1)− d′′′(c(w3

1))
∑

[[w]] c(w2
1w)

+ γ3(w
2
1)[β1(w

2
1)pB(w3|w

2
1)

+(1− β1(w
2
1))pDR(w3|w2)]

pDR(w3|w2) =
n1+(•w3

2)− d′′(n1+(•w3
2))

∑

[[w]] n1+(•w2w)

+ γ2(w2)[β2(w2)pB(w3|w2)

+(1− β2(w2))pDR(w3)]

whereβi(v) is equal to a parameterαi if the history
(w2

1 or w2) is part of a cluster and 0 otherwise:

βi(v) =

{

αi if v ∈ B2−(i−1)

0 otherwise

B1 (resp.B2) is the set of unigram (resp. bigram) his-
tories that is covered by the clusters. We cluster bi-
gram histories and unigram histories separately and
writepB(w3|w1w2) for the bigram cluster model and
pB(w3|w2) for the unigram cluster model. Cluster-
ing and the estimation of these two distributions are
described in Section 4.
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The unigram distribution of the Dupont-
Rosenfeld model is set to the unigram distribution
of the KN model:pDR(w) = pKN(w).

The model (or family of models) defined by
Dupont and Rosenfeld (1997) is more general than
our versionpDR. Most importantly, it allows a truly
parallel backoff whereas in our model the recursive
backoff distributionpDR is interpolated with a class
distributionpB that is not backed off. We prefer this
version because it makes it easier to understand the
contribution that unique-event vs. all-event classes
make to improved language modeling; the parame-
tersβ are a good indicator of this effect.

An alternative way of setting up the Dupont-
Rosenfeld model would be to interpolate
pKN(w3|w1w2) and pB(w3|w1w2) etc – but this is
undesirable. The strength of history interpolation is
that estimates for frequent events are close to ML,
e.g., pKN(share|cents a) ≈ pML (share|cents a) for
our corpus. An ML estimate is accurate for large
counts and we should not interpolate it directly
with pB(w3|w1w2). For pDR, the discountd′′′ that
is subtracted fromc(w1w2w3) is small relative to
c(w1w2w3) and thereforepDR ≈ pML in this case
(exactly as inpKN).

3.3 Top-level interpolation

Class-based models are often combined with other
models by interpolation, starting with the work by
Brown et al. (1992). Since we cluster both unigrams
and bigrams, we interpolate three models:

pTOP(w3|w1w2)

= µ1(w1w2)pB(w3|w1w2) + µ2(w2)pB(w3|w2)

+ (1− µ1(w1w2)− µ2(w2))pKN(w3|w1w2)

whereµ1(w1w2) = λ1 if w1w2 ∈ B2 and 0 other-
wise,µ2(w2) = λ2 if w2 ∈ B1 and 0 otherwise and
λ1 andλ2 are parameters. We call this thetop-level
model pTOP because it interpolates the three models
at the top level. Most previous work on class-based
model has employed some form of top-level inter-
polation.

4 Experimental Setup

We run experiments on a Wall Street Journal (WSJ)
corpus of 50M words, split 8:1:1 into training, val-
idation and test sets. The training set contains

256,873 unique unigrams and 4,494,222 unique bi-
grams. Unknown words in validation and test sets
are mapped to a special unknown wordu.

We use the SRILM toolkit (Stolcke, 2002) for
clustering. An important parameter of the class-
based model is size|Bi| of the base set, i.e., the total
number ofn-grams (or ratheri-grams) to be clus-
tered. As part of the experiments we vary|Bi| sys-
tematically to investigate the effect of base set size.
We cluster unigrams (i = 1) and bigrams (i = 2).
For all experiments,|B1| = |B2| (except in cases
where|B2| exceeds the number of unigrams, see be-
low). SRILM does not directly support bigram clus-
tering. We therefore represent a bigram as a hyphen-
ated word in bigram clustering; e.g.,Pan Am is rep-
resented asPan-Am.

The input to the clustering is the vocabularyBi

and the cluster training corpus. For a particular base
set sizeb, the unigram input vocabularyB1 is set to
theb most frequent unigrams in the training set and
the bigram input vocabularyB2 is set to theb most
frequent bigrams in the training set.

In this section, we call the WSJ training corpus
the raw corpus and the cluster training corpus the
cluster corpus to be able to distinguish them. We
run four different clusterings for each base set size
(except for the large sets, see below). The cluster
corpora are constructed as follows.

• All-event unigram clustering. The cluster
corpus is simply the raw corpus.

• All-event bigram clustering. The cluster cor-
pus is constructed as follows. A sentence of the
raw corpus that containss words is included
twice, once as a sequence of the⌊s/2⌋ bigrams
“w1−w2 w3−w4 w5−w6 . . . ” and once as a
sequence of the⌊(s − 1)/2⌋ bigrams “w2−w3

w4−w5 w6−w7 . . . ”.

• Unique-event unigram clustering. The clus-
ter corpus is the set of all sequences of two un-
igrams∈ B1 that occur in the raw corpus, one
sequence per line. Each sequence occurs only
once in this cluster corpus.

• Unique-event bigram clustering. The cluster
corpus is the set of all sequences of two bi-
grams∈ B2 that occur in the training corpus,
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one sequence per line. Each sequence occurs
only once in this cluster corpus.

As mentioned above, we need both unigram and
bigram clusters because we want to incorporate
class-based generalization for histories of lengths 1
and 2. As we will show below this significantly in-
creases performance. Since the focus of this paper is
not on clustering algorithms, reformatting the train-
ing corpus as described above (as a sequence of hy-
phenated bigrams) is a simple way of using SRILM
for bigram clustering.

The unique-event clusterings are motivated by the
fact that in the Dupont-Rosenfeld model, frequent
events are handled by discounted ML estimates.
Classes are only needed in cases where an event was
not seen or was not frequent enough in the train-
ing set. Consequently, we should form clusters not
based on all events in the training corpus, but only
on events that are rare – because this is the type of
event that classes will then be applied to in predic-
tion.

The two unique-event corpora can be thought
of as reweighted collections in which each unique
event receives the same weight. In practice this
means that clustering is mostly influenced by rare
events since, on the level of types, most events are
rare. As we will see below, rare-event clusterings
perform better than all-event clusterings. This is
not surprising as the class-based component of the
model can only benefit rare events and it is there-
fore reasonable to estimate this component based on
a corpus dominated by rare events.

We started experimenting with reweighted cor-
pora because class sizes become very lopsided in
regular SRILM clustering as the size of the base set
increases. The reason is that the objective function
maximizes mutual information. Highly differenti-
ated classes for frequent words contribute substan-
tially to this objective function whereas putting all
rare words in a few large clusters does not hurt the
objective much. However, our focus is on using
clustering for improving prediction for rare events;
this means that the objective function is counter-
productive when contexts are frequency-weighted as
they occur in the corpus. After overweighting rare
contexts, the objective function is more in sync with
what we use clusters for in our model.

pML maximum likelihood
pB Brown cluster model
pE cluster emission probability
pT cluster transition probability
pKN KN model
pDR Dupont-Rosenfeld model
pTOP top-level interpolation
pPOLKN KN and polynomial discounting
pPOL0 polynomial discounting only

Table 2: Key to probability distributions

It is important to note that the same intu-
ition underlies unique-event clustering that
also motivates using the “unique-event” dis-
tributions n1+(•w3

2)/(
∑

n1+(•w2w)) and
n1+(•w3)/(

∑

n1+(•w)) for the backoff distri-
butions in KN. Viewed this way, the basic KN
model also uses a unique-event corpus (although a
different one) for estimating backoff probabilities.

In all cases, we set the number of clusters to
k = 512. Our main goal in this paper is to compare
different ways of setting up history-length/class in-
terpolated models and we do not attempt to optimize
k. We settled on a fixed number ofk = 512 because
Brown et al. (1992) used a total of 1000 classes. 512
unigram classes and 512 bigram classes roughly cor-
respond to this number. We prefer powers of 2 to
facilitate efficient storage of cluster ids (one such
cluster id must be stored for each unigram and each
bigram) and therefore choosek = 512. Clustering
was performed on an Opteron 8214 processor and
took from several minutes for the smallest base sets
to more than a week for the largest set of 400,000
items.

To estimate n-gram emission probabilitiespE, we
first introduce an additional cluster for all unigrams
that are not in the base set; emission probabilities
are then estimated by maximum likelihood. Cluster
transition probabilitiespT are computed using add-
one smoothing. BothpE and pT are estimated on
the raw corpus. The two class distributions are then
defined as follows:

pB(w3|w1w2) = pT(g(w3)|g(w1w2))pE(w3|g(w3))

pB(w3|w2) = pT(g(w3)|g(w2))pE(w3|g(w3))

whereg(v) is the class of the uni- or bigramv.
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pDR

all events unique events
|Bi| α1 α2 perp. α1 α2 perp.

1a1×104 .20 .40 87.42 .2 .4 87.41
2a2×104 .20 .50 86.97 .2 .5 86.88
3a3×104 .10 .40 87.14 .2 .5 86.57
4a4×104 .10 .40 87.22 .3 .5 86.31
5a5×104 .05 .30 87.54 .3 .6 86.10
6a6×104 .01 .30 87.71 .3 .6 85.96

pTOP

all events unique events
|Bi| λ1 λ2 perp. λ1 λ2 perp.

1b 1×104 .020 .03 87.65 .02 .02 87.71
2b 2×104 .030 .04 87.43 .03 .03 87.47
3b 3×104 .020 .03 87.52 .03 .03 87.34
4b 4×104 .010 .04 87.58 .03 .04 87.24
5b 5×104 .003 .03 87.74 .03 .04 87.15
6b 6×104 .000 .02 87.82 .03 .04 87.09

Perplexity of KN model: 88.03

Table 3: Optimal parameters for Dupont-Rosenfeld (left) and top-level (right) models on the validation set and per-
plexity on the validation set. The two tables compare performance when using a class model trained on all events vs a
class model trained on unique events.|B1| = |B2| is the number of unigrams and bigrams in the clusters; e.g., lines 1a
and 1b are for models that cluster 10,000 unigrams and 10,000bigrams.

Table 2 is a key to the probability distributions we
use.

5 Results

Table 3 shows the performance ofpDR andpTOP for a
range of base set sizes|Bi| and for classes trained on
all events and on unique events. Parametersαi and
λi are optimized on the validation set. Perplexity is
reported for the validation set. All following tables
also optimize on the validation set and report results
on the validation set. The last table, Table 7, also
reports perplexity for the test set.

Table 3 confirms previous findings that classes
improve language model performance. All models
have a perplexity that is lower than KN (88.03).

When comparing all-event and unique-event clus-
terings, a clear tendency is apparent. In all-event
clustering, the best performance is reached for
|Bi| = 20000: perplexity is 86.97 with this base
set size forpDR (line 2a) and 87.43 forpTOP (line
2b). In unique-event clustering, performance keeps
improving with larger and larger base sets; the best
perplexities are obtained for|Bi| = 60000: 85.96
for pDR and 87.09 forpTOP (lines 6a, 6b).

The parameter values also reflect this difference
between all-event and unique-event clustering. For
unique-event results ofpDR, we haveα1 ≥ .2 and
α2 ≥ .4 (1a–6a). This indicates that classes and his-
tory interpolation are both valuable when the model
is backing off. But for all-event clustering, the val-
ues ofαi decrease: from a peak of .20 and .50 (2a)

to .01 and .30 (6a), indicating that with larger base
sets, less and less value can be derived from classes.
This again is evidence that rare-event clustering is
the correct approach: only clusters derived in rare-
event clustering receive high weightsαi in the inter-
polation.

This effect can also be observed forpTOP: the
value of λ1 (the weight of bigrams) is higher for
unique-event clustering than for all-event clustering
(with the exception of lines 1b&2b). The quality of
bigram clusters seems to be low in all-event cluster-
ing when the base set becomes too large.

Perplexity is generally lower for unique-event
clustering than for all-event clustering: this is the
case for all values of|Bi| for pDR (1a–6a); and for
|Bi| > 20000 for pTOP (3b–6b).

Table 4 compares the two models in two different
conditions: (i) b-: using unigram clusters only and
(ii) b+: using unigram clusters and bigram clusters.
For all events, there is no difference in performance.
However, for unique events, the model that includes
bigrams (b+) does better than the model without bi-
grams (b-). The effect is larger forpDR than for
pTOP because (for unique events) a larger weight for
the unigram model (λ2 = .05 instead ofλ2 = .04)
apparently partially compensates for the missing bi-
gram clusters.

Table 3 shows that rare-event models do better
than all-event models. Given that training large class
models with SRILM on all events would take sev-
eral weeks or even months, we restrict our direct
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pDR pTOP

all unique all unique
α1 α2 perp. α1 α2 perp. λ1 λ2 perp. λ1 λ2 perp.

b- .3 87.71 .5 86.62 .02 87.82 .05 87.26
b+ .01 .3 87.71 .3 .6 85.96 0 .02 87.82 .03 .04 87.09

Table 4: Using both unigram and bigram clusters is better than using unigrams only. Results for|Bi| = 60,000.

pDR pTOP

|Bi| α1 α2 perp. λ1 λ2 perp.
1 6×104 0.3 0.6 85.96 0.03 0.04 87.09
2 1×105 0.3 0.6 85.59 0.04 0.04 86.93
3 2×105 0.3 0.6 85.20 0.05 0.04 86.77
4 4×105 0.3 0.7 85.14 0.05 0.04 86.74

Table 5: Dupont-Rosenfeld and top-level models for
|Bi| ∈ {60000, 100000, 200000, 400000}. Clustering
trained on unique-event corpora.

comparison of all-event and rare-event models to
|Bi| ≤ 60, 000 in Tables 3-4 and report only rare-
event numbers for|Bi| > 60, 000 in what follows.

As we can see in Table 5, the trends observed in
Table 3 continue as|Bi| is increased further. For
both models, perplexity steadily decreases as|Bi| is
increased from 60,000 to 400,000. (Note that for
|Bi| = 400000, the actual size ofB1 is 256,873
since there are only that many words in the training
corpus.) The improvements in perplexity become
smaller for larger base set sizes, but it is reassuring
to see that the general trend continues for large base
set sizes. Our explanation is that the class compo-
nent is focused on rare events and the items that are
being added to the clustering for large base sets are
all rare events.

The perplexity forpDR is clearly lower than that
of pTOP, indicating the superiority of the Dupont-
Rosenfeld model.1

1Dupont and Rosenfeld (1997) found a relatively large im-
provement of the “global” linear interpolation model –ptop in
our terminology – compared to the baseline whereasptop per-
forms less well in our experiments. One possible explanation is
that our KN baseline is stronger than the word trigram baseline
they used.

6 Polynomial discounting

Further comparative analysis ofpDR and pTOP re-
vealed thatpDR is not uniformly better thanpTOP.
We found thatpTOP does poorly on frequent events.
For example, for the historyw1w2 = cents a, the
continuationw3 = share dominates.pDR deals well
with this situation becausepDR(w3|w1w2) is the dis-
counted ML estimate, with a discount that is small
relative to the 10,768 occurrences ofcents a share
in the training set. In thepTOP model on the last line
in Table 5, the discounted ML estimate is multiplied
by 1− .05− .04 = .91, which results in a much less
accurate estimate ofpTOP(share|cents a).

In contrast,pTOP does well for productive histo-
ries, for which it is likely that a continuation unseen
in the training set will occur. An example is the his-
tory in the – almost any adjective or noun can follow.
There are 6251 different words that (i) occur afterin
the in the validation set, (ii) did not occur afterin
the in the training set, and (iii) occurred at least 10
times in the training set. Because their training set
unigram frequency is at least 10, they have a good
chance of being assigned to a class that captures
their distributional behavior well andpB(w3|w1w2)
is then likely to be a good estimate. For a history
with these properties, it is advantageous to further
discount the discounted ML estimates by multiply-
ing them with .91. pTOP then gives the remaining
probability mass of .09 to wordsw3 whose proba-
bility would otherwise be underestimated.

What we have just described is already partially
addressed by the KN model –γ(v) will be rela-
tively large for a productive history likev = in
the. However, it looks like the KN discounts are
not large enough for productive histories, at least not
in a combined history-length/class model. Appar-
ently, when incorporating the strengths of a class-
based model into KN, the default discounting mech-
anism does not reallocate enough probability mass
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from high-frequency to low-frequency events. We
conclude from this analysis that we need to increase
the discount valuesd for large counts.

We could add a constant tod, but one of the ba-
sic premises of the KN model, derived from the as-
sumption that n-gram marginals should be equal to
relative frequencies, is that the discount is larger for
more frequent n-grams although in many implemen-
tations of KN only the casesc(w3

1) = 1, c(w3
1) = 2,

andc(w3
1) ≥ 3 are distinguished.

This suggests that the ideal discountd(x) in an in-
tegrated history-length/class language model should
grow monotonically withc(v). The simplest way of
implementing this heuristically is a polynomial of
form ρxr whereρ andr are parameters.r controls
the rate of growth of the discount as a function ofx;
ρ is a factor that can be scaled for optimal perfor-
mance.

The incorporation of the additional polynomial
discount into KN is straightforward. We use a dis-
count functione(x) that is the sum ofd(x) and the
polynomial:

e(x) = d(x) +

{

ρxr for x ≥ 4
0 otherwise

where(e, d) ∈ {(e′, d′), (e′′, d′′), (e′′′, d′′′)}. This
model is identical topDR except thatd is replaced
with e. We call this modelpPOLKN. pPOLKN directly
implements the insight that, when using class-based
generalization, discounts for countsx ≥ 4 should be
larger than they are in KN.

We also experiment with a second version of the
model:

e(x) = ρxr

This second model, calledpPOL0, is simpler and does
not use KN discounts. It allows us to determine
whether a polynomial discount by itself (without us-
ing KN discounts in addition) is sufficient.

Results for the two models are shown in Table 6
and compared with the two best models from Ta-
ble 5, for |Bi| = 400,000, classes trained on unique
events.pPOLKN andpPOL0 achieve a small improve-
ment in perplexity when compared topDR (line 3&4
vs 2). This shows that using discounts that are larger
than KN discounts for large counts is potentially ad-
vantageous.

α1/λ1 α2/λ2 ρ r perp.
1 pTOP .05 .04 86.74
2 pDR .30 .70 85.14
3 pPOLKN .30 .70 .05 .89 85.01
4 pPOL0 .30 .70 .80 .41 84.98

Table 6: Results for polynomial discounting compared
to pDR andpTOP. |Bi| = 400,000, clusters trained on
unique events.

perplexity
tb:l model |Bi| val test

1 3 pKN 88.03 88.28
2 3:6apDR 6×104 ae b+ 87.71 87.97
3 3:6apDR 6×104 ue b+ 85.96 86.22
4 3:6bpTOP 6×104 ae b+ 87.82 88.08
5 3:6bpTOP 6×104 ue b+ 87.09 87.35
6 4 pDR 6×104 ae b- 87.71 87.97
7 4 pDR 6×104 ue b- 86.62 86.88
8 4 pTOP 6×104 ae b- 87.82 88.08
9 4 pTOP 6×104 ue b- 87.26 87.51

10 5:4 pDR 2×105 ue b+ 85.14 85.39
11 5:4 pTOP 2×105 ue b+ 86.74 86.98
12 6:3 pPOLKN 4×105 ue b+ 85.01 85.26
13 6:4 pPOL0 4×105 ue b+ 84.98 85.22

Table 7: Performance of key models on validation and
test sets. tb:l = Table and line the validation result is taken
from. ae/ue = all-event/unique-event. b- = unigrams only.
b+ = bigrams and unigrams.

The linear interpolationαp+(1−α)q of two dis-
tributions p and q is a form of linear discounting:
p is discounted by1 − α and q by α. See (Katz,
1987; Jelinek, 1990; Ney et al., 1994). It can thus
be viewed as polynomial discounting forr = 1.
Absolute discounting could be viewed as a form of
polynomial discounting forr = 0. We know of no
other work that has explored exponents between 0
and 1 and shown that for this type of exponent, one
obtains competitive discounts that could be argued
to be simpler than more complex discounts like KN
discounts.

6.1 Test set performance

We report the test set performance of the key mod-
els we have developed in this paper in Table 7. The
experiments were run with the optimal parameters
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on the validation set as reported in the table refer-
enced in column “tb:l”; e.g., on line 2 of Table 7,
(α1, α2) = (.01, .3) as reported on line 6a of Ta-
ble 3.

There is an almost constant difference between
validation and test set perplexities, ranging from +.2
to +.3, indicating that test set results are consistent
with validation set results. To test significance, we
assigned the 2.8M positions in the test set to 48 dif-
ferent bins according to the majority part-of-speech
tag of the word in the training set.2 We can then
compute perplexity for each bin, compare perplexi-
ties for different experiments and use the sign test for
determining significance. We indicate results that
were significant atp < .05 (n = 48, k ≥ 32 suc-
cesses) using a star, e.g.,3<∗ 2 means that test set
perplexity on line 3 is significantly lower than test
set perplexity on line 2.

The main findings on the validation set also hold
for the test set: (i) Trained on unique events and with
a sufficiently large|Bi|, bothpDR andpTOP are bet-
ter than KN:10<∗1, 11<∗1. (ii) Training on unique
events is better than training on all events:3<∗ 2,
5<∗4, 7<∗6, 9<∗8. (iii) For unique events, using
bigram and unigram classes gives better results than
using unigram classes only:3<∗7. Not significant:
5 < 9. (iv) The Dupont-Rosenfeld modelpDR is bet-
ter than the top-level modelpTOP: 10<∗11. (v) The
model POL0 (polynomial discounting) is the best
model overall: Not significant:13 < 12. (vi) Poly-
nomial discounting is significantly better than KN
discounting for the Dupont-Rosenfeld modelpDR al-
though the absolute difference in perplexity is small:
13<∗10.

Overall, pDR andpPOL0 achieve considerable re-
ductions in test set perplexity from 88.28 to 85.39
and 85.22, respectively. The main result of the ex-
periments is that Dupont-Rosenfeld models (which
focus on rare events) are better than the standardly
used top-level models; and that training classes on
unique events is better than training classes on all
events.

2Words with a rare majority tag (e.g., FW ‘foreign word’)
and unknown words were assigned to a special class OTHER.

7 Conclusion

Our hypothesis was that classes are a generalization
mechanism for rare events that serves the same func-
tion as history-length interpolation and that classes
should therefore be (i) primarily trained on rare
events and (ii) receive high weight only if it is likely
that a rare event will follow and be weighted in a
way analogous to the weighting of lower-order dis-
tributions in history-length interpolation.

We found clear statistically significant evidence
for both (i) and (ii). (i) Classes trained on unique-
event corpora perform better than classes trained on
all-event corpora. (ii) ThepDR model (which ad-
justs the interpolation weight given to classes based
on the prevalence of nonfrequent events following)
is better than top-level modelpTOP (which uses a
fixed weight for classes). Most previous work on
class-based models has employed top-level interpo-
lation. Our results strongly suggest that the Dupont-
Rosenfeld model is a superior model.

A comparison of Dupont-Rosenfeld and top-level
results suggested that the KN discount mechanism
does not discount high-frequency events enough.
We empirically determined that better discounts are
obtained by letting the discount grow as a func-
tion of the count of the discounted event and im-
plemented this as polynomial discounting, an ar-
guably simpler way of discounting than Kneser-Ney
discounting. The improvement of polynomial dis-
counts vs. KN discounts was small, but statistically
significant.

In future work, we would like to find a theoreti-
cal justification for the surprising fact that polyno-
mial discounting does at least as well as Kneser-Ney
discounting. We also would like to look at other
backoff mechanisms (in addition to history length
and classes) and incorporate them into the model,
e.g., similarity and topic. Finally, training classes on
unique events is an extreme way of highly weight-
ing rare events. We would like to explore training
regimes that lie between unique-event clustering and
all-event clustering and upweight rare events less.
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