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Abstract

We introduce synchronous tree adjoining
grammars (TAG) into tree-to-string transla-
tion, which converts a source tree to a target
string. Without reconstructing TAG deriva-
tions explicitly, our rule extraction algo-
rithm directly learns tree-to-string rules from
aligned Treebank-style trees. As tree-to-string
translation casts decoding as a tree parsing
problem rather than parsing, the decoder still
runs fast when adjoining is included. Less
than 2 times slower, the adjoining tree-to-
string system improves translation quality by
+0.7 BLEU over the baseline system only al-

provably goes beyond the expressive power of syn-
chronous CFG and TSG. Therefore, it is necessary
to find ways to take advantage of more powerful syn-
chronous grammars to improve machine translation.

Synchronous tree adjoining grammars (TAG)
(Shieber and Schabes, 1990) are a good candidate.
As a formal tree rewriting system, TAG (Joshi et al.,
1975; Joshi, 1985) provides a larger domain of lo-
cality than CFG to state linguistic dependencies that
are far apart since the formalism treats trees as basic
building blocks. As a mildly context-sensitive gram-
mar, TAG is conjectured to be powerful enough to
model natural languages. Synchronous TAG gener-

lowing for tree substitution on NIST Chinese-

! alizes TAG by allowing the construction of a pair
English test sets.

of trees using the TAG operations of substitution
) and adjoining on tree pairs. The idea of using syn-
1 Introduction chronous TAG in machine translation has been pur-

Syntax-based translation models, which exploit hisued by several researchers (Abeille et al., 1990;
erarchical structures of natural languages to guidgrigent, 1994; Dras, 1999), but only recently in
machine translation, have become increasingly poffs Probabilistic form (Nesson et al., 2006; De-
ular in recent years. So far, most of them hav&leefe and Knight, 2009). Shieber (2007) argues that
been based on synchronous context-free grammd¥¥pbabilistic synchronous TAG possesses appealing
(CFG) (Chiang, 2007), tree substitution grammargroperties such as expressivity and trainability for
(TSG) (Eisner, 2003; Galley et al., 2006; Liu etbuilding a machine translation system.
al., 2006; Huang et al., 2006; Zhang et al., 2008), However, one major challenge for applying syn-
and inversion transduction grammars (ITG) (Wuchronous TAG to machine translation is computa-
1997; Xiong et al., 2006). Although these for-tional complexity. While TAG require®(n®) time
malisms present simple and precise mechanisms ffmr monolingual parsing, synchronous TAG requires
describing the basic recursive structure of sentenced(n'?) for bilingual parsing. One solution is to use
they are not powerful enough to model some impoitree insertion grammars (TIG) introduced by Sch-
tant features of natural language syntax. For exabes and Waters (1995). As a restricted form of
ample, Chiang (2006) points out that the translatAG, TIG still allows for adjoining of unbounded
tion of languages that can stack an unbounded nurtrees but only require®(n?) time for monolingual
ber of clauses in an “inside-out” way (Wu, 1997)parsing. Nesson et al. (2006) firstly demonstrate
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Figure 1: Initial and auxiliary tree pairs. The source si@ti(ese) is a Treebank-style linguistic tree. The targl si
(English) is a purely structural tree using a single nomteal (X). By convention, substitution and foot nodes are
marked with a down arrow}§ and an asterisk«{, respectively. The dashed lines link substitution siteg.( NR and

X in 1) and adjoining sites (e.g., NP and Xadn) in tree pairs. Substituting the initial tree pair at the NR-X
node pair in the auxiliary tree paih yields a derived tree pai#,, which can be adjoined at NN-X in, to generate
Qas.

the use of synchronous TIG for machine translatiobased baseline system without significant loss in ef-
and report promising results. DeNeefe and Knighficiency (1.6 times slower) (Section 5).

(2009) prove that adjoining can improve translation

quality significantly over a state-of-the-art string-2 Model

to-tree system (Galley et al., 2006) that uses syrk qynchronous TAG consists of a set of linked ele-
chronous TSG with tractable computational COMp,eniary tree pairsinitial andauxiliary. An initial

plexity. tree is a tree of which the interior nodes are all la-
In this paper, we introduce synchronous TAG intdeled with non-terminal symbols, and the nodes on
tree-to-string translation (Liu et al., 2006; Huang ethe frontier are either words or non-terminal sym-
al., 2006), which is the simplest and fastest amonigols marked with a down arron}). An auxiliary
syntax-based approaches (Section 2). We proposee is defined as an initial tree, except that exactly
a new rule extraction algorithm based on GHKMone of its frontier nodes must be marked as foot
(Galley et al., 2004) that directly induces a synhode &). The foot node must be labeled with a non-
chronous TAG from an aligned and parsed bilingualerminal symbol that is the same as the label of the
corpus without converting Treebank-style trees tooot node.
TAG derivations explicitly (Section 3). As tree-to- Synchronous TAG defines two operations to build
string translation takes a source parse tree as inpdgrived tree pairs from elementary tree passbsti-
the decoding can be cast as a tree parsing problention andadjoining. Nodes in initial and auxiliary
(Eisner, 2003): reconstructing TAG derivations frontree pairs are linked to indicate the correspondence
a derived tree using tree-to-string rules that allow fobetween substitution and adjoining sites. Figure 1
both substitution and adjoining. We describe how tgshows three initial tree pairs (i.ex;, as, andas)
convert TAG derivations to translation forest (Secand two auxiliary tree pairs (i.e; and3s). The
tion 4). We evaluated the new tree-to-string systerdashed lines link substitution nodes (e.g., Nfd
on NIST Chinese-English tests and obtained corX, in 3;) and adjoining sites (e.g., NP and Xda)
sistent improvements (+0.7 BLEU) over the STSGin tree pairs. Substituting the initial tree paiy at
1279
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Figure 2: A training example. Tree-to-string rules can bteasted from shaded nodes.

node | minimal initial rule

| minimal auxiliary rule

NRo.1 | [1] (NR m&igud )— US
NP071 [2](NP(.I‘1NR1))—>$1
NNi,2 | [3] (NN zdngtdng )— President
NP172 [4](NP(.’L‘1NNL))—>$1
[SI(NP (z1:NP; ) (22:NP} ) ) — 21 22
[6] ( NPQ:l (Il:NRi )) — I [7] ( NP (xliNF’* ) (IQ:NPl ) ) — X1 T2
NP072 [8](NP02 (xliNP*)(xglNPl))HfL'l T2
[9] ( NPo.1 (xl:NNl ) ) — T [10] ( NP (,Tl:NPl ) (,IQ:NP* ) ) — X1 T2
[11] ( NPg.o (.”L'l:NPl ) (.TQ:NP* )) — X1 T2
NRz.3 | [12] (NR dotama )— Obama
NP273 [13](NP($1NR1))—>?L‘1
[14] ( NP (Il:NPl ) (IQ:NPl ) ) — X1 T2
[15] ( NPg.o (xl:NPl ) (.”L'QZNPl )) — X1 T2 [16] ( NP (,Tl:NP* ) (xQ:NPl )) — T T2
NP073 [17](NP01 ($1:NR1))—>,T1 [18](NP($1NPL)(,TQNP*))—?SCl X2
[19] ( NPQ;l (Il:NNi ) ) — I
[20] ( NPQ;l (Il:NRl )) — I
NN45 | [21] (NN giangj) — shooting
NNs 6 | [22] ( NN shijian )— incident
NP476 [23](NP($1NNL)(,TQNNL))—MTl T2
PP376 [24] ( PP ( dUi) (Il:NPl ) ) — I
NN~z s | [25] (NN gianzé )— condemned
NP778 [26](NP(I1NN1))—>I1
VP [28] (VP (Il:PPl ) (IQ:VPl ) ) — X9 thexl
381 [29] (VPo.1 (VW ylyT) (21:NPy)) — 3 [30] (VP (z1:PP,) (22:VP,)) — 3 thex;
|P078 [31](|P(I1NP1)(I2VPL ))—>.§C1 haSIQ

Table 1: Minimal initial and auxiliary rules extracted frdfigure 2. Note that an adjoining site has a span as subscript.
For example, NR; in rule 6 indicates that the node is an adjoining site linked target node dominating the target
string spanning from position 0 to position 1 (i.;). The target tree is hidden because tree-to-string traoslanly
considers the target surface string.
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the NR-X| node pair in the auxiliary tree pait;  Knight (2009) propose an algorithm to extract syn-
yields a derived tree paj#,, which can be adjoined chronous TIG rules from an aligned and parsed

at NN-X in as to generatevs. bilingual corpus. They first classify tree nodes
For simplicity, we represent, as a tree-to-string into heads, arguments, and adjuncts using heuristics
rule: (Collins, 2003), then transform a Treebank-style tree

into a TIG derivation, and finally extract minimally-
o . ~ sized rules from the derivation tree and the string on
where NR, indicates that the node is an adjoin-he other side, constrained by the alignments. Proba-
ing site linked to a target node dominating the tarjjistic models can be estimated by collecting counts
get string spanning from position 0 to position 1yyer the derivation trees.
(i.e., “US"). The target tree is hidden because tree- However, one challenge is that there are many
to-string translation only considers the target surfacag gerivations that can yield the same derived tree,
string. Similarly, 3, can be written as even with respect to a single grammar. It is difficult
(NP (21:NP, ) (z2:NP| )) — 1 x2 to choose appropriate single derivations that enable

wherez denotes a non-terminal and the subscriptg‘e resulting grammar to translate unseen data well.

indicate the correspondence between source and tRgNeefe and Knight (2009) indicate that the way to
get non-terminals. reconstruct TIG derivations has a direct effect on fi-

The parameters of a probabilistic synchronougal trans_latiqn quality. They _suggest that one possi-
TAG are ble solution is to use derivation forest rather than a
single derivation tree for rule extraction.
Alternatively, we extend the GHKM algorithm
Z Pi(a) =1 1) (Galley et al., 2004) tdlirectly extract tree-to-string
1 . . e .
rules that allow for both substitution and adjoining
from aligned and parsed data. There is no need for
transforming a parse tree into a TAG derivation ex-
plicitly before rule extraction and all derivations can
Z Pu(BIn) + Pa(NONE[) =1 (3 be easily reconstructed using extracted rufeQur
s rule extraction algorithm involves two steps: (1) ex-
tracting minimal rules and (2) composition.

(NPy.1 (NR méigud ) )— US

where«a ranges over initial tree pairg} over aux-
iliary tree pairs, and; over node pairs. P;(«) is
the probability of beginning a derivation with;
P.(aln) is the probability of substitutingy at »; Figure 2 shows a training example, which consists of
P,(B|n) is the probability of adjoinings at ; fi- @ Chinese parse tree, an English string, and the word
nally, P,(NONE|n) is the probability of nothing ad- alignment between them. By convention, shaded
joining atn. nodes are calleffontier nodes from which tree-to-
For tree_to_string translation, these paramete[’t‘gl’ing rules can be extracted. Note that the source
can be treated as feature functions of a discrimPhrase dominated by a frontier node and its corre-
native framework (Och, 2003) combined with othesponding target phrase are consistent with the word
conventional features such as relative frequency, leflignment: all words in the source phrase are aligned
ical weight, rule count, language model, and wordo all words in the corresponding target phrase and

count (Liu et al., 2006). vice versa.
We distinguish between three categories of tree-

3.1 Extracting Minimal Rules

3 Rule Extraction _ .
INote that our algorithm does not take heads, complements,

Inducing a synchronous TAG from training datal"ﬂr_‘t‘;'1 adiU”CttStimO %Onls_ideraﬁcz” oa“dheXtra_thha't' tEQSfmﬁ;

- - , . ith respect to word alignment. Our hope is that this treatme
often beglns with _con_vertlng -Treeban.k Style parSgould make our system more robust in the presence of noisy
trees to TAG derivations (Xia, 1999; Chen andjata. Itis possible to use the linguistic preferences dsifes.

Vijay-Shanker, 2000; Chiang, 2003). DeNeefe antle leave this for future work.
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to-string rules: Note that the source phras&otama. .. ylyi gianzé&
is discontinuous. Our model allows both the source
1. substitution rules, in which the source tree is gnd target phrases of an initial rule with adjoining
an initial tree without adjoining sites. sites to be discontinuous, which goes beyond the ex-
pressive power of synchronous CFG and TSG.

2. adjoining rules, in which the source tree isan " gjmilarly, the composition of two auxiliary rules
initial tree with at least one adjoining site. rs andr g yields a new auxiliary rule:

3. auxiliary rules, in which the source tree is an (NP (NP (z1:NP.) (22:NP, ) (25:NPy ) ) — 212523
auxiliary tree. We first compose initial rules and then com-
pose auxiliary rules, both in a bottom-up way. To
For example, in Figure Ly; is a substitution rule, maintain a reasonable grammar size, we follow Liu
ag is an adjoining rule, and; is an auxiliary rule.  (2006) to restrict that the tree height of a rule is no
Minimal substitution rules are the same with thosgreater than 3 and the source surface string is no
in STSG (Galley et al., 2004, Liu et al., 2006) andonger than 7.
therefore can be extracted directly using GHKM. By To learn the probability model®,(«), Ps(«|n),
minimal, we mean that the interior nodes are noP,(3|n), and P,(NONE|n), we collect and normal-
frontier and cannot be decomposed. For examplée counts over these extracted rules following De-
in Table 2, rule 1 (for short;) is a minimal substi- Neefe and Knight (2009).
tution rule extracted from N . .
Minimal adjoining rules are defined as minima/4 Decoding

substitution rules, except that each root node mugiven a synchronous TAG and a derived source tree
be an adjoining site. In Table 2, is a minimal . 5 yree-to-string decoder finds the English yield

substitution rule extracted from NP. As NRy1 IS of the best derivation of which the Chinese yield
a descendant of N with the same label, NP matchest:

is a possible adjoining site. Therefore; can be

derived fromr; and licensed as a minimal adjoining 6 — e< arg max P(D)> (4)
rule extracted from Ni.. Similarly, four minimal Dst f(D)=r

adjoining rules are extracted from jEbecause it

has four frontier descendants labeled with NP, 1 1iS is calledtree parsing (Eisner, 2003) as the de-

Minimal auxiliary rules are derived from minimal tcoder finds ways of decomposingnto elementary
substitution and adjoining rules. For example, in Tal€es:

ble 2,77 andryo are derived from the minimal sub- Tree-to-string decoding with STSG is usually

stitution rulers; while rg andr;; are derived from tzrggt?edhasforeft rescoring (H_Ll’_angd ancilj C?lang,
r15. Note that a minimal auxiliary rule can have ad- ) that involves two steps. The decoder first con-

joining sites (e.g.4)- verts the Input tree Into a translation forest using a

Table 1 lists 17 minimal substitution rules, 7 min-ransiation rule set by pattern matching. Huang et

. I - " al. (2006) show that this step is a depth-first search
imal adjoining rules, and 7 minimal auxiliary rules " o .

) with memorization inO(n) time. Then, the decoder
extracted from Figure 2.

searches for the best derivation in the translation for-
3.2 Composition est intersected witlh-gram language models and

_ _ outputs the target string.
We can obtain composed rules that capture rich COn- pecqding with STAG, however, poses one major
texts by substituting and adjoining minimal initial o, gjlenge to forest rescoring. As translation forest
and auxiliary rules. For example, the composmorbnly supports substitution, it is difficult to construct

Of 712, 717, 725, 726, 729, @ndr3; yields an initial o yangjation forest for STAG derivations because of
rule with two adjoining sites: _ . . o
2Mi et al. (2008) give a detailed description of the two-step

(IP (NPy.; (NRaokama) ) (VR.3 (VV yuyi) decoding process. Huang and Mi (2010) systematically aealy
(NP (NN gianzé))) )~ Obama has condemned the decoding complexity of tree-to-string translation.
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IPO,S NR2,3 NPO,B
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/\ |
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zongtong
NR{"!
elementary tree translation rule
oy r1 (IP(NPy.1 (71:NR|)) (22:VP| ) ) — 71 22
Qs ro  (NR aolama)— Obama
B r3 (NP (NRy.1 (21:NN|)) (22:NP,)) — 21 22
/62 T4 (NP (xlNPi)(SCQNP*))—)Il o
ﬂg Ts5 (NP(NP (IlNRi))(ngP*))—Mfl o
Qs r¢ (NN zdngtdng )— President

Figure 3: Matched trees and corresponding rules. Each moaleniatched tree is annotated with a span as superscript
to facilitate identification. For example, 1P in o, indicates that IPs in Figure 2 is matched. Note that its left child
NP?3 is not its direct descendant in Figure 2, suggesting thalimidig is required at this site.

aq IP078

hyperedge translation rule
el T1+ T4 (IP (NP (.I'l:NPl)(NP(,TQ:NRl)))($3:VP1)—>$C1 T X3
() rr+r3+rs (lP(NP(NP (IlNPl)(IQNPl))(NP (ngRl)))(x4VPi))—>a:1 To I3 T4
es3 re (NN zdngtdng }— President
es T (NR aolama )— Obama

Figure 4: Converting a derivation forest to a translatiore$b. In a derivation forest, a node in a derivation forest is
matched elementary tree. A hyperedge corresponds to apesan related trees: substitution (dashed) or adjoining
(solid). We use Gorn addresses as tree addreas€k.1) denotes that, is substituted in the tree; at the node NI%3

of address 1.1 (i.e., the first child of the first child of thetrnode). As translation forest only supports substitytves
combine trees with adjoining sites to form an equivalerd tuthout adjoining sites. Rules are composed accordingly
(e.9.,r1 + r4).
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adjoining. Therefore, we divide forest rescoring foishould be interpreted as followas; is substituted in
STAG into three steps: the treen; at the node NRR® of address 1.1 (i.e., the
first child of the first child of the root node) aity is

1. matching, matching STAG rules against the in‘adjoined in the treev; at the node NP3 of address
put tree to obtain a TAG derivation forest; 1.

2. conversion converting the TAG derivation for- ~ TO take advantage of existing decoding tech-
est into a translation forest: niques, it is necessary to convert a derivation forest

to atranslation forest. A hyperedge in a transla-
3. intersection, intersecting the translation foresttion forest corresponds to a translation rule. Mi et
with ann-gram language model. al. (2008) describe how to convert a derived tree
. _ o ~ to a translation forest using tree-to-string rules only
Given a tree-to-string rule, rule matching is to findyowing for substitution. Unfortunately, it is not
a subtree of the input tree that is identical to thgy aightforward to convert a derivation forest includ-
source side of the rule. While matching STSG ruleg g 4djoining to a translation forest. To alleviate this
against a derived tree is straightforward, it is SOM&5rohlem, we combine initial rules with adjoining
what non-trivial for STAG rules that move beyondgies and associated auxiliary rules to foequiv-

nodes of a local tree. We follow Liu et al. (2006) t05jentinitial rules without adjoining sites on the fly
enumerate all elementary subtrees and match STA&”mg decoding.

rules against these subtrees. This can be done by first _ - L _
enumerating all minimal initial and auxiliary trees C2n5|de_ro_q_|n F'g‘_”e 3. Ithas an adjon’;mg site
and then combining them to obtain composed tree ,P27 - Adjoining 3, in o, at the node NP pro-
assuming that every node in the input tree is fronduces an equivalent initial tree with only substitution
tier (see Section 3). We impose the same restrictione e

on the tree height and length as in rule extraction.
Figure 3 showsgsome matcﬁed trees and corresponélP " (NP ( NP}*) (NP>* (NR}))) (VPP®))

ing rules. Each node in a matched tree is annotate]q]e corresponding composed rule + r, has no
4

with a span as sgperscnpt to facilitate Iqent!ﬁCatlonadjoining sites and can be added to translation forest.
For example, 1P® in a; means that IPs in Figure

2 is matched. Note that its left child RP is not We define that the elementary trees needed to be

its direct descendant in Figure 2, suggesting that a§omposed (e.ga: andg,) form acomposition tree
joining is required at this site. in a derivation forest. A node in a composition tree is

A TAG derivation tree specifies uniquely how & matched elementary tree and an edge corresponds

a derived tree is constructed using elementary treéd adjoining operations. The root node must be an
(Joshi, 1985). A node in a derivation tree is an eldhitial tree with at least one adjoining site. The de-
mentary tree and an edge corresponds to Operaﬂo?gendants of the root node must all be auxiliary trees.
on related elementary trees: substitution or adjoir-O" €xample, ¢ (32))and (a1 (51 (f83))) are
ing. We introduceTAG derivation forest, a com- two composition trees in Figure 4. The number of
pact representation of multiple TAG derivation trees¢hildren of a node in a composition tree depends on
to encodes all matched TAG derivation trees of thi€ number of adjoining sites in the node. We use
input derived tree. composition forestto encode all possible composi-

Figure 4 shows part of a TAG derivation forest.lon trees.
The six matched elementary trees are nodes in theOften, a node in a composition tree may have mul-
derivation forest. Dashed and solid lines represetiple matched rules. As a large amount of composi-
substitution and adjoining, respectively. We usdion trees and composed rules can be identified and
Gorn addresses as tree addresses: 0 is the addressstructed on the fly during forest conversion, we
of the root nodep is the address of the? child of usedcube pruning(Chiang, 2007; Huang and Chi-
the root node, ang- ¢ is the address of thg¢” child ang, 2007) to achieve a balance between translation
of the node at the addregs The derivation forest quality and decoding efficiency.
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category description number

VP verb phrase 12.40 :Z i
NP noun phrase 7.69 o 35k
IP simple clause 7.26 2 o0k
QP quantifier phrase 0.14 % 2'5 i
CP clause headed by C 0.10 g -
PP preposition phrase 0.09 & 20
CLP  classifier phrase 0.02 5 151
ADJP  adjective phrase 0.02 coLor
LCP phrase formed by “XP+LC”" 0.02 05
DNP  phrase formed by “XP+DEG]  0.01 0.0 0

Table 2: Top-10 phrase categories of foot nodes and their
average occurrences in training corpus.
Figure 5: Average occurrences of foot node labels VP,
NP, and IP over various distances.
5 Evaluation
system | grammar| MT03 | MT04 | MT05

We evaluated our adjoining tree-to-string translation Moses | - [ 33.10] 33.96 | 32.17
system on Chinese-English translation. The bilin- hierarchical [ SCFG [ 33.40 | 34.65 [ 32.88
gual corpus consists of 1.5M sentences with 42.1M STSG || 33.13 | 3455 ] 31.94

Chinese words and 48.3M English words. The Chi- ree-10-SUINg—om =3 54 3508 | 32.71

nese sentences in the bilingual corpus were parS(TadbI 3 BLEU NIST Chi Enalish
by an in-house parser. To maintain a reasonablg < > scores on nese-English test sets.

. . cores marked in bold are significantly better that those
grammar size, we follow Liu et a]. (2006) to re- st sTSG aipl.01 level,
strict that the height of a rule tree is no greater than

3 and the surface string’s length is no greater than 7.
After running GIZA++ (Och and Ney, 2003) to ob- and the root node. For example, in Figure 2, the dis-
tain word alignment, our rule extraction algorithmtance between NR and NR 3 is 2 and the distance
extracted 23.0M initial rules without adjoining sites,between VR and VR g is 1. As most foot nodes
6.6M initial rules with adjoining sites, and 5.3M are usually very close to the root nodes, we restrict
auxiliary rules. We used the SRILM toolkit (Stol- that a foot node must be the direct descendant of the
cke, 2002) to train a 4-gram language model on theot node in our experiments.
Xinhua portion of the GIGAWORD corpus, which  Table 3 shows the BLEU scores on the NIST
contains 238M English words. We used the 2002 hinese-English test sets. Our baseline system is the
NIST MT Chinese-English test set as the dEV6|OQTee_tO_String system using STSG (|_|u et al., 2006;
ment set and the 2003-2005 NIST test sets as thuang et al., 2006). The STAG system outper-
test sets. We evaluated translation quality using therms the STSG system significantly on the MT04
BLEU metric, as calculated by mteval-v11b.pl withand MTO5 test sets atl.01 level. Table 3 also
case-insensitivenatching ofn-grams. gives the results of Moses (Koehn et al., 2007) and
Table 2 shows top-10 phrase categories of fo@n in-house hierarchical phrase-based system (Chi-
nodes and their average occurrences in training caeng, 2007). Our STAG system achieves compara-
pus. We find that VP (verb phrase) is most likelyble performance with the hierarchical system. The
to be the label of a foot node in an auxiliary rule.absolute improvement of +0.7 BLEU over STSG is
On average, there are 12.4 nodes labeled with V@ose to the finding of DeNeefe and Knight (2009)
are identical to one of its ancestors per tree. NP arah string-to-tree translation. We feel that one major
IP are also found to be foot node labels frequenthobstacle for achieving further improvement is that
Figure 4 shows the average occurrences of foot nodemposed rules generated on the fly during decod-
labels VP, NP, and IP over various distances. A disng (e.g.,r1 + r3 + 75 in Figure 4) usually have too
tance is the difference of levels between a foot nod@many non-terminals, making cube pruning in the in-
1285



STSG| STAG reviewers for their insightful comments.
matching | 0.086 | 0.109

conversion| 0.000 | 0.562

intersection| 0.946 | 1.064 References
other 0.012 | 0.028 . . .
total 10441 1.763 Anne_Abellle_, ers Schabes, and Aravmd Joshl. 1990.
Using lexicalized tags for machine translation. In
Table 4: Comparison of average decoding time. Proc. of COLING 1990

John Chen and K. Vijay-Shanker. 2000. Automated ex-
traction of tags from the penn treebank. Rroc. of
tersection phase suffering from severe search errorsi\wpPT 2000

(only a tiny fraction of the search space can be exavid Chiang. 2003. Statistical parsing with an au-
plored). To produce the 1-best translations on the tomatically extracted tree adjoining grammaddata-
MTO5 test set that contains 1,082 sentences, while Oriented Parsing

the STSG system used 40,169 initial rules withoupavid Chiang. 2006. An introduction to synchronous
adjoining sites, the STAG system used 28,046 initig| grammars. ACL Tutorial

. L . o ... David Chiang. 2007. Hierarchical phrase-based transla-
ruI_es_ v_wtho_ut adjoining sites, 1_,(_)57 initial rules with tion. Computational Linguistics33(2):201-228.
adjoining sites, and 1,527 auxiliary rules.

i ] David Chiang. 2010. Learning to translate with source
Table 4 shows the average decoding time on the ang target syntax. IRroc. of ACL 2010

MTOS test set. While rule matching for STSG needMichael Collins. 2003. Head-driven statistical models
0.086 second per sentence, the matching time for for natural language parsingomputational Linguis-
STAG only increases to 0.109 second. For STAG, tics, 29(4).

the conversion of derivation forests to translatiorpteve DeNeefe and Kevin Knight. 2009. Synchronous

forests takes 0.562 second when we restrict that attE“:/‘laN fgjgg‘(i)gg machine translation.  IRroc. of
most 200 rules can be generated on the fly for each -
g y (I\\/Iark Dras. 1999. A meta-level grammar: Redefining
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