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Abstract

This paper presents an unsupervised method
for deriving inference axioms by composing
semantic relations. The method is indepen-
dent of any particular relation inventory. It
relies on describing semantic relations using
primitives and manipulating these primitives
according to an algebra. The method was
tested using a set of eight semantic relations
yielding 78 inference axioms which were eval-
uated over PropBank.

1 Introduction

Capturing the meaning of text is a long term goal
within the NLP community. Whereas during the last
decade the field has seen syntactic parsers mature
and achieve high performance, the progress in se-
mantics has been more modest. Previous research
has mostly focused on relations between particular
kind of arguments, e.g., semantic roles, noun com-
pounds. Notwithstanding their significance, they
target a fairly narrow text semantics compared to the
broad semantics encoded in text.

Consider the sentence in Figure 1. Semantic role
labelers exclusively detect the relations indicated
with solid arrows, which correspond to the sentence
syntactic dependencies. On top of those roles, there
are at least three more relations (discontinuous ar-
rows) that encode semantics other than the verb-
argument relations.

In this paper, we venture beyond semantic rela-
tion extraction from text and investigate techniques
to compose them. We explore the idea of inferring
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Figure 1: Semantic representation ofA man from the
Bush administration came before the House Agricultural
Committee yesterday to talk about . . .(wsj 0134, 0).

a new relation linking the ends of a chain of rela-
tions. This scheme, informally used previously for
combiningHYPERNYM with other relations, has not
been studied for arbitrary pairs of relations.

For example, it seems adequate to state the fol-
lowing: if x is PART-OF y andy is HYPERNYM of z,
thenx is PART-OF z. An inference using this rule can
be obtained instantiatingx, y andz with engine, car
andconvertible. Going a step further, we consider
nonobvious inferences involvingAGENT, PURPOSE

and other semantic relations.
The novelties of this paper are twofold. First,

an extended definition for semantic relations is pro-
posed, including (1) semantic restrictions for their
domains and ranges, and (2) semantic primitives.

Second, an algorithm for obtaining inference ax-
ioms is described. Axioms take as their premises
chains of two relations and output a new relation
linking the ends of the chain. This adds an extra
layer of semantics on top of previously extracted re-
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Primitive Description Inv. Ref.
1: Composable Relation can be meaningfully composed with other relationsdue to their fun-

damental characteristics
id. [3]

2: Functional x is in a specific spatial or temporal position with respect toy in order for the
connection to exist

id. [1]

3: Homeomerous x must be the same kind of thing asy id. [1]
4: Separable x can be temporally or spatially separated fromy; they can exist independentlyid. [1]
5: Temporal x temporally precedesy op. [2]
6: Connected x is physically or temporally connected toy; connection might be indirect. id. [3]
7: Intrinsic Relation is an attribute of the essence/stufflike nature ofx andy id. [3]
8: Volitional Relation requires volition between the arguments id. -
9: Universal Relation is always true betweenx andy id. -

10: Fully Implicational The existence ofx implies the existence ofy op. -
11: Weakly Implicational The existence ofx sometimes implies the existence ofy op. -

Table 1: List of semantic primitives. In the fourth column, [1] stands for (Winston et al., 1987), [2] for (Cohen and
Losielle, 1988) and [3] for (Huhns and Stephens, 1989).

lations. The conclusion of an axiom is identified us-
ing an algebra for composing semantic primitives.

We name this framework Composition of Seman-
tic Relations (CSR). The extended definition, set of
primitives, algebra to compose primitives and CSR
algorithm are independent of any particular set of
relations. We first presented CSR and used it over
PropBank in (Blanco and Moldovan, 2011). In this
paper, we extend that work using a different set of
primitives and relations. Seventy eight inference ax-
ioms are obtained and an empirical evaluation shows
that inferred relations have high accuracies.

2 Semantic Relations

Semantic relations are underlying relations between
concepts. In general, they are defined by a textual
definition accompanied by a few examples. For ex-
ample, Chklovski and Pantel (2004) loosely define
ENABLEMENT as a relation that holds between two
verbs V1 and V2 when the pair can be glossed as
V1 is accomplished by V2 and gives two examples:
assess::reviewandaccomplish::complete.

We find this widespread kind of definition weak
and prone to confusion. Following (Helbig, 2005),
we propose an extended definition for semantic re-
lations, including semantic restrictions for its argu-
ments. For example,AGENT(x, y) holds between an
animate concrete object x and asituation y.

Moreover, we propose to characterize relations by
semantic primitives. Primitives indicate whether a
property holds between the arguments of a relation,

e.g., the primitivetemporal indicates if the first ar-
gument must happen before the second.

Besides having a better understanding of each re-
lation, this extended definition allows us to identify
possible and not possible combinations of relations,
as well as to automatically determine the conclusion
of composing a possible combination.

Formally, for a relationR(x, y), the extended def-
initions specifies: (a) DOMAIN (R) and RANGE(R)
(i.e., semantic restrictions forx andy); and (b)PR

(i.e., values for the primitives). The inverse relation
R−1 can be obtained by switching domain and range,
and definingPR−1 as depicted in Table 1.

2.1 Semantic Primitives

Semantic primitives capture deep characteristics of
relations. They are independently determinable for
each relation and specify a property between an el-
ement of the domain and an element of the range of
the relation being described (Huhns and Stephens,
1989). Primitives are fundamental, they cannot be
explained using other primitives.

For each primitive, each relation takes a value
from the setV = {+,−, 0}. ‘+’ indicates that the
primitive holds, ‘−’ that it does not hold, and ‘0’
that it does not apply. Since a cause must precede its
effect, we haveP temporal

CAUSE = +.
Primitives complement the definition of a relation

and completely characterize it. Coupled with do-
main and range restrictions, primitives allow us to
automatically manipulate and reason over relations.
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1:Composable
R2

R1 − 0 +

− × 0 ×
0 0 0 0
+ × 0 +

2:Functional
R2

R1 − 0 +

− − 0 +
0 0 0 0
+ + 0 +

3:Homeomerous
R2

R1 − 0 +

− − − −
0 − 0 0
+ − 0 +

4:Separable
R2

R1 − 0 +

− − − −
0 − 0 +
+ − + +

5:Temporal
R2

R1 − 0 +

− − − ×
0 − 0 +
+ × + +

6:Connected
R2

R1 − 0 +

− − − +
0 − 0 +
+ + + +

7:Intrinsic
R2

R1 − 0 +

− − 0 −
0 0 0 0
+ − 0 +

8:Volitional
R2

R1 − 0 +

− − 0 +
0 0 0 +
+ + + +

9:Universal
R2

R1 − 0 +

− − 0 −
0 0 0 0
+ − 0 +

10:F. Impl.
R2

R1 − 0 +

− − 0 ×
0 0 0 0
+ × 0 +

11:W. Impl.
R2

R1 − 0 +

− − − ×
0 − 0 +
+ × + +

Table 2: Algebra for composing semantic primitives.

The set of primitives used in this paper (Table
1) is heavily based on previous work in Knowledge
Bases (Huhns and Stephens, 1989), but we consid-
ered some new primitives. The new primitives are
justified by the fact that we aim at composing rela-
tions capturing the semantics from natural language.
Whatever the set of relations, it will describe the
characteristics of events (who / what / where / when
/ why / how) and connections between them (e.g.,
CAUSE, CORRELATION). Time, space and volition
also play an important role. The third column in
Table 1 indicates the value of the primitive for the
inverse relation:id. means it takes the same;op. the
opposite. The opposite of− is +, the opposite of+
is−, and the opposite of0 is 0.

2.1.1 An Algebra for Composing Semantic
Primitives

The key to automatically obtain inference axioms is
the ability to know the result of composing primi-
tives. GivenP i

R1
andP i

R2
, i.e., the values of theith

primitive for R1 and R2, we define an algebra for
P i

R1
◦ P i

R2
, i.e., the result of composing them. Ta-

ble 2 depicts the algebra for all primitives. An ‘×’
means that the composition is prohibited.

Consider, for example, the Intrinsic primitive: if
both relations areintrinsic (+), the composition is
intrinsic (+); else if intrinsic does not apply to ei-
ther relation (0), the primitive does not apply to the
composition either (0); else the composition is not
intrinsic (−).

3 Inference Axioms

Semantic relations are composed using inference ax-
ioms. An axiom is defined by using the composi-

R1 ◦ R2 R1
−1 ◦ R2

x
R1

R3

y

R2

z

x

R3

y

R2

R1

z

R2 ◦ R1 R2 ◦ R1
−1

x

R2

R3

y
R1

z

x
R3

R2

y z
R1

Table 3: The four unique possible axioms taking as
premisesR1 andR2. Conclusions are indicated byR3 and
are not guaranteed to be the same for the four axioms.

tion operator ‘◦’; it combines two relations called
premisesand yields aconclusion. We denote an ax-
iom asR1(x, y) ◦ R2(y, z) → R3(x, z), whereR1 and
R2 are the premises andR3 the conclusion. In or-
der to instantiate an axiom, the premises must form
a chain by having argumenty in common.

In general, forn relations there are
(

n
2

)

pairs. For
each pair, taking into account inverse relations, there
are 16 possible combinations. Applying property
Ri ◦Rj = (Rj

−1 ◦Ri
−1)−1, only 10 are unique: (a) 4

combineR1, R2 and their inverses (Table 3); (b) 3
combineR1 and R1

−1; and (c) 3 combineR2 and
R2
−1. The most interesting axioms fall into category

(a) and there are
(

n

2

)

× 4 + 3n = 2× n(n− 1) + 3n =

2n2 + n potential axioms in this category.

Depending onn, the number of potential axioms
to consider can be significantly large. Forn = 20,
there are 820 axioms to explore and forn = 30,
1,830. Manual examination of those potential ax-
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Relation R Domain Range P 1

R P 2

R P 3

R P 4

R P 5

R P 6

R P 7

R P 8

R P 9

R P 10

R P 11

R

a: CAU CAUSE si si + + - + + - + 0 - + +
b: INT INTENT si aco + + - + - - - + - 0 -
c: PRP PURPOSE si, ao si, co, ao + - - + - - - - - 0 -
d: AGT AGENT aco si + + - + 0 - - + - 0 0
e: MNR MANNER st, ao, ql si + - - + 0 - - + - 0 0
f : AT-L AT-LOCATION o, si loc + + - 0 0 + - 0 - 0 0
g: AT-T AT-TIME o, si tmp + + - 0 0 + - 0 - 0 0
h: SYN SYNONYMY ent ent + - + 0 0 0 + 0 + 0 0

Table 4: Extended definition for the set of relations.

ioms would be time-consuming and prone to errors.
We avoid this by using the extended definition and
the algebra for composing primitives.

3.1 Necessary Conditions for Composing
Semantic Relations

There are two necessary conditions for composing
R1 andR2:
• They have to be compatible. A pair of relations

is compatible if it is possible, from a theoretical
point of view, to compose them.
Formally, R1 and R2 are compatible iff
RANGE(R1) ∩ DOMAIN (R2) 6= ∅.

• A third relation R3 must match as con-
clusion, i.e., ∃R3 such that DOMAIN (R3) ∩
DOMAIN (R1) 6= ∅ and RANGE(R3) ∩
RANGE(R2) 6= ∅. Furthermore, PR3

must
be consistent withPR1

◦ PR2
.

3.2 CSR: An Algorithm for Composing
Semantic Relations

Consider any set of relationsR defined using the ex-
tended definition. One can obtain inference axioms
using the following algorithm:

For (R1, R2) ∈ R×R:
For (Ri, Rj) ∈ [(R1, R2), (R1

−1, R2), (R2, R1), (R2, R1
−1)]:

1. Domain and range compatibility
If RANGE(Ri) ∩ DOMAIN(Rj) = ∅, break

2. Conclusion match
Repeat for R3 ∈ possible conc(R, Ri, Rj):

(a) If DOMAIN (R3) ∩ DOMAIN (Ri) = ∅ or
RANGE(R3) ∩ RANGE(Rj) = ∅, break

(b) If consistent(PR3
, PRi

◦ PRj
),

axioms += Ri(x, y) ◦ Rj(y, z) → R3(x, z)

GivenR, R−1 can be automatically obtained (Sec-
tion 2). Possible conc(R, Ri, Rj) returns the setR

unlessRi (Rj) is universal (P 9 = +), in which case
it returnsRj (Ri). Consistent(PR1

, PR2
) is a simple

procedure that compares the values assigned to each
primitive; two values are consistent unless they have
different opposite values or any of them is ‘×’ (i.e.,
the composition is prohibited).

3.3 An Example: Agent and Purpose

We present an example of applying the CSR algo-
rithm by inspecting the potential axiomAGENT(x,
y) ◦ PURPOSE−1(y, z) → R3(x, z), wherex is the
agent ofy, and actiony has as its purposez. A state-
ment instantiating the premises is[Mary] x [came]y
to [talk]z about the issue. Knowing AGENT(Mary,
came) and PURPOSE−1(came, talk), our goal is to
identify the linksR3(Mary, talk), if any.

We use the relations as defined in Table 4. First,
we note that bothAGENT andPURPOSE−1 are com-
patible (Step 1). Second, we must identify the pos-
sible conclusionsR3 that fit as conclusions (Step 2).

GivenPAGENT andPPURPOSE−1, we obtainPAGENT◦
PPURPOSE−1 using the algebra:

PAGENT = {+,+,−,+, 0,−,−,+,−,0, 0}
PPURPOSE−1 = {+,−,−,+,+,−,−,−,−,0,+}

PAGENT ◦ PPURPOSE−1 = {+,+,−,+,+,−,−,+,−,0,+}

Out of all relations (Section 4),AGENT and IN-
TENT−1 fit the conclusion match. First, their do-
mains and ranges are compatible with the composi-
tion (Step 2a). Second, bothPAGENT andPINTENT−1

are consistent withPAGENT ◦ PPURPOSE−1 (Step 2b).
Thus, we obtain the following axioms:AGENT(x, y)
◦ PURPOSE−1(y, z) → AGENT(x, z) andAGENT(x,
y) ◦ PURPOSE−1(y, z) → INTENT−1(x, z).

Instantiating the axioms over[Mary] x [came]y to
[talk] z about the issueyields AGENT(Mary, talk)
and INTENT−1(Mary, talk). Namely, the axioms
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R2 R2 R2

R1 a b c d e f g h R1 a b c d e f g h R1 a−1 b−1 c−1 d−1 e−1 f−1 g−1 h−1

a a : : - f g a a−1 : b b - f g a−1 a : : d−1 - a
b - f g b b−1 b−1 : : b−1,d−1 f g b−1 b : : b
c : b c - e f g c c−1 b−1 : : e f g c−1 c : : : b,d−1 e−1 c
d d - d d f g d d−1 - f g d−1 d d b−1,d - b,d d
e - b e e f g e e−1 - b,d e−1 e,e−1 f g e−1 e - e b−1,d−1 e,e−1 e
f f f−1 f−1 f−1 f−1 f−1 f−1 - - f−1 f - f
g g g−1 g−1 g−1 g−1 g−1 g−1 - - g−1 g - g
h a b c d e f g h h−1 a b c d e f g h,h−1 h a−1 b−1 c−1 d−1 e−1 f−1 g−1 h,h−1

Table 5: Inference axioms automatically obtained using therelations from Table 4. A letter indicates an axiomR1 ◦ R2

→ R3 by indicatingR3. An empty cell indicates thatR1 andR2 do not have compatible domains and ranges; ‘:’ that
the composition is prohibited; and ‘-’ that a relationR3 such thatPR3

is consistent withPR1
◦ PR2

could not be found.

yield Mary is the agent of talking, andshe has the in-
tention of talking. These two relations are valid but
most probably ignored by a role labeler sinceMary
is not an argument oftalk.

4 Case Study

In this Section, we apply the CSR algorithm over a
set of eight well-known relations. It is out of the
scope of this paper to explain in detail the semantics
of each relation or their detection. Our goal is to
obtain inference axioms and, taking for granted that
annotation is available, evaluate their accuracy.

The only requirement for the CSR algorithm is to
define semantic relations using the extended defini-
tion (Table 4). To define domains and ranges, we
use the ontology in Section 4.2. Values for the prim-
itives are assigned manually. The meaning of each
relations is as follows:
• CAU(x, y) encodes a relation between twositua-

tions, where the existence ofy is due to the pre-
vious existence ofx, e.g.,He [got]y a bad grade
because he [didn’t submit]x the project.

• INT(x, y) links ananimate concrete object and the
situations he wants to become true, e.g.,[Mary] y

would like to [grow]x bonsais.
• PRP(x, y) holds between a concepty and its main

goal x. Purposes can be defined forsituations,
e.g., [pruning]y allows new [growth]x; concrete

objects, e.g.,the [garage]y is used for [storage]x ;
or abstract objects, e.g., [language]y is used to
[communicate]x .

• AGT(x, y) links a situation y and its intentional
doerx, e.g., [Mary] x [went]y to Paris. x is re-
stricted toanimate concrete objects.

• MNR(x, y) holds between the mode, way, style or

fashionx in which asituation y happened.x can
be astate, e.g.,[walking]y [holding]x hands; ab-

stract objects, e.g.,[die]y [with pain]x; or qualities,
e.g. [fast]x [delivery]y .

• AT-L(x, y) defines the spatial contexty of anob-

ject or situation x, e.g.,He [went]x [to Cancun]y,
[The car]x is [in the garage]y.

• AT-T(x, y) links an object or situation x, with
its temporal informationy, e.g., He [went]x
[yesterday]y , [20th century]y [sculptures]x .

• SYN(x, y) can be defined between any twoentities

and holds when both arguments are semantically
equivalent, e.g.,SYN(dozen, twelve).

4.1 Inference Axioms Automatically Obtained

After applying the CSR algorithm over the relations
in Table 4, we obtain 78 unique inference axioms
(Table 5). Each sub table must be indexed with
the first and second premises as row and column re-
spectively. The table on the left summarizes axioms
R1 ◦ R2 → R3 andR2 ◦ R1 → R3, the one in the mid-
dle axiomR1

−1 ◦ R2 → R3 and the one on the right
axiomR2 ◦ R1

−1 → R3.
The CSR algorithm identifies several correct ax-

ioms and accurately marks as prohibited several
combinations that would lead to wrong inferences:
• For CAUSE, the inherent transitivity is detected

(a◦ a→ a). Also, no relation is inferred between
two different effects of the same cause (a−1 ◦ a
→ :) and between two causes of the same effect
(a◦ a−1 → :).

• The location and temporal information of con-
cept y is inherited by its cause, intention, pur-
pose, agent and manner (sub table on the left,f
andg columns).
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• As expected, axioms involvingSYNONYMY as
one of their premises yield the other premise as
their conclusion (all sub tables).

• The AGENT of y is inherited by its causes, pur-
poses and manners (d row, sub table on the right).
In all examples below,AGT(x, y) holds, and
we infer AGT(x, z) after composing it withR2:
(1) [He]x [went]y after [reading]z a good review,
R2: CAU−1(y, z); (2) [They]x [went]y to [talk]z

about it, R2: PRP−1(y, z); and (3)[They]x [were
walking]y [holding]z hands, R2: MNR−1(y, z)
An AGENT for a situationy is also inherited by
its effects, and the situations that havey as their
manner or purpose (d row, sub table on the left).

• A concept intends the effects of its intentions
and purposes (b−1 ◦ a → b−1, c−1 ◦ a →
b−1). For example,[I] x printed the document to
[read]y and [learn]z the contents; INT−1(I, read)
◦ CAU(read, learn) → INT−1(I, learn).

It is important to note that domain and range re-
strictions are not sufficient to identify inference ax-
ioms; they only filter out pairs of not compatible re-
lations. The algebra to compose primitives is used
to detect prohibited combinations of relations based
on semantic grounds and identify the conclusion of
composing them. Without primitives, the cells in Ta-
ble 5 would be either empty (marking the pair as not
compatible) or would simply indicate that the pair
has compatible domain and range (without identify-
ing the conclusion).

Table 5 summarizes 136 unique pairs of premises
(recall Ri ◦ Rj = (Rj

−1 ◦ Ri
−1)−1). Domain and

range restrictions mark 39 (28.7%) as not compati-
ble. The algebra labels 12 pairs as prohibited (8.8%,
[12.4% of the compatible pairs]) and is unable to
find a conclusion 14 times (10.3%, [14.4%]). Fi-
nally, conclusions are found for 71 pairs (52.2%,
[73.2%]). Since more than one conclusion might be
detected for the same pair of premises, 78 inference
axioms are ultimately identified.

4.2 Ontology

In order to define domains and ranges, we use a sim-
plified version of the ontology presented in (Helbig,
2005). We find enough to contemplate only seven
base classes:ev, st, co, aco, ao, loc and tmp. Entities

(ent) refer to any concept and are divided intositua-

tions (si), objects (o) anddescriptors (des).

• Situations are anything that happens at a time and
place and are divided intoevents (ev) andstates

(st). Events imply a change in the status of other
entities (e.g.,grow, conference); states do not
(e.g.,be standing, account for 10%).

• Objects can be eitherconcrete (co, palpable, tan-
gible, e.g.,table, keyboard) or abstract (ao, intan-
gible, product of human reasoning, e.g.,disease,
weight). Concrete objects can be further classi-
fied asanimate (aco) if they have life, vigor or
spirit (e.g.John, cat).

• Descriptors state properties about thelocal (loc,
e.g., by the table, in the box) or temporal (tmp,
e.g.,yesterday, last month) context of an entity.

This simplified ontology does not aim at defining
domains and ranges for any relation set; it is a sim-
plification to fit the eight relations we work with.

5 Evaluation

An evaluation was performed to estimate the valid-
ity of the 78 axioms. Because the number of axioms
is large we have focused on a subset of them (Table
6). The 31 axioms havingSYN as premise are intu-
itively correct: since synonymous concepts are in-
terchangeable, given veracious annotation they per-
form valid inferences.

We use PropBank annotation (Palmer et al., 2005)
to instantiate the premises of each axiom. First,
all instantiations of axiomPRP◦ MNR−1 → MNR−1

were manually checked. This axiom yields 237 new
MANNER, 189 of which are valid (Accuracy 0.80).

Second, we evaluated axioms 1–7 (Table 6).
Since PropBank is a large corpus, we restricted this
phase to the first 1,000 sentences in which there is an
instantiation of any axiom. These sentences contain
1,412 instantiations and are found in the first 31,450
sentences of PropBank.

Table 6 depicts the total number of instantiations
for each axiom and its accuracy (columns 3 and 4).
Accuracies range from 0.40 to 0.90, showing that the
plausibility of an axiom depends on the axiom. The
average accuracy for axioms involvingCAU is 0.54
and for axioms involvingPRPis 0.87.

Axiom CAU ◦ AGT−1 → AGT−1 adds 201 rela-
tions, which corresponds to 0.89% in relative terms.
Its accuracy is low, 0.40. Other axioms are less pro-
ductive but have a greater relative impact and accu-
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no heuristic with heuristic
No. Axiom No. Inst. Acc. Produc. No. Inst. Acc. Produc.
1 CAU ◦ AGT−1 → AGT−1 201 0.40 0.89% 75 0.67 0.33%
2 CAU ◦ AT-L → AT-L 17 0.82 0.84% 15 0.93 0.74%
3 CAU ◦ AT-T → AT-T 72 0.85 1.25% 69 0.87 1.20%
1–3 CAU ◦ R2 → R3 290 0.54 0.96% 159 0.78 0.52%
4 PRP ◦ AGT−1 → AGT−1 375 0.89 1.66% 347 0.94 1.54%
5 PRP ◦ AT-L → AT-L 49 0.90 2.42% 48 0.92 2.37%
6 PRP ◦ AT-T → AT-T 138 0.84 2.40% 129 0.88 2.25%
7 PRP ◦ MNR−1 → MNR−1 71 0.82 3.21% 70 0.83 3.16%
4–7 PRP ◦ R2 → R3 633 0.87 1.95% 594 0.91 1.83%
1–7 All 923 0.77 2.84% 753 0.88 2.32%

Table 6: Axioms used for evaluation, number of instances, accuracy and productivity (i.e., percentage of relations
added on top the ones already present). Results are reportedwith and without the heuristic.

. . . space officials

AGT

AGT

in Tokyo in July for an exhibit

CAU

AT-T

AT-L

stopped by . . .

AT-L

AT-T

Figure 2: Basic (solid arrows) and inferred relations (discontinuous) fromA half-dozen Soviet space officials, in Tokyo
in July for an exhibit, stopped by to see their counterparts at the National . . .(wsj 0405, 1).

racy. For example, axiomPRP◦ MNR−1 → MNR−1,
only yields 71 newMNR, and yet it is adding 3.21%
in relative terms with an accuracy of 0.82.

Overall, applying the seven axioms adds 923 re-
lations on top of the ones already present (2.84% in
relative terms) with an accuracy of 0.77. Figure 2
shows examples of inferences using axioms 1–3.

5.1 Error Analysis

Because of the low accuracy of axiom 1, an error
analysis was performed. We found that unlike other
axioms, this axiom often yield a relation type that
is already present in the semantic representation.
Specifically, it often yieldsR(x, z) whenR(x’ , z) is
already known. We use the following heuristic in
order to improve accuracy:do not instantiate an ax-
iom R1(x, y) ◦ R2(y, z) → R3(x, z) if a relation of the
form R3(x’ , z) is already known.

This simple heuristic has increased the accuracy
of the inferences at the cost of lowering their pro-
ductivity. The last three columns in Table 6 show
results when using the heuristic.

6 Comparison with Previous Work

There have been many proposals to detect seman-
tic relations from text without composition. Re-
searches have targeted particular relations (e.g.,
CAUSE (Chang and Choi, 2006; Bethard and Mar-
tin, 2008)), relations within noun phrases (Nulty,
2007), named entities (Hirano et al., 2007) or clauses
(Szpakowicz et al., 1995). Competitions include
(Litkowski, 2004; Carreras and Màrquez, 2005;
Girju et al., 2007; Hendrickx et al., 2009).

Two recent efforts (Ruppenhofer et al., 2009; Ger-
ber and Chai, 2010) are similar to CSR in their goal
(i.e., extract meaning ignored by current semantic
parsers), but completely differ in their means. Their
merit relies on annotating and extracting semantic
connections not originally contemplated (e.g., be-
tween concepts from two different sentences) us-
ing an already known and fixed relation set. Unlike
CSR, they are dependent on the relation inventory,
require annotation and do not reason or manipulate
relations. In contrast to all the above references and
the state of the art, the proposed framework obtains
axioms that take as input semantic relations pro-
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duced by others and output more relations: it adds
an extra layer of semantics previously ignored.

Previous research has exploited the idea of using
semantic primitives to define and classify seman-
tic relations under the names ofrelation elements,
deep structure, aspectsandprimitives. The first at-
tempt on describing semantic relations using prim-
itives was made by Chaffin and Herrmann (1987);
they differentiate 31 relations using 30relation el-
ementsclustered into five groups (intensional force,
dimension, agreement, propositional and part-whole
inclusion). Winston et al. (1987) introduce 3rela-
tion elements(functional, homeomerous and sepa-
rable) to distinguish six subtypes ofPART-WHOLE.
Cohen and Losielle (1988) use the notion ofdeep
structurein contrast to thesurface relationand uti-
lizes twoaspects(hierarchical and temporal). Huhns
and Stephens (1989) consider a set of 10primitives.

In theoretical linguistics, Wierzbicka (1996) in-
troduced the notion of semantic primes to perform
linguistic analysis. Dowty (2006) studies composi-
tionality and identifies entailments associated with
certain predicates and arguments (Dowty, 2001).

There has not been much work on composing
relations in the field of computational linguistics.
The termcompositional semanticsis used in con-
junction with the principle of compositionality, i.e.,
the meaning of a complex expression is determined
from the meanings of its parts, and the way in which
those parts are combined. These approaches are
usually formal and use a potentially infinite set of
predicates to represent semantics. Ge and Mooney
(2009) extracts semantic representations using syn-
tactic structures while Copestake et al. (2001) devel-
ops algebras for semantic construction within gram-
mars. Logic approaches include (Lakoff, 1970;
Sánchez Valencia, 1991; MacCartney and Manning,
2009). Composition of Semantic Relations is com-
plimentary to Compositional Semantics.

Previous research has manually extracted plau-
sible inference axioms for WordNet relations
(Harabagiu and Moldovan, 1998) and transformed
chains of relations into theoretical axioms (Helbig,
2005). The CSR algorithm proposed here automati-
cally obtains inference axioms.

Composing relations has been proposed before
within knowledge bases. Cohen and Losielle (1988)
combines a set of nine fairly specific relations (e.g.,

FOCUS-OF, PRODUCT-OF, SETTING-OF). The key
to determine plausibility is thetransitivity charac-
teristic of the aspects: two relations shall not com-
bine if they have contradictory values for any aspect.
The first algebra to compose semantic primitives
was proposed by Huhns and Stephens (1989). Their
relations are not linguistically motivated and ten of
them map to some sort ofPART-WHOLE (e.g.PIECE-
OF, SUBREGION-OF). Unlike (Cohen and Losielle,
1988; Huhns and Stephens, 1989), we use typical
relations that encode the semantics of natural lan-
guage, propose a method to automatically obtain the
inverse of a relation and empirically test the validity
of the axioms obtained.

7 Conclusions

Going beyond current research, in this paper we
investigate the composition of semantic relations.
The proposed CSR algorithm obtains inference ax-
ioms that take as their input semantic relations and
output a relation previously ignored. Regardless of
the set of relations and annotation scheme, an ad-
ditional layer of semantics is created on top of the
already existing relations.

An extended definition for semantic relations is
proposed, including restrictions on their domains
and ranges as well as values for semantic primitives.
Primitives indicate if a certain property holds be-
tween the arguments of a relation. An algebra for
composing semantic primitives is defined, allowing
to automatically determine the primitives values for
the composition of any two relations.

The CSR algorithm makes use of the extended
definition and algebra to discover inference axioms
in an unsupervised manner. Its usefulness is shown
using a set of eight common relations, obtaining 78
axioms. Empirical evaluation shows the axioms add
2.32% of relations in relative terms with an overall
accuracy of 0.88, more than what state-of-the-art se-
mantic parsers achieve.

The framework presented is completely indepen-
dent of any particular set of relations. Even though
different sets may call for different ontologies and
primitives, we believe the model is generally appli-
cable; the only requirement is to use the extended
definition. This is a novel way of retrieving seman-
tic relations in the field of computational linguistics.
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