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Abstract

We present minimum Bayes-risk system com-
bination, a method that integrates consen-
sus decoding and system combination into
a unified multi-system minimum Bayes-risk
(MBR) technique. Unlike other MBR meth-
ods that re-rank translations of a single SMT
system, MBR system combination uses the
MBR decision rule and a linear combina-
tion of the component systems’ probability
distributions to search for the minimum risk
translation among all the finite-length strings
over the output vocabulary. We introduce ex-
pected BLEU, an approximation to the BLEU
score that allows to efficiently apply MBR in
these conditions. MBR system combination is
a general method that is independent of spe-
cific SMT models, enabling us to combine
systems with heterogeneous structure. Exper-
iments show that our approach bring sig-
nificant improvements to single-system-based
MBR decoding and achieves comparable re-
sults to different state-of-the-art system com-
bination methods.

1 Introduction

Once statistical models are trained, a decoding ap-
proach determines what translations are finally se-
lected. Two parallel lines of research have shown
consistent improvements over the max–derivation
decoding objective, which selects the highest prob-
ability derivation. Consensus decoding procedures
select translations for a single system with a mini-
mum Bayes risk (MBR) (Kumar and Byrne, 2004).
System combination procedures, on the other hand,
generate translations from the output of multiple
component systems by combining the best frag-
ments of these outputs (Frederking and Nirenburg,

1994). In this paper, we present minimum Bayes
risk system combination, a technique that unifies
these two approaches by learning a consensus trans-
lation over multiple underlying component systems.

MBR system combination operates directly on the
outputs of the component models. We perform an
MBR decoding using a linear combination of the
component models’ probability distributions. In-
stead of re-ranking the translations provided by the
component systems, we search for the hypothesis
with the minimum expected translation error among
all the possible finite-length strings in the target lan-
guage. By using a loss function based on BLEU (Pa-
pineni et al., 2002), we avoid the hypothesis align-
ment problem that is central to standard system com-
bination approaches (Rosti et al., 2007). MBR sys-
tem combination assumes only that each translation
model can produce expectations of n-gram counts;
the latent derivation structures of the component sys-
tems can differ arbitrary. This flexibility allows us to
combine a great variety of SMT systems.

The key contributions of this paper are three: the
usage of a linear combination of distributions within
the MBR decoding, which allows multiple SMT
models to be involved in, and makes the computa-
tion of n-grams statistics to be more accurate; the
decoding in an extended search space, which allows
to find better hypotheses than the evidences pro-
vided by the component models; and the use of an
expected BLEU score instead of the sentence-wise
BLEU, which allows to efficiently apply MBR de-
coding in the huge search space under consideration.

We evaluate in a multi-source translation task ob-
taining improvements of up to +2.0 BLEU abs. over
the best single system max-derivation, and state-of-
the-art performance in the system combination task
of the ACL 2010 workshop on SMT.
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2 Related Work

MBR system combination is a multi-system gener-
alization of MBR decoding where the space of hy-
potheses is not constrained to the space of evidences.
We expand the space of hypotheses following some
underlying ideas of system combination techniques.

2.1 Minimum Bayes risk

In SMT, MBR decoding allows to minimize the
loss of the output for a single translation system.
MBR is generally implemented by re-ranking an N -
best list of translations produced by a first pass de-
coder (Kumar and Byrne, 2004). Different tech-
niques to widen the search space have been de-
scribed (Tromble et al., 2008; DeNero et al., 2009;
Kumar et al., 2009; Li et al., 2009). These works
extend the traditional MBR algorithms based on N -
best lists to work with lattices.

The use of MBR to combine the outputs of vari-
ous MT systems has also been explored previously.
Duan et al. (2010) present an MBR decoding that
makes use of a mixture of different SMT systems to
improve translation accuracy. Our technique differs
in that we use a linear combination instead of a mix-
ture, which avoids the problem of component sys-
tems not sharing the same search space; perform the
decoding in a search space larger than the outputs
of the component models; and optimize an expected
BLEU score instead of the linear approximation to
it described in (Tromble et al., 2008).

DeNero et al. (2010) present model combination,
a multi-system lattice MBR decoding on the con-
joined evidences spaces of the component systems.
Our technique differs in that we perform the search
in an extended search space not restricted to the pro-
vided evidences, have fewer parameters to learn, and
optimizes an expected BLEU score instead of the
linear BLEU approximation.

Another MBR-related technique to combine the
outputs of various MT systems was presented by
González-Rubio and Casacuberta (2010). They use
different median string (Fu, 1982) algorithms to
combine various machine translation systems. Our
approach differs in that we take into account the pos-
terior distribution over translations instead of con-
sidering each translation equally likely, optimize the
expected BLEU score instead of a sentence-wise

measure such as the edit distance or the sentence-
level BLEU, and take into account the quality dif-
ferences by associating a tunable scaling factor to
each system.

2.2 System Combination

System combination techniques in MT take as in-
put the outputs {e1, · · · , eN} of N translation sys-
tems, where en is a structured translation object
(or N -best lists thereof), typically viewed as a se-
quence of words. The dominant approach in the
field chooses a primary translation ep as a backbone,
then finds an alignment an to the backbone for each
en. A new search space is constructed from these
backbone-aligned outputs and then a voting proce-
dure of feature-based model predicts a final consen-
sus translation (Rosti et al., 2007). MBR system
combination entirely avoids this alignment prob-
lem by considering hypotheses as n-gram occur-
rence vectors rather than word sequences. MBR sys-
tem combination performs the decoding in a larger
search space and includes statistics from the compo-
nents’ posteriors, whereas system combination tech-
niques typically do not.

Despite these advantages, system combination
may be more appropriate in some settings. In par-
ticular, MBR system combination is designed pri-
marily for statistical systems that generate N -best
or lattice outputs. MBR system combination can in-
tegrate non-statistical systems that generate either a
single or an unweighted output. However, we would
not expect the same strong performance from MBR
system combination in these constrained settings.

3 Minimum Bayes risk Decoding

MBR decoding aims to find the candidate hypothesis
that has the least expected loss under a probability
model (Bickel and Doksum, 1977). We begin with a
review of MBR for SMT.

SMT can be described as a mapping of a word se-
quence f in a source language to a word sequence
e in a target language; this mapping is produced by
the MT decoder D(f). If the reference translation
e is known, the decoder performance can be mea-
sured by the loss function L(e,D(f)). Given such a
loss function L(e, e′) between an automatic transla-
tion e′ and a reference e, and an underlying proba-
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bility model P (e|f), MBR decoding has the follow-
ing form (Goel and Byrne, 2000; Kumar and Byrne,
2004):

ê = arg min
e′∈E

R(e′) (1)

= arg min
e′∈E

∑
e∈E

P (e|f) · L(e, e′) , (2)

where R(e′) denotes the Bayes risk of candidate
translation e′ under loss function L, and E repre-
sents the space of translations.

If the loss function between any two hypotheses
can be bounded: L(e, e′) ≤ Lmax, the MBR de-
coder can be rewritten in term of a similarity func-
tion S(e, e′) = Lmax − L(e, e′). In this case, in-
stead of minimizing the Bayes risk, we maximize
the Bayes gain G(e′):

ê = arg max
e′∈E

G(e′) (3)

= arg max
e′∈E

∑
e∈E

P (e|f) · S(e, e′) . (4)

MBR decoding can use different spaces for hy-
pothesis selection and gain computation (arg max
and summatory in Eq. (4)). Therefore, the MBR de-
coder can be more generally written as follows:

ê = arg max
e′∈Eh

∑
e∈Ee

P (e|f) · S(e, e′) , (5)

where Eh refers to the hypotheses space form where
the translations are chosen and Ee refers to the evi-
dences space that is used to compute the Bayes gain.
We will investigate the expansion of the hypotheses
space while keeping the evidences space as provided
by the decoder.

4 MBR System Combination

MBR system combination is a multi-system gener-
alization of MBR decoding. It uses the MBR de-
cision rule on a linear combination of the probabil-
ity distributions of the component systems. Unlike
existing MBR decoding methods that re-rank trans-
lation outputs, MBR system combination search for
the minimum risk hypotheses on the complete set of
finite-length hypotheses over the output vocabulary.
We assume the component systems to be statistically
independent and define the Bayes gain as a linear

combination of the Bayes gains of the components.
Each system provides its own space of evidences
Dn(f) and its posterior distribution over translations
Pn(e|f). Given a sentence f in the source language,
MBR system combination is written as follows:

ê = arg max
e′∈Eh

G(e′) (6)

≈ arg max
e′∈Eh

N∑
n=1

αn · Gn(e′) (7)

= arg max
e′∈Eh

N∑
n=1

αn ·
∑

e∈Dn(f)

Pn(e|f) · S(e, e′) , (8)

where N is the total number of component systems,
Eh represents the hypotheses space where the search
is performed, Gn(e′) is the Bayes gain of hypothe-
sis e′ given by the nth component system and αn is
a scaling factor introduced to take into account the
differences in quality of the component models. It is
worth mentioning that by using a linear combination
instead of a mixture model, we avoid the problem
of component systems not sharing the same search
space (Duan et al., 2010).

MBR system combination parameters training
and decoding in the extended hypotheses space are
described below.

4.1 Model Training
We learn the scaling factors in Eq. (8) using min-
imum error rate training (MERT) (Och, 2003).
MERT maximizes the translation quality of ê on a
held-out set, according to an evaluation metric that
compares to a reference set. We used BLEU, choos-
ing the scaling factors to maximize BLEU score
of the set of translations predicted by MBR sys-
tem combination. We perform the maximization by
means of the down-hill simplex algorithm (Nelder
and Mead, 1965).

4.2 Model Decoding
In most MBR algorithms, the hypotheses space is
equal to the evidences space. Following the underly-
ing idea of system combination, we are interested in
extend the hypotheses space by including new sen-
tences created using fragments of the hypotheses in
the evidences spaces of the component models. We
perform the search (argmax operation in Eq. (8))

1270



Algorithm 1 MBR system combination decoding.
Require: Initial hypothesis e
Require: Vocabulary the evidences Σ

1: ê← e
2: repeat
3: ecur ← ê
4: for j = 1 to |ecur| do
5: ês ← ecur

6: for a ∈ Σ do
7: e′s ← Substitute(ecur, a, j)
8: if G(e′s) > G(ês) then
9: ês ← e′s

10: êd ← Delete(ecur, j)
11: êi ← ecur

12: for a ∈ Σ do
13: e′i ← Insert(ecur, a, j)
14: if G(e′i) > G(êi) then
15: êi ← e′i
16: ê← arg maxe′∈{ecur,ês,êd,êi} G(e′)
17: until G(ê) 6> G(ecur)
18: return ecur

Ensure: G(ecur) ≥ G(e)

using the approximate median string (AMS) algo-
rithm (Martı́nez et al., 2000). AMS algorithm per-
form a search on a hypotheses space equal to the
free monoid Σ∗ of the vocabulary of the evidences
Σ = V oc(Ee).

The AMS algorithm is shown in Algorithm 1.
AMS starts with an initial hypothesis e that is mod-
ified using edit operations until there is no improve-
ment in the Bayes gain (Lines 3–16). On each posi-
tion j of the current solution ecur, we apply all the
possible single edit operations: substitution of the
jth word of ecur by each word a in the vocabulary
(Lines 5–9), deletion of the jth word of ecur (Line
10) and insertion of each word a in the vocabulary in
the jth position of ecur (Lines 11–15). If the Bayes
gain of any of the new edited hypotheses is higher
than the Bayes gain of the current hypothesis (Line
17), we repeat the loop with this new hypotheses ê,
in other case, we return the current hypothesis.

AMS algorithm takes as input an initial hypothe-
sis e and the combined vocabulary of the evidences
spaces Σ. Its output is a possibly new hypothesis
whose Bayes gain is assured to be higher or equal
than the Bayes gain of the initial hypothesis.

The complexity of the main loop (lines 2-17) is
O(|ecur| · |Σ| · CG), where CG is the cost of com-
puting the gain of a hypothesis, and usually only a
moderate number of iterations (< 10) is needed to
converge (Martı́nez et al., 2000).

5 Computing BLEU-based Gain

We are interested in performing MBR system com-
bination under BLEU. BLEU behaves as a score
function: its value ranges between 0 and 1 and a
larger value reflects a higher similarity. Therefore,
we rewrite the gain function G(·) using single evi-
dence (or reference) BLEU (Papineni et al., 2002)
as the similarity function:

Gn(e′) =
∑

e∈Dn(f)

Pn(e|f) · BLEU(e, e′) (9)

BLEU =
4∏

k=1

(
mk

ck

) 1
4

·min
(
e1−

r
c , 1.0

)
, (10)

where r is the length of the evidence, c the length of
the hypothesis, mk the number of n-gram matches
of size k, and ck the count of n-grams of size k in
the hypothesis.

The evidences space Dn(f) may contain a huge
number of hypotheses1 which often make impracti-
cal to compute Eq. (9) directly. To avoid this prob-
lem, Tromble et al. (2008) propose linear BLEU, an
approximation to the BLEU score to efficiently per-
form MBR decoding when the search space is repre-
sented with lattices. However, our hypotheses space
is the full set of finite-length strings in the target vo-
cabulary and can not be represented in a lattice.

In Eq. (9), we have one hypothesis e′ that is to be
compared to a set of evidences e ∈ Dn(f) which
follow a probability distribution Pn(e|f). Instead
of computing the expected BLEU score by calcu-
lating the BLEU score with respect to each of the
evidences, our approach will be to use the expected
n-gram counts and sentence length of the evidences
to compute a single-reference BLEU score. We re-
place the reference statistics (r and mn in Eq. (10))
by the expected statistics (r′ and m′n) given the pos-

1For example, in a lattice the number of hypotheses may be
exponential in the size of its state set.
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terior distribution Pn(e|f) over the evidences:

Gn(e′) =

4∏
k=1

(
m′k
ck

) 1
4

·min
(
e1−

r′
c , 1.0

)
(11)

r′ =
∑

e∈Dn(f)

|e| · Pn(e|f) (12)

m′k =
∑

ng∈Nk(e′)

min(Ce′(ng), C ′(ng)) (13)

C ′(ng) =
∑

e∈Dn(f)

Ce(ng) · Pn(e|f) , (14)

where Nk(e′) is the set of n-grams of size k in the
hypothesis, Ce′(ng) is the count of the n-gram ng in
the hypothesis and C ′(ng) is the expected count of
ng in the evidences. To compute the n-gram match-
ings m′k, the count of each n-gram is truncated, if
necessary, to not exceed the expected count for that
n-gram in the evidences.

We have replaced a summation over a possibly ex-
ponential number of items (e′ ∈ Dn(f) in Eq. (9))
with a summation over a polynomial number of n-
grams that occur in the evidences2. Both, the ex-
pected length of the evidences r′ and their expected
n-gram counts m′k can be pre-computed efficiently
from N -best lists and translation lattices (Kumar et
al., 2009; DeNero et al., 2010).

6 Experiments

We report results on a multi-source translation
task. From the Europarl corpus released for the
ACL 2006 workshop on MT (WMT2006), we se-
lect those sentence pairs from the German–English
(de–en), Spanish–English (es–en) and French–
English (fr–en) sub-corpora that share the same En-
glish translation. We obtain a multi-source corpus
with German, Spanish and French as source lan-
guages and English as target language. All the ex-
periments were carried out with the lowercased and
tokenized version of this corpus.

We report results using BLEU (Papineni et al.,
2002) and translation edit rate (Snover et al., 2006)
(TER). We measure statistical significance using
2If Dn(f) is represented by a lattice, the number of n-grams is
polynomial in the number of edges in the lattice.

System dev test
BLEU TER BLEU TER

de→en
MAX 25.3 60.5 25.6∗ 60.3
MBR 25.1 60.7 25.4∗ 60.5

es→en
MAX 30.9∗ 53.3∗ 30.4∗ 53.9∗

MBR 31.0∗ 53.4∗ 30.4∗ 54.0∗

fr→en
MAX 30.7∗ 53.9∗ 30.8∗ 53.4∗

MBR 30.7∗ 53.8∗ 30.9∗ 53.4∗

Table 1: Performance of base systems.

Approach dev test
BLEU TER BLEU TER

Best MAX 30.9∗ 53.3∗ 30.8∗ 53.4∗

Best MBR 31.0∗ 53.4∗ 30.9∗ 53.4∗

MBR-SC 32.3 52.5 32.8 52.3

Table 2: Performance from best single system max-
derivation decoding (Best MAX), the best single system
minimum Bayes risk decoding (Best MBR) and mini-
mum Bayes risk system combination (MBR-SC) combin-
ing three systems.

95% confidence intervals computed using paired
bootstrap re-sampling (Zhang and Vogel, 2004). In
all table cells (except for Table 3) systems without
statistically significant differences are marked with
the same superscript.

6.1 Base Systems

We combine outputs from three systems, each one
translating from one source language (German,
Spanish or French) into English. Each individual
system is a phrase-based system trained using the
Moses toolkit (Koehn et al., 2007). The parame-
ters of the systems were tuned using MERT (Och,
2003) to optimize BLEU on the development set.
Each base system yields state-of-the-art perfor-
mance, summarized in Table 1. For each system,
we report the performance of max-derivation decod-
ing (MAX) and 1000-best3 MBR decoding (Kumar
and Byrne, 2004).

6.2 Experimental Results

Table 2 compares MBR system combination (MBR-
SC) to the best MAX and MBR systems. Both Best

3Ehling et al. (2007) studied up to 10000-best and show that the
use of 1000-best candidates is sufficient for MBR decoding.
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Setup BLEU TER
Best MBR 30.9 53.4
MBR-SC Expected 30.9 53.5
MBR-SC E/Conjoin 32.4 52.1
MBR-SC E/C/evidences-best 30.9 53.5
MBR-SC E/C/hypotheses-best 31.8 52.5

MBR-SC E/C/Extended 32.7 52.3
MBR-SC E/C/Ex/MERT 32.8 52.3

Table 3: Results on the test set for different setups of
minimum Bayes risk system combination.

MBR and MBR-SC were computed on 1000-best
lists. MBR-SC uses expected BLEU as gain func-
tion using the conjoined evidences spaces of the
three systems to compute expected BLEU statistics.
It performs the search in the free monoid of the out-
put vocabulary, and its model parameters were tuned
using MERT on the development set. This is the
standard setup for MBR system combination, and
we refer to it as MBR-SC-E/C/Ex/MERT in Table 3.

MBR system combination improves single Best
MAX system by +2.0 BLEU points in test, and al-
ways improves over MBR. This improvement could
arise due to multiple reasons: the expected BLEU
gain, the larger evidences space, the extended hy-
potheses space, or the MERT tuned scaling factor
values. Table 3 teases apart these contributions.

We first apply MBR-SC to the best system (MBR-
SC-Expected). Best MBR and MBR-SC-Expected
differ only in the gain function: MBR uses sentence
level BLEU while MBR-SC-Expected uses the ex-
pected BLEU gain described in Section 5. MBR-
SC-Expected performance is comparable to MBR
decoding on the 1000-best list from the single best
system. The expected BLEU approximation per-
forms as well as sentence-level BLEU and addition-
ally requires less total computation.

We now extend the evidences space to the con-
joined 1000-best lists (MBR-SC-E/Conjoin). MBR-
SC-E/Conjoin is much better than the best MBR on
a single system. This implies that either the ex-
pected BLEU statistics computed in the conjoined
evidences space are stronger or the larger conjoined
evidences spaces introduce better hypotheses.

When we restrict the BLEU statistics to be com-
puted from only the best system’s evidences space

(MBR-SC-E/C/evidences-best), BLEU scores dra-
matically decrease relative to MBR-SC-E/Conjoin.
This implies that the expected BLEU statistics com-
puted over the conjoined 1000-best lists are stronger
than the corresponding statistics from the single best
system. On the other hand, if we restrict the search
space to only the 1000-best list of the best sys-
tem (MBR-SC-E/C/hypotheses-best), BLEU scores
also decrease relative to MBR-SC-E/Conjoin. This
implies that the conjoined search space also con-
tains better hypotheses than the single best system’s
search space.

These results validate our approach. The linear
combination of the probability distributions in the
conjoined evidences spaces allows to compute much
stronger statistics for the expected BLEU gain and
also contains some better hypotheses than the single
best system’s search space does.

We next expand the conjoined evidences spaces
using the decoding algorithm described in Sec-
tion 4.2 (MBR-SC-E/C/Extended). In this case, the
expected BLEU statistics are computed from the
conjoined 1000-best lists of the three systems, but
the hypotheses space where we perform the decod-
ing is expanded to the set of all possible finite-
length hypotheses over the vocabulary of the evi-
dences. We take the output of MBR-SC-E/Conjoin
as the initial hypotheses of the decoding (see Algo-
rithm 1). MBR-SC-E/C/Extended improves BLEU
score of MBR-SC-E/Conjoin but obtains a slightly
worse TER score. Since these two systems are iden-
tical in their expected BLEU statistics, the improve-
ments in BLEU imply that the extended search space
has introduced better hypotheses. The degradation
in TER performance can be explained by the use of a
BLEU-based gain function in the decoding process.

We finally compute the optimum values for
the scaling factors of the different system us-
ing MERT (MBR-SC-E/C/Ex/MERT). MBR-SC-
E/C/Ex/MERT slightly improves BLEU score of
MBR-SC-E/C/Extended. This implies that the op-
timal values of the scaling factors do not deviate
much from 1.0; a similar result was reported in (Och
and Ney, 2001). We hypothesize that this is because
the three component systems share the same SMT
model, pre-process and decoding. We expect to ob-
tain larger improvements when combining systems
implementing different MT paradigms.

1273



 30.5

 31

 31.5

 32

 32.5

 33

10
0

10
1

10
2

10
3

B
L

E
U

Number of hypotheses in the N-best lists

Best MAX

MBR-SC
MBR-SC C/Extended

MBR-SC Conjoin

Figure 1: Performance of minimum Bayes risk system
combination (MBR-SC) for different sizes of the evi-
dences space in comparison to other MBR-SC setups.

MBR-SC-E/C/Ex/MERT is the standard setup for
MBR system combination and, from now, on we will
refer to it as MBR-SC.

We next evaluate performance of MBR system
combination on N -best lists of increasing sizes, and
compare it to MBR-SC-E/C/Extended and MBR-
SC-E/Conjoin in the same N -best lists. We list the
results of the Best MAX system for comparison.

Results in Figure 1 confirm the conclusions ex-
tracted from results displayed in Table 3. MBR-SC-
Conjoin is consistently better than the Best MAX
system, and differences in BLEU increase with
the size of the evidences space. This implies that
the linear combination of posterior probabilities al-
low to compute stronger statistics for the expected
BLEU gain, and, in addition, the larger the evi-
dences space is, the stronger the computed statistics
are. MBR-SC-C/Extended is also consistently better
than MBR-SC-Conjoin with an almost constant im-
provement of +0.4 BLEU points. This result show
that the extended search space always contains bet-
ter hypotheses than the conjoined evidences spaces;
also confirms the soundness of Algorithm 1 that al-
lows to reach them. Finally, MBR-SC also slightly
improves MBR-SC-C/Extended. The optimization
of the scaling factors allows only small improve-
ments in BLEU.

Figure 2 display the MBR system combination
translation and compare it to the max-derivation
translations of the three component systems. Refer-
ence translation is also listed for comparison. MBR-

MAX de→en i will return later .
MAX es→en i shall come back to that later .
MAX fr→en i will return to this later .
MBR-SC i will return to this point later .
Reference i will return to this point later .

Figure 2: MBR system combination example.

SC adds word “point” to create a new translation
equal to the reference. MBR-SC is able to detect
that this is valuable word even though it does not
appear in the max-derivation hypotheses.

6.3 Comparison to System Combination

Figure 3 compares MBR system combination
(MBR-SC) with state-of-the-art system combination
techniques presented to the system combination task
of the ACL 2010 workshop on MT (WMT2010).
All system combination techniques build a “word
sausage” from the outputs of the different compo-
nent systems and choose a path trough the sausage
with the highest score under different models. A de-
scription of these systems can be found in (Callison-
Burch et al., 2010).

In this task, the output of the component systems
are single hypotheses or unweighted lists thereof.
Therefore, we lack of the statistics of the com-
ponents’ posteriors which is one of the main ad-
vantages of MBR system combination over sys-
tem combination techniques. However, we find that,
even in these constrained setting, MBR system com-
bination performance is similar to the best sys-
tem combination techniques for all translation di-
rections. These experiments validate our approach.
MBR system combination yields state-of-the-art
performance while avoiding the challenge of align-
ing translation hypotheses.

7 Conclusion

MBR system combination integrates consensus de-
coding and system combination into a unified multi-
system MBR technique. MBR system combination
uses the MBR decision rule on a linear combina-
tion of the component systems’ probability distri-
butions to search for the sentence with the mini-
mum Bayes risk on the complete set of finite-length
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Figure 3: Performance of minimum Bayes risk system combination (MBR-SC) for different language directions in
comparison to the rest of system combination techniques presented in the WMT2010 system combination task.

strings in the output vocabulary. Component sys-
tems can have varied decoding strategies; we only
require that each system produce an N -best list (or
a lattice) of translations. This flexibility allows the
technique to be applied quite broadly. For instance,
Leusch et al. (2010) generate intermediate transla-
tions in several pivot languages, translate them sep-
arately into the target language, and generate a con-
sensus translation out of these using a system combi-
nation technique. Likewise, these pivot translations
could be combined via MBR system combination.

MBR system combination has two significant ad-
vantages over current approaches to system combi-
nation. First, it does not rely on hypothesis align-
ment between outputs of individual systems. Align-
ing translation hypotheses can be challenging and
has a substantial effect on combination perfor-
mance (He et al., 2008). Instead of aligning the sen-
tences, we view the sentences as vectors of n-gram
counts and compute the expected statistics of the
BLEU score to compute the Bayes gain. Second, we
do not need to pick a backbone system for combina-

tion. Choosing a backbone system can also be chal-
lenging and also affects system combination per-
formance (He and Toutanova, 2009). MBR system
combination sidesteps this issue by working directly
on the conjoined evidences space produced by the
outputs of the component systems, and allows the
consensus model to express system preferences via
scaling factors.

Despite its simplicity, MBR system combination
provides strong performance by leveraging different
consensus, decoding and training techniques. It out-
performs best MAX or MBR derivation on each of
the component systems. In addition, it obtains state-
of-the-art performance in a constrained setting better
suited for dominant system combination techniques.
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