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Abstract

Current approaches for semantic parsing take
a supervised approach requiring a consider-
able amount of training data which is expen-
sive and difficult to obtain. This supervision
bottleneck is one of the major difficulties in
scaling up semantic parsing.

We argue that a semantic parser can be trained
effectively without annotated data, and in-
troduce an unsupervised learning algorithm.
The algorithm takes a self training approach
driven by confidence estimation. Evaluated
over Geoquery, a standard dataset for this
task, our system achieved 66% accuracy, com-
pared to 80% of its fully supervised counter-
part, demonstrating the promise of unsuper-
vised approaches for this task.

1 Introduction

Semantic parsing, the ability to transform Natural
Language (NL) input into a formal Meaning Repre-
sentation (MR), is one of the longest standing goals
of natural language processing. The importance of
the problem stems from both theoretical and practi-
cal reasons, as the ability to convert NL into a formal
MR has countless applications.

The term semantic parsing has been used ambigu-
ously to refer to several semantic tasks (e.g., se-
mantic role labeling). We follow the most common
definition of this task: finding a mapping between
NL input and its interpretation expressed in a well-
defined formal MR language. Unlike shallow se-
mantic analysis tasks, the output of a semantic parser
is complete and unambiguous to the extent it can be
understood or even executed by a computer system.

Current approaches for this task take a data driven
approach (Zettlemoyer and Collins, 2007; Wong and
Mooney, 2007), in which the learning algorithm is
given a set of NL sentences as input and their cor-
responding MR, and learns a statistical semantic
parser — a set of parameterized rules mapping lex-
ical items and syntactic patterns to their MR. Given
a sentence, these rules are applied recursively to de-
rive the most probable interpretation.

Since semantic interpretation is limited to the syn-
tactic patterns observed in the training data, in or-
der to work well these approaches require consider-
able amounts of annotated data. Unfortunately an-
notating sentences with their MR is a time consum-
ing task which requires specialized domain knowl-
edge and therefore minimizing the supervision ef-
fort is one of the key challenges in scaling semantic
parsers.

In this work we present the first unsupervised
approach for this task. Our model compensates
for the lack of training data by employing a self
training protocol based on identifying high confi-
dence self labeled examples and using them to re-
train the model. We base our approach on a sim-
ple observation: semantic parsing is a difficult struc-
tured prediction task, which requires learning a com-
plex model, however identifying good predictions
can be done with a far simpler model capturing re-
peating patterns in the predicted data. We present
several simple, yet highly effective confidence mea-
sures capturing such patterns, and show how to use
them to train a semantic parser without manually an-
notated sentences.

Our basic premise, that predictions with high con-
fidence score are of high quality, is further used to
improve the performance of the unsupervised train-
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ing procedure. Our learning algorithm takes an EM-
like iterative approach, in which the predictions of
the previous stage are used to bias the model. While
this basic scheme was successfully applied to many
unsupervised tasks, it is known to converge to a
sub optimal point. We show that by using confi-
dence estimation as a proxy for the model’s pre-
diction quality, the learning algorithm can identify
a better model compared to the default convergence
criterion.

We evaluate our learning approach and model
on the well studied Geoquery domain (Zelle and
Mooney, 1996; Tang and Mooney, 2001), consist-
ing of natural language questions and their prolog
interpretations used to query a database consisting
of U.S. geographical information. Our experimental
results show that using our approach we are able to
train a good semantic parser without annotated data,
and that using a confidence score to identify good
models results in a significant performance improve-
ment.

2 Semantic Parsing

We formulate semantic parsing as a structured pre-
diction problem, mapping a NL input sentence (de-
noted x), to its highest ranking MR (denoted z). In
order to correctly parametrize and weight the pos-
sible outputs, the decision relies on an intermediate
representation: an alignment between textual frag-
ments and their meaning representation (denoted y).
Fig. 1 describes a concrete example of this termi-
nology. In our experiments the input sentences x
are natural language queries about U.S. geography
taken from the Geoquery dataset. The meaning rep-
resentation z is a formal language database query,
this output representation language is described in
Sec. 2.1.

The prediction function, mapping a sentence to its
corresponding MR, is formalized as follows:

ẑ = Fw(x) = arg max
y∈Y,z∈Z

wTΦ(x,y, z) (1)

Where Φ is a feature function defined over an input
sentence x, alignment y and output z. The weight
vector w contains the model’s parameters, whose
values are determined by the learning process.

We refer to the arg max above as the inference
problem. Given an input sentence, solving this in-

How many states does the Colorado river run through? 

count( state( traverse( river( const(colorado))))


x 

z 

y 

Figure 1: Example of an input sentence (x), meaning rep-
resentation (z) and the alignment between the two (y) for
the Geoquery domain

ference problem based on Φ and w is what com-
promises our semantic parser. In practice the pars-
ing decision is decomposed into smaller decisions
(Sec. 2.2). Sec. 4 provides more details about the
feature representation and inference procedure used.

Current approaches obtain w using annotated
data, typically consisting of (x, z) pairs. In Sec. 3 we
describe our unsupervised learning procedure, that is
how to obtain w without annotated data.

2.1 Target Meaning Representation

The output of the semantic parser is a logical for-
mula, grounding the semantics of the input sen-
tence in the domain language (i.e., the Geoquery
domain). We use a subset of first order logic con-
sisting of typed constants (corresponding to specific
states, etc.) and functions, which capture relations
between domains entities and properties of entities
(e.g., population : E → N ). The seman-
tics of the input sentence is constructed via func-
tional composition, done by the substitution oper-
ator. For example, given the function next to(x)
and the expression const(texas), substitution
replaces the occurrence of the free variable x
with the expression, resulting in a new formula:
next to(const(texas)). For further details
we refer the reader to (Zelle and Mooney, 1996).

2.2 Semantic Parsing Decisions

The inference problem described in Eq. 1 selects the
top ranking output formula. In practice this decision
is decomposed into smaller decisions, capturing lo-
cal mapping of input tokens to logical fragments and
their composition into larger fragments. These deci-
sions are further decomposed into a feature repre-
sentation, described in Sec. 4.

The first type of decisions are encoded directly by
the alignment (y) between the input tokens and their
corresponding predicates. We refer to these as first
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order decisions. The pairs connected by the align-
ment (y) in Fig. 1 are examples of such decisions.

The final output structure z is constructed by
composing individual predicates into a complete
formula. For example, consider the formula pre-
sented in Fig. 1: river( const(colorado))
is a composition of two predicates river and
const(colorado). We refer to the composition
of two predicates, associated with their respective
input tokens, as second order decisions.

In order to formulate these decisions, we intro-
duce the following notation. c is a constituent in the
input sentence x and D is the set of all function and
constant symbols in the domain. The alignment y is
a set of mappings between constituents and symbols
in the domain y = {(c, s)} where s ∈ D.

We denote by si the i-th output predicate compo-
sition in z, by si−1(si) the composition of the (i−1)-
th predicate on the i-th predicate and by y(si) the in-
put word corresponding to that predicate according
to the alignment y.

3 Unsupervised Semantic Parsing

Our learning framework takes a self training ap-
proach in which the learner is iteratively trained over
its own predictions. Successful application of this
approach depends heavily on two important factors
- how to select high quality examples to train the
model on, and how to define the learning objective
so that learning can halt once a good model is found.

Both of these questions are trivially answered
when working in a supervised setting: by using the
labeled data for training the model, and defining the
learning objective with respect to the annotated data
(for example, loss-minimization in the supervised
version of our system).

In this work we suggest to address both of the
above concerns by approximating the quality of
the model’s predictions using a confidence measure
computed over the statistics of the self generated
predictions. Output structures which fall close to the
center of mass of these statistics will receive a high
confidence score.

The first issue is addressed by using examples as-
signed a high confidence score to train the model,
acting as labeled examples.

We also note that since the confidence score pro-

vides a good indication for the model’s prediction
performance, it can be used to approximate the over-
all model performance, by observing the model’s to-
tal confidence score over all its predictions. This
allows us to set a performance driven goal for our
learning process - return the model maximizing the
confidence score over all predictions. We describe
the details of integrating the confidence score into
the learning framework in Sec. 3.1.

Although using the model’s prediction score (i.e.,
wTΦ(x,y, z)) as an indication of correctness is a
natural choice, we argue and show empirically, that
unsupervised learning driven by confidence estima-
tion results in a better performing model. This
empirical behavior also has theoretical justification:
training the model using examples selected accord-
ing to the model’s parameters (i.e., the top rank-
ing structures) may not generalize much further be-
yond the existing model, as the training examples
will simply reinforce the existing model. The statis-
tics used for confidence estimation are different than
those used by the model to create the output struc-
tures, and can therefore capture additional informa-
tion unobserved by the prediction model. This as-
sumption is based on the well established idea of
multi-view learning, applied successfully to many
NL applications (Blum and Mitchell, 1998; Collins
and Singer, 1999). According to this idea if two
models use different views of the data, each of them
can enhance the learning process of the other.

The success of our learning procedure hinges
on finding good confidence measures, whose confi-
dence prediction correlates well with the true quality
of the prediction. The ability of unsupervised confi-
dence estimation to provide high quality confidence
predictions can be explained by the observation that
prominent prediction patterns are more likely to be
correct. If a non-random model produces a predic-
tion pattern multiple times it is likely to be an in-
dication of an underlying phenomenon in the data,
and therefore more likely to be correct. Our specific
choice of confidence measures is guided by the intu-
ition that unlike structure prediction (i.e., solving the
inference problem) which requires taking statistics
over complex and intricate patterns, identifying high
quality predictions can be done using much simpler
patterns that are significantly easier to capture.

In the reminder of this section we describe our
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Algorithm 1 Unsupervised Confidence driven
Learning
Input: Sentences {xl}Nl=1,

initial weight vector w
1: define Confidence : X × Y × Z → R,
i = 0, Si = ∅

2: repeat
3: for l = 1, . . . , N do
4: ŷ, ẑ = arg maxy,z wTΦ(xl,y, z)

5: Si = Si ∪ {xl, ŷ, ẑ}
6: end for
7: Confidence = compute confidence statistics
8: Sconfi = select from Si using Confidence

9: wi ← Learn(∪iSconfi )
10: i = i+ 1
11: until Sconfi has no new unique examples
12: best = arg maxi(

∑
s∈Si

Confidence(s))/|S|
13: return wbest

learning approach. We begin by introducing the
overall learning framework (Sec. 3.1), we then ex-
plain the rational behind confidence estimation over
self-generated data and introduce the confidence
measures used in our experiments (Sec. 3.2). We
conclude with a description of the specific learning
algorithms used for updating the model (Sec. 3.3).

3.1 Unsupervised Confidence-Driven Learning
Our learning framework works in an EM-like

manner, iterating between two stages: making pre-
dictions based on its current set of parameters and
then retraining the model using a subset of the pre-
dictions, assigned high confidence. The learning
process “discovers” new high confidence training
examples to add to its training set over multiple it-
erations, and converges when the model no longer
adds new training examples.

While this is a natural convergence criterion, it
provides no performance guarantees, and in practice
it is very likely that the quality of the model (i.e., its
performance) fluctuates during the learning process.
We follow the observation that confidence estima-
tion can be used to approximate the performance of
the entire model and return the model with the high-
est overall prediction confidence.

We describe this algorithmic framework in detail
in Alg. 1. Our algorithm takes as input a set of

natural language sentences and a set of parameters
used for making the initial predictions1. The algo-
rithm then iterates between the two stages - predict-
ing the output structure for each sentence (line 4),
and updating the set of parameters (line 9). The
specific learning algorithms used are discussed in
Sec. 3.3. The training examples required for learn-
ing are obtained by selecting high confidence exam-
ples - the algorithm first takes statistics over the cur-
rent predicted set of output structures (line 7), and
then based on these statistics computes a confidence
score for each structure, selecting the top ranked
ones as positive training examples, and if needed,
the bottom ones as negative examples (line 8). The
set of top confidence examples (for either correct or
incorrect prediction), at iteration i of the algorithm,
is denoted Sconfi . The exact nature of the confidence
computation is discussed in Sec. 3.2.

The algorithm iterates between these two stages,
at each iteration it adds more self-annotated exam-
ples to its training set, learning therefore converges
when no new examples are added (line 11). The al-
gorithm keeps track of the models it trained at each
stage throughout this process, and returns the one
with the highest averaged overall confidence score
(lines 12-13). At each stage, the overall confidence
score is computed by averaging over all the confi-
dence scores of the predictions made at that stage.

3.2 Unsupervised Confidence Estimation

Confidence estimation is calculated over a batch of
input (x) - output (z) pairs. Each pair decomposes
into smaller first order and second order decisions
(defined Sec. 2.2). Confidence estimation is done by
computing the statistics of these decisions, over the
entire set of predicted structures. In the rest of this
section we introduce the confidence measures used
by our system.

Translation Model The first approach essentially
constructs a simplified translation model, capturing
word-to-predicate mapping patterns. This can be
considered as an abstraction of the prediction model:
we collapse the intricate feature representation into

1Since we commit to the max-score output prediction, rather
than summing over all possibilities, we require a reasonable ini-
tialization point. We initialized the weight vector using simple,
straight-forward heuristics described in Sec. 5.
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high level decisions and take statistics over these de-
cisions. Since it takes statistics over considerably
less variables than the actual prediction model, we
expect this model to make reliable confidence pre-
dictions. We consider two variations of this ap-
proach, the first constructs a unigram model over the
first order decisions and the second a bigram model
over the second order decisions. Formally, given a
set of predicted structures we define the following
confidence scores:

Unigram Score:

p(z|x) =

|z|∏
i=1

p(si|y(si))

Bigram Score:

p(z|x) =

|z|∏
i=1

p(si−1(si)|y(si−1), y(si))

Structural Proportion Unlike the first approach
which decomposes the predicted structure into in-
dividual decisions, this approach approximates the
model’s performance by observing global properties
of the structure. We take statistics over the propor-
tion between the number of predicates in z and the
number of words in x.

Given a set of structure predictions S, we com-
pute this proportion for each structure (denoted as
Prop(x, z)) and calculate the average proportion
over the entire set (denoted as AvProp(S)). The
confidence score assigned to a given structure (x,y)
is simply the difference between its proportion and
the averaged proportion, or formally

PropScore(S, (x, z)) = AvProp(S)−Prop(x, z)
This measure captures the global complexity of the
predicted structure and penalizes structures which
are too complex (high negative values) or too sim-
plistic (high positive values).

Combined The two approaches defined above
capture different views of the data, a natural question
is then - can these two measures be combined to pro-
vide a more powerful estimation? We suggest a third
approach which combines the first two approaches.
It first uses the score produced by the latter approach
to filter out unlikely candidates, and then ranks the
remaining ones with the former approach and selects
those with the highest rank.

3.3 Learning Algorithms

Given a set of self generated structures, the param-
eter vector can be updated (line 9 in Alg. 1). We
consider two learning algorithm for this purpose.

The first is a binary learning algorithm, which
considers learning as a classification problem, that
is finding a set of weights w that can best sepa-
rate correct from incorrect structures. The algo-
rithm decomposes each predicted formula and its
corresponding input sentence into a feature vector
Φ(x,y, z) normalized by the size of the input sen-
tence |x|, and assigns a binary label to this vector2.
The learning process is defined over both positive
and negative training examples. To accommodate
that we modify line 8 in Alg. 1, and use the con-
fidence score to select the top ranking examples as
positive examples, and the bottom ranking examples
as negative examples. We use a linear kernel SVM
with squared-hinge loss as the underlying learning
algorithm.

The second is a structured learning algorithm
which considers learning as a ranking problem, i.e.,
finding a set of weights w such that the “gold struc-
ture” will be ranked on top, preferably by a large
margin to allow generalization.The structured learn-
ing algorithm can directly use the top ranking pre-
dictions of the model (line 8 in Alg. 1) as training
data. In this case the underlying algorithm is a struc-
tural SVM with squared-hinge loss, using hamming
distance as the distance function. We use the cutting-
plane method to efficiently optimize the learning
process’ objective function.

4 Model

Semantic parsing as formulated in Eq. 1 is an in-
ference procedure selecting the top ranked output
logical formula. We follow the inference approach
in (Roth and Yih, 2007; Clarke et al., 2010) and
formalize this process as an Integer Linear Program
(ILP). Due to space consideration we provide a brief
description, and refer the reader to that paper for
more details.

2Without normalization longer sentences would have more
influence on binary learning problem. Normalization is there-
fore required to ensure that each sentence contributes equally to
the binary learning problem regardless of its length.
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4.1 Inference

The inference decision (Eq. 1) is decomposed into
smaller decisions, capturing mapping of input to-
kens to logical fragments (first order) and their com-
position into larger fragments (second order). We
encode a first-order decision as αcs, a binary vari-
able indicating that constituent c is aligned with the
logical symbol s. A second-order decision βcs,dt, is
encoded as a binary variable indicating that the sym-
bol t (associated with constituent d) is an argument
of a function s (associated with constituent c). We
frame the inference problem over these decisions:

Fw(x) = arg max
α,β

∑
c∈x

∑
s∈D

αcs ·wTΦ1(x, c, s)

+
∑
c,d∈x

∑
s,t∈D

βcs,dt ·wTΦ2(x, c, s, d, t) (2)

We restrict the possible assignments to the deci-
sion variables, forcing the resulting output formula
to be syntactically legal, for example by restricting
active β-variables to be type consistent, and force
the resulting functional composition to be acyclic.
We take advantage of the flexible ILP framework,
and encode these restrictions as global constraints
over Eq. 2. We refer the reader to (Clarke et al.,
2010) for a full description of the constraints used.

4.2 Features

The inference problem defined in Eq. (2) uses two
feature functions: Φ1 and Φ2.

First-order decision features Φ1 Determining if
a logical symbol is aligned with a specific con-
stituent depends mostly on lexical information.
Following previous work (e.g., (Zettlemoyer and
Collins, 2005)) we create a small lexicon, mapping
logical symbols to surface forms.3 Existing ap-
proaches rely on annotated data to extend the lexi-
con. Instead we rely on external knowledge (Miller
et al., 1990) and add features which measure the lex-
ical similarity between a constituent and a logical
symbol’s surface forms (as defined by the lexicon).

3The lexicon contains on average 1.42 words per function
and 1.07 words per constant.

Model Description
INITIAL MODEL Manually set weights (Sec. 5.1)
PRED. SCORE normalized prediction (Sec. 5.1)
ALL EXAMPLES All top structures (Sec. 5.1)
UNIGRAM Unigram score (Sec. 3.2)
BIGRAM Bigram score (Sec. 3.2)
PROPORTION Words-predicate prop (Sec. 3.2)
COMBINED Combined estimators (Sec. 3.2)
RESPONSE BASED Supervised (binary) (Sec. 5.1)
SUPERVISED Fully Supervised (Sec. 5.1)

Table 1: Compared systems and naming conventions.

Second-order decision features Φ2 Second order
decisions rely on syntactic information. We use
the dependency tree of the input sentence. Given
a second-order decision βcs,dt, the dependency fea-
ture takes the normalized distance between the head
words in the constituents c and d. In addition, a set
of features indicate which logical symbols are usu-
ally composed together, without considering their
alignment to the text.

5 Experiments

In this section we describe our experimental evalua-
tion. We compare several confidence measures and
analyze their properties. Tab. 1 defines the naming
conventions used throughout this section to refer to
the different models we evaluated. We begin by de-
scribing our experimental setup and then proceed to
describe the experiments and their results. For the
sake of clarity we focus on the best performing mod-
els (COMBINED using BIGRAM and PROPORTION)
first and discuss other models later in the section.

5.1 Experimental Settings

In all our experiments we used the Geoquery
dataset (Zelle and Mooney, 1996), consisting of U.S.
geography NL questions and their corresponding
Prolog logical MR. We used the data split described
in (Clarke et al., 2010), consisting of 250 queries for
evaluation purposes. We compared our system to
several supervised models, which were trained us-
ing a disjoint set of queries. Our learning system
had access only to the NL questions, and the log-
ical forms were only used to evaluate the system’s
performance. We report the proportion of correct
structures (accuracy). Note that this evaluation cor-
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responds to the 0/1 loss over the predicted structures.

Initialization Our learning framework requires an
initial weight vector as input. We use a straight for-
ward heuristic and provide uniform positive weights
to three features. This approach is similar in spirit
to previous works (Clarke et al., 2010; Zettlemoyer
and Collins, 2007). We refer to this system as INI-
TIAL MODEL throughout this section.

Competing Systems We compared our system to
several other systems:

(1) PRED. SCORE: An unsupervised frame-
work using the model’s internal prediction score
(wTΦ(x,y, z)) for confidence estimation.

(2) ALL EXAMPLES: Treating all predicted struc-
tures as correct, i.e., at each iteration the model is
trained over all the predictions it made. The re-
ported score was obtained by selecting the model at
the training iteration with the highest overall confi-
dence score (see line 12 in Alg. 1).

(3) RESPONSE BASED: A natural upper bound to
our framework is the approach used in (Clarke et al.,
2010). While our approach is based on assessing
the correctness os the model’s predictions according
to unsupervised confidence estimation, their frame-
work is provided with external supervision for these
decisions, indicating if the predicted structures are
correct.

(4) SUPERVISED: A fully supervised framework
trained over 250 (x, z) pairs using structured SVM.

5.2 Results

Our experiments aim to clarify three key points:

(1) Can a semantic parser indeed be trained with-
out any form of external supervision? this is our
key question, as this is the first attempt to approach
this task with an unsupervised learning protocol.4 In
order to answer it, we report the overall performance
of our system in Tab. 2.

The manually constructed model INITIALMODEL

achieves a performance of 0.22. We can expect
learning to improve on this baseline. We com-
pare three self-trained systems, ALL EXAMPLES,
PREDICTIONSCORE and COMBINED, which differ

4While unsupervised learning for various semantic tasks has
been widely discussed, this is the first attempt to tackle this task.
We refer the reader to Sec. 6 for further discussion of this point.

in their sample selection strategy, but all use con-
fidence estimation for selecting the final seman-
tic parsing model. The ALL EXAMPLES approach
achieves an accuracy score of 0.656. PREDICTION-
SCORE only achieves a performance of 0.164 us-
ing the binary learning algorithm and 0.348 us-
ing the structured learning algorithm. Finally, our
confidence-driven technique COMBINED achieved a
score of 0.536 for the binary case and 0.664 for the
structured case, the best performing models in both
cases. As expected, the supervised systems RE-
SPONSE BASED and SUPERVISED achieve the best
performance.

These results show that training the model with
training examples selected carefully will improve
learning - as the best performance is achieved with
perfect knowledge of the predictions correctness
(RESPONSE BASED). Interestingly the difference
between the structured version of our system and
that of RESPONSE BASED is only 0.07, suggesting
that we can recover the binary feedback signal with
high precision. The low performance of the PRE-
DICTIONSCORE model is also not surprising, and it
demonstrates one of the key principles in confidence
estimation - the score should be comparable across
predictions done over different inputs, and not the
same input, as done in PREDICTIONSCORE model.

(2) How does confidence driven sample selection
contribute to the learning process? Comparing
the systems driven by confidence sample-selection
to the ALL EXAMPLES approach uncovers an inter-
esting tradeoff between training with more (noisy)
data and selectively training the system with higher
quality examples. We argue that carefully select-
ing high quality training examples will result in bet-
ter performance. The empirical results indeed sup-
port our argument, as the best performing model
(RESPONSE BASED) is achieved by sample selec-
tion with perfect knowledge of prediction correct-
ness. The confidence-based sample selection system
(COMBINED) is the best performing system out of
all the self-trained systems. Nonetheless, the ALL

EXAMPLES strategy performs well when compared
to COMBINED, justifying a closer look at that aspect
of our system.

We argue that different confidence measures cap-
ture different properties of the data, and hypothe-
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size that combining their scores will improve the re-
sulting model. In Tab. 3 we compare the results of
the COMBINED measure to the results of its individ-
ual components - PROPORTION and BIGRAM. We
compare these results both when using the binary
and structured learning algorithms. Results show
that using the COMBINED measure leads to an im-
proved performance, better than any of the individ-
ual measures, suggesting that it can effectively ex-
ploit the properties of each confidence measure. Fur-
thermore, COMBINED is the only sample selection
strategy that outperforms ALL EXAMPLES.

(3) Can confidence measures serve as a good
proxy for the model’s performance? In the unsu-
pervised settings we study the learning process may
not converge to an optimal model. We argue that
by selecting the model that maximizes the averaged
confidence score, a better model can be found. We
validate this claim empirically in Tab. 4. We com-
pare the performance of the model selected using
the confidence score to the performance of the fi-
nal model considered by the learning algorithm (see
Sec. 3.1 for details). We also compare it to the best
model achieved in any of the learning iterations.

Since these experiments required running the
learning algorithm many times, we focused on the
binary learning algorithm as it converges consider-
ably faster. In order to focus the evaluation on the
effects of learning, we ignore the initial model gen-
erated manually (INITIAL MODEL) in these exper-
iments. In order to compare models performance
across the different iterations fairly, a uniform scale,
such as UNIGRAM and BIGRAM, is required. In the
case of the COMBINED measure we used the BI-
GRAM measure for performance estimation, since it
is one of its underlying components. In the PRED.
SCORE and PROPORTION models we used both their
confidence prediction, and the simple UNIGRAM

confidence score to evaluate model performance (the
latter appear in parentheses in Tab. 4).

Results show that the over overall confidence
score serves as a reliable proxy for the model perfor-
mance - using UNIGRAM and BIGRAM the frame-
work can select the best performing model, far better
than the performance of the default model to which
the system converged.

Algorithm Supervision Acc.
INITIAL MODEL — 0.222
SELF-TRAIN: (Structured)

PRED. SCORE — 0.348
ALL EXAMPLES — 0.656
COMBINED — 0.664

SELF-TRAIN: (Binary)
PRED. SCORE — 0.164
COMBINED — 0.536

RESPONSE BASED
BINARY 250 (binary) 0.692
STRUCTURED 250 (binary) 0.732

SUPERVISED
STRUCTURED 250 (struct.) 0.804

Table 2: Comparing our Self-trained systems with
Response-based and supervised models. Results show
that our COMBINED approach outperforms all other un-
supervised models.

Algorithm Accuracy
SELF-TRAIN: (Structured)

PROPORTION 0.6
BIGRAM 0.644
COMBINED 0.664

SELF-TRAIN: (Binary)
BIGRAM 0.532
PROPORTION 0.504
COMBINED 0.536

Table 3: Comparing COMBINED to its components BI-
GRAM and PROPORTION. COMBINED results in a better
score than any of its components, suggesting that it can
exploit the properties of each measure effectively.

Algorithm Best Conf. estim. Default
PRED. SCORE 0.164 0.128 (0.164) 0.134
UNIGRAM 0.52 0.52 0.4
BIGRAM 0.532 0.532 0.472
PROPORTION 0.504 0.27 (0.504) 0.44
COMBINED 0.536 0.536 0.328

Table 4: Using confidence to approximate model perfor-
mance. We compare the best result obtained in any of the
learning algorithm iterations (Best), the result obtained
by approximating the best result using the averaged pre-
diction confidence (Conf. estim.) and the result of us-
ing the default convergence criterion (Default). Results
in parentheses are the result of using the UNIGRAM con-
fidence to approximate the model’s performance.
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6 Related Work

Semantic parsing has attracted considerable interest
in recent years. Current approaches employ various
machine learning techniques for this task, such as In-
ductive Logic Programming in earlier systems (Zelle
and Mooney, 1996; Tang and Mooney, 2000) and
statistical learning methods in modern ones (Ge and
Mooney, 2005; Nguyen et al., 2006; Wong and
Mooney, 2006; Kate and Mooney, 2006; Zettle-
moyer and Collins, 2005; Zettlemoyer and Collins,
2007; Zettlemoyer and Collins, 2009).

The difficulty of providing the required supervi-
sion motivated learning approaches using weaker
forms of supervision. (Chen and Mooney, 2008;
Liang et al., 2009; Branavan et al., 2009; Titov and
Kozhevnikov, 2010) ground NL in an external world
state directly referenced by the text. The NL input in
our setting is not restricted to such grounded settings
and therefore we cannot exploit this form of supervi-
sion. Recent work (Clarke et al., 2010; Liang et al.,
2011) suggest using response-based learning proto-
cols, which alleviate some of the supervision effort.
This work takes an additional step in this direction
and suggest an unsupervised protocol.

Other approaches to unsupervised semantic anal-
ysis (Poon and Domingos, 2009; Titov and Kle-
mentiev, 2011) take a different approach to seman-
tic representation, by clustering semantically equiv-
alent dependency tree fragments, and identifying
their predicate-argument structure. While these ap-
proaches have been applied successfully to semantic
tasks such as question answering, they do not ground
the input in a well defined output language, an essen-
tial component in our task.

Our unsupervised approach follows a self training
protocol (Yarowsky, 1995; McClosky et al., 2006;
Reichart and Rappoport, 2007b) enhanced with con-
straints restricting the output space (Chang et al.,
2007; Chang et al., 2009). A Self training proto-
col uses its own predictions for training. We esti-
mate the quality of the predictions and use only high
confidence examples for training. This selection cri-
terion provides an additional view, different than the
one used by the prediction model. Multi-view learn-
ing is a well established idea, implemented in meth-
ods such as co-training (Blum and Mitchell, 1998).

Quality assessment of a learned model output was

explored by many previous works (see (Caruana and
Niculescu-Mizil, 2006) for a survey), and applied
to several NL processing tasks such as syntactic
parsing (Reichart and Rappoport, 2007a; Yates et
al., 2006), machine translation (Ueffing and Ney,
2007), speech (Koo et al., 2001), relation extrac-
tion (Rosenfeld and Feldman, 2007), IE (Culotta and
McCallum, 2004), QA (Chu-Carroll et al., 2003)
and dialog systems (Lin and Weng, 2008).

In addition to sample selection we use confidence
estimation as a way to approximate the overall qual-
ity of the model and use it for model selection. This
use of confidence estimation was explored in (Re-
ichart et al., 2010), to select between models trained
with different random starting points. In this work
we integrate this estimation deeper into the learning
process, thus allowing our training procedure to re-
turn the best performing model.

7 Conclusions

We introduced an unsupervised learning algorithm
for semantic parsing, the first for this task to the best
of our knowledge. To compensate for the lack of
training data we use a self-training protocol, driven
by unsupervised confidence estimation. We demon-
strate empirically that our approach results in a high
preforming semantic parser and show that confi-
dence estimation plays a vital role in this success,
both by identifying good training examples as well
as identifying good over all performance, used to
improve the final model selection.

In future work we hope to further improve un-
supervised semantic parsing performance. Particu-
larly, we intend to explore new approaches for confi-
dence estimation and their usage in the unsupervised
and semi-supervised versions of the task.
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