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Abstract

The state-of-the-art system combination
method for machine translation (MT) is
based on confusion networks constructed
by aligning hypotheses with regard to word
similarities. We introduce a novel system
combination framework in which hypotheses
are encoded as a confusion forest, a packed
forest representing alternative trees. The
forest is generated using syntactic consensus
among parsed hypotheses: First, MT outputs
are parsed. Second, a context free grammar is
learned by extracting a set of rules that con-
stitute the parse trees. Third, a packed forest
is generated starting from the root symbol of
the extracted grammar through non-terminal
rewriting. The new hypothesis is produced
by searching the best derivation in the forest.
Experimental results on the WMT10 system
combination shared task yield comparable
performance to the conventional confusion
network based method with smaller space.

1 Introduction

System combination techniques take the advantages
of consensus among multiple systems and have been
widely used in fields, such as speech recognition
(Fiscus, 1997; Mangu et al., 2000) or parsing (Hen-
derson and Brill, 1999). One of the state-of-the-art
system combination methods for MT is based on
confusion networks, which are compact graph-based
structures representing multiple hypotheses (Banga-
lore et al., 2001).

Confusion networks are constructed based on
string similarity information. First, one skeleton or

backbone sentence is selected. Then, other hypothe-
ses are aligned against the skeleton, forming a lattice
with each arc representing alternative word candi-
dates. The alignment method is either model-based
(Matusov et al., 2006; He et al., 2008) in which a
statistical word aligner is used to compute hypothe-
sis alignment, or edit-based (Jayaraman and Lavie,
2005; Sim et al., 2007) in which alignment is mea-
sured by an evaluation metric, such as translation er-
ror rate (TER) (Snover et al., 2006). The new trans-
lation hypothesis is generated by selecting the best
path through the network.

We present a novel method for system combina-
tion which exploits the syntactic similarity of system
outputs. Instead of constructing a string-based con-
fusion network, we generate a packed forest (Billot
and Lang, 1989; Mi et al., 2008) which encodes ex-
ponentially many parse trees in a polynomial space.
The packed forest, or confusion forest, is constructed
by merging the MT outputs with regard to their
syntactic consensus. We employ a grammar-based
method to generate the confusion forest: First, sys-
tem outputs are parsed. Second, a set of rules are
extracted from the parse trees. Third, a packed for-
est is generated using a variant of Earley’s algorithm
(Earley, 1970) starting from the unique root symbol.
New hypotheses are selected by searching the best
derivation in the forest. The grammar, a set of rules,
is limited to those found in the parse trees. Spuri-
ous ambiguity during the generation step is further
reduced by encoding the tree local contextual infor-
mation in each non-terminal symbol, such as parent
and sibling labels, using the state representation in
Earley’s algorithm.
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Experiments were carried out for the system
combination task of the fifth workshop on sta-
tistical machine translation (WMT10) in four di-
rections, {Czech, French, German, Spanish}-to-
English (Callison-Burch et al., 2010), and we found
comparable performance to the conventional con-
fusion network based system combination in two
language pairs, and statistically significant improve-
ments in the others.

First, we will review the state-of-the-art method
which is a system combination framework based on
confusion networks (§2). Then, we will introduce
a novel system combination method based on con-
fusion forest (§3) and present related work in con-
sensus translations (§4). Experiments are presented
in Section 5 followed by discussion and our conclu-
sion.

2 Combination by Confusion Network

The system combination framework based on confu-
sion network starts from computing pairwise align-
ment between hypotheses by taking one hypothe-
sis as a reference. Matusov et al. (2006) employs
a model based approach in which a statistical word
aligner, such as GIZA++ (Och and Ney, 2003), is
used to align the hypotheses. Sim et al. (2007) in-
troduced TER (Snover et al., 2006) to measure the
edit-based alignment.

Then, one hypothesis is selected, for example by
employing a minimum Bayes risk criterion (Sim et
al., 2007), as a skeleton, or a backbone, which serves
as a building block for aligning the rest of the hy-
potheses. Other hypotheses are aligned against the
skeleton using the pairwise alignment. Figure 1(b)
illustrates an example of a confusion network con-
structed from the four hypotheses in Figure 1(a), as-
suming the first hypothesis is selected as our skele-
ton. The network consists of several arcs, each of
which represents an alternative word at that position,
including the empty symbol, ϵ.

This pairwise alignment strategy is prone to spu-
rious insertions and repetitions due to alignment er-
rors such as in Figure 1(a) in which “green” in the
third hypothesis is aligned with “forest” in the skele-
ton. Rosti et al. (2008) introduces an incremental
method so that hypotheses are aligned incremen-
tally to the growing confusion network, not only the

.
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.. ..I ..saw ..the . ..green ..trees .
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(a) Pairwise alignment using the first starred hypothesis as a
skeleton.
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(c) Incrementally constructed confusion network

Figure 1: An example confusion network construc-
tion

skeleton hypothesis. In our example, “green trees”
is aligned with “blue forest” in Figure 1(c).

The confusion network construction is largely in-
fluenced by the skeleton selection, which determines
the global word reordering of a new hypothesis. For
example, the last hypothesis in Figure 1(a) has a pas-
sive voice grammatical construction while the others
are active voice. This large grammatical difference
may produce a longer sentence with spuriously in-
serted words, as in “I saw the blue trees was found”
in Figure 1(c). Rosti et al. (2007b) partially re-
solved the problem by constructing a large network
in which each hypothesis was treated as a skeleton
and the multiple networks were merged into a single
network.

3 Combination by Confusion Forest

The confusion network approach to system com-
bination encodes multiple hypotheses into a com-
pact lattice structure by using word-level consensus.
Likewise, we propose to encode multiple hypothe-
ses into a confusion forest, which is a packed forest
which represents multiple parse trees in a polyno-
mial space (Billot and Lang, 1989; Mi et al., 2008)
Syntactic consensus is realized by sharing tree frag-
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Figure 2: An example packed forest representing hy-
potheses in Figure 1(a).

ments among parse trees. The forest is represented
as a hypergraph which is exploited in parsing (Klein
and Manning, 2001; Huang and Chiang, 2005) and
machine translation (Chiang, 2007; Huang and Chi-
ang, 2007).

More formally, a hypergraph is a pair ⟨V, E⟩
where V is the set of nodes and E is the set of hy-
peredges. Each node in V is represented as X@p

where X ∈ N is a non-terminal symbol and p
is an address (Shieber et al., 1995) that encapsu-
lates each node id relative to its parent. The root
node is given the address ϵ and the address of the
first child of node p is given p.1. Each hyperedge
e ∈ E is represented as a pair ⟨head(e), tails(e)⟩
where head(e) ∈ V is a head node and tails(e) ∈
V ∗ is a list of tail nodes, corresponding to the
left-hand side and the right-hand side of an in-
stance of a rule in a CFG, respectively. Figure 2
presents an example packed forest for the parsed
hypotheses in Figure 1(a). For example, VP@2

has two hyperedges, ⟨VP@2,
(
VBD@3, VP@4

)
⟩ and

⟨VP@2,
(
VBD@2.1, NP@2.2

)
⟩, leading to different

derivations where the former takes the grammatical
construction in passive voice while the latter in ac-
tive voice.

Given system outputs, we employ the following
grammar based approach for constructing a confu-
sion forest: First, MT outputs are parsed. Second,

Initialization:

[TOP → •S, 0] : 1̄

Scan:
[X → α • xβ, h] : u

[X → αx • β, h] : u

Predict:

[X → α • Yβ, h]

[Y → •γ, h + 1] : u
Y u→ γ ∈ G, h < H

Complete:

[X → α • Yβ, h] : u [Y → γ•, h + 1] : v

[X → αY • β, h] : u⊗ v

Goal:
[TOP → S•, 0]

Figure 3: The deductive system for Earley’s genera-
tion algorithm

a grammar is learned by treating each hyperedge as
an instance of a CFG rule. Third, a forest is gen-
erated from the unique root symbol of the extracted
grammar through non-terminal rewriting.

3.1 Forest Generation
Given the extracted grammar, we apply a variant of
Earley’s algorithm (Earley, 1970) which can gener-
ate strings in a left-to-right manner from the unique
root symbol, TOP. Figure 3 presents the deductive
inference rules (Goodman, 1999) for our generation
algorithm. We use capital letters X ∈ N to denote
non-terminals and x ∈ T for terminals. Lowercase
Greek letters α, β and γ are strings of terminals and
non-terminals (T ∪ N )∗. u and v are weights asso-
ciated with each item.

The major difference compared to Earley’s pars-
ing algorithm is that we ignore the terminal span in-
formation each non-terminal covers and keep track
of the height of derivations by h. The scanning
step will always succeed by moving the dot to the
right. Combined with the prediction and completion
steps, our algorithm may potentially generate a spu-
riously deep forest. Thus, the height of the forest is
constrained in the prediction step not to exceed H ,
which is empirically set to 1.5 times the maximum
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height of the parsed system outputs.

3.2 Tree Annotation

The grammar compiled from the parsed trees is lo-
cal in that it can represent a finite number of sen-
tences translated from a specific input sentence. Al-
though its coverage is limited, our generation algo-
rithm may yield a spuriously large forest. As a way
to reduce spurious ambiguities, we relabel the non-
terminal symbols assigned to each parse tree before
extracting rules.

Here, we replace each non-terminal symbol by
the state representation of Earley’s algorithm corre-
sponding to the sequence of prediction steps starting
from TOP. Figure 4(a) presents an example parse
tree with each symbol replaced by the Earley’s state
in Figure 4(b). For example, the label for VBD is
replaced by •S + NP : •VP + •VBD : NP which
corresponds to the prediction steps of TOP → •S,
S → NP • VP and VP → •VBD NP. The context
represented in the Earley’s state is further limited by
the vertical and horizontal Markovization (Klein and
Manning, 2003). We define the vertical order v in
which the label is limited to memorize only v pre-
vious prediction steps. For instance, setting v = 1
yields NP : •VP + •VBD : NP in our example.
Likewise, we introduce the horizontal order h which
limits the number of sibling labels memorized on the
left and the right of the dotted label. Limiting h = 1
implies that each deductive step is encoded with at
most three symbols.

No limits in the horizontal and vertical
Markovization orders implies memorizing of
all the deductions and yields a confusion forest
representing the union of parse trees through the
grammar collection and the generation processes.
More relaxed horizontal orders allow more reorder-
ing of subtrees in a confusion forest by discarding
the sibling context in each prediction step. Like-
wise, constraining the vertical order generates a
deeper forest by ignoring the sequence of symbols
leading to a particular node.

3.3 Forest Rescoring

From the packed forest F , new k-best derivations
are extracted from all possible derivations D by
efficient forest-based algorithms for k-best parsing
(Huang and Chiang, 2005). We use a linear combi-
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Figure 4: Label annotation by Earley’s alsogirhtm
state

nation of features as our objective function to seek
for the best derivation d̂:

d̂ = arg max
d∈D

w⊤ · h(d, F ) (1)

where h(d, F ) is a set of feature functions scaled
by weight vector w. We use cube-pruning (Chiang,
2007; Huang and Chiang, 2007) to approximately
intersect with non-local features, such as n-gram
language models. Then, k-best derivations are ex-
tracted from the rescored forest using algorithm 3 of
Huang and Chiang (2005).

4 Related Work

Consensus translations have been extensively stud-
ied with many granularities. One of the simplest
forms is a sentence-based combination in which
hypotheses are simply reranked without merging
(Nomoto, 2004). Frederking and Nirenburg (1994)
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proposed a phrasal combination by merging hy-
potheses in a chart structure, while others depended
on confusion networks, or similar structures, as a
building block for merging hypotheses at the word
level (Bangalore et al., 2001; Matusov et al., 2006;
He et al., 2008; Jayaraman and Lavie, 2005; Sim
et al., 2007). Our work is the first to explicitly ex-
ploit syntactic similarity for system combination by
merging hypotheses into a syntactic packed forest.
The confusion forest approach may suffer from pars-
ing errors such as the confusion network construc-
tion influenced by alignment errors. Even with pars-
ing errors, we can still take a tree fragment-level
consensus as long as a parser is consistent in that
similar syntactic mistakes would be made for simi-
lar hypotheses.

Rosti et al. (2007a) describe a re-generation ap-
proach to consensus translation in which a phrasal
translation table is constructed from the MT outputs
aligned with an input source sentence. New transla-
tions are generated by decoding the source sentence
again using the newly extracted phrase table. Our
grammar-based approach can be regarded as a re-
generation approach in which an off-the-shelf mono-
lingual parser, instead of a word aligner, is used to
annotate syntactic information to each hypothesis,
then, a new translation is generated from the merged
forest, not from the input source sentence through
decoding. In terms of generation, our approach is
an instance of statistical generation (Langkilde and
Knight, 1998; Langkilde, 2000). Instead of gener-
ating forests from semantic representations (Langk-
ilde, 2000), we generate forests from a CFG encod-
ing the consensus among parsed hypotheses.

Liu et al. (2009) present joint decoding in which
a translation forest is constructed from two distinct
MT systems, tree-to-string and string-to-string, by
merging forest outputs. Their merging method is ei-
ther translation-level in which no new translation is
generated, or derivation-level in that the rules shar-
ing the same left-hand-side are used in both sys-
tems. While our work is similar in that a new forest
is constructed by sharing rules among systems, al-
though their work involves no consensus translation
and requires structures internal to each system such
as model combinations (DeNero et al., 2010).

cz-en de-en es-en fr-en
# of systems 6 16 8 14
avg. words tune 10.6K 10.9K 10.9K 11.0K

test 50.5K 52.1K 52.1K 52.4K
sentences tune 455

test 2,034

Table 1: WMT10 system combination tuning/testing
data

5 Experiments

5.1 Setup

We ran our experiments for the WMT10 sys-
tem combination task usinge four language pairs,
{Czech, French, German, Spanish}-to-English
(Callison-Burch et al., 2010). The data is summa-
rized in Table 1. The system outputs are retok-
enized to match the Penn-treebank standard, parsed
by the Stanford Parser (Klein and Manning, 2003),
and lower-cased.

We implemented our confusion forest sys-
tem combination using an in-house developed
hypergraph-based toolkit cicada which is motivated
by generic weighted logic programming (Lopez,
2009), originally developed for a synchronous-CFG
based machine translation system (Chiang, 2007).
Input to our system is a collection of hypergraphs,
a set of parsed hypotheses, from which rules are ex-
tracted and a new forest is generated as described
in Section 3. Our baseline, also implemented in ci-
cada, is a confusion network-based system combi-
nation method (§2) which incrementally aligns hy-
potheses to the growing network using TER (Rosti
et al., 2008) and merges multiple networks into a
large single network. After performing epsilon re-
moval, the network is transformed into a forest by
parsing with monotone rules of S → X, S → S X
and X → x. k-best translations are extracted from
the forest using the forest-based algorithms in Sec-
tion 3.3.

5.2 Features

The feature weight vector w in Equation 1 is tuned
by MERT over hypergraphs (Kumar et al., 2009).

We use three lower-cased 5-gram language mod-
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els hi
lm(d): English Gigaword Fourth edition1, the

English side of French-English 109 corpus and the
news commentary English data2. The count based
features ht(d) and he(d) count the number of ter-
minals and the number of hyperedges in d, respec-
tively. We employ M confidence measures hm

s (d)
for M systems, which basically count the number of
rules used in d originally extracted from mth system
hypothesis (Rosti et al., 2007a).

Following Macherey and Och (2007), BLEU (Pa-
pineni et al., 2002) correlations are also incorporated
in our system combination. Given M system outputs
e1...eM , M BLEU scores are computed for d using
each of the system outputs em as a reference

hm
b (d) = BP (e, em) · exp

(
1

4

4∑
n=1

log ρn(e, em)

)

where e = yield(d) is a terminal yield of d, BP (·)
and ρn(·) respectively denote brevity penalty and
n-gram precision. Here, we use approximated un-
clipped n-gram counts (Dreyer et al., 2007) for com-
puting ρn(·) with a compact state representation (Li
and Khudanpur, 2009).

Our baseline confusion network system has an ad-
ditional penalty feature, hp(m), which is the total
edits required to construct a confusion network us-
ing the mth system hypothesis as a skeleton, normal-
ized by the number of nodes in the network (Rosti et
al., 2007b).

5.3 Results
Table 2 compares our confusion forest approach
(CF) with different orders, a confusion network
(CN) and max/min systems measured by BLEU (Pa-
pineni et al., 2002). We vary the horizontal orders,
h = 1, 2,∞ with vertical orders of v = 3, 4,∞.
Systems without statistically significant differences
from the best result (p < 0.05) are indicated by bold
face. Setting v = ∞ and h = ∞ achieves compa-
rable performance to CN. Our best results in three
languages come from setting v = ∞ and h = 2,
which favors little reordering of phrasal structures.
In general, lower horizontal and vertical order leads
to lower BLEU.

1LDC catalog No. LDC2009T13
2Those data are available from http://www.statmt.

org/wmt10/.

language cz-en de-en es-en fr-en
system min 14.09 15.62 21.79 16.79

max 23.44 24.10 29.97 29.17
CN 23.70 24.09 30.45 29.15
CFv=∞,h=∞ 24.13 24.18 30.41 29.57
CFv=∞,h=2 24.14 24.58 30.52 28.84
CFv=∞,h=1 24.01 23.91 30.46 29.32
CFv=4,h=∞ 23.93 23.57 29.88 28.71
CFv=4,h=2 23.82 22.68 29.92 28.83
CFv=4,h=1 23.77 21.42 30.10 28.32
CFv=3,h=∞ 23.38 23.34 29.81 27.34
CFv=3,h=2 23.30 23.95 30.02 28.19
CFv=3,h=1 23.23 21.43 29.27 26.53

Table 2: Translation results in lower-case BLEU.
CN for confusion network and CF for confusion
forest with different vertical (v) and horizontal (h)
Markovization order.

language cz-en de-en es-en fr-en
rerank 29.40 32.32 36.83 36.59
CN 38.52 34.97 47.65 46.37
CFv=∞,h=∞ 30.51 34.07 38.69 38.94
CFv=∞,h=2 30.61 34.25 38.87 39.10
CFv=∞,h=1 31.09 34.65 39.27 39.51
CFv=4,h=∞ 30.86 34.19 39.17 39.39
CFv=4,h=2 30.96 34.32 39.35 39.57
CFv=4,h=1 31.44 34.62 39.69 39.90
CFv=3,h=∞ 31.03 34.30 39.29 39.57
CFv=3,h=2 31.25 34.97 39.61 40.00
CFv=3,h=1 31.55 34.60 39.72 39.97

Table 3: Oracle lower-case BLEU

Table 3 presents oracle BLEU achievable by each
combination method. The gains achievable by the
CF over simple reranking are small, at most 2-3
points, indicating that small variations are encoded
in confusion forests. We also observed that a lower
horizontal and vertical order leads to better BLEU
potentials. As briefly pointed out in Section 3.2,
the higher horizontal and vertical order implies more
faithfulness to the original parse trees. Introducing
new tree fragments to confusion forests leads to new
phrasal translations with enlarged forests, as pre-
sented in Table 4, measured by the average number
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lang cz-en de-en es-en fr-en
CN 2,222.68 47,231.20 2,932.24 11,969.40

lattice 1,723.91 41,403.90 2,330.04 10,119.10
CFv=∞ 230.08 540.03 262.30 386.79
CFv=4 254.45 651.10 302.01 477.51
CFv=3 286.01 802.79 349.21 575.17

Table 4: Hypegraph size measured by the average
number of hyperedges (h = 1 for CF). “lattice” is
the average number of edges in the original CN.

of hyperedges3. The larger potentials do not imply
better translations, probably due to the larger search
space with increased search errors. We also conjec-
ture that syntactic variations were not captured by
the n-gram like string-based features in Section 5.2,
therefore resulting in BLEU loss, which will be in-
vestigated in future work.

In contrast, CN has more potential for generat-
ing better translations, with the exception of the
German-to-English direction, with scores that are
usually 10 points better than simple sentence-wise
reranking. The low potential in German should be
interpreted in the light of the extremely large confu-
sion network in Table 4. We postulate that the di-
vergence in German hypotheses yields wrong align-
ments, and therefore amounts to larger networks
with incorrect hypotheses. Table 4 also shows that
CN produces a forest that is an order of magnitude
larger than those created by CFs. Although we can-
not directly relate the runtime and the number of
hyperedges in CN and CFs, since the shape of the
forests are different, CN requires more space to en-
code the hypotheses than those by CFs.

Table 5 compares the average length of the min-
imum/maximum hypothesis that each method can
produce. CN may generate shorter hypotheses,
whereby CF prefers longer hypotheses as we de-
crease the vertical order. Large divergence is also
observed for German, such as for hypergraph size.

6 Conclusion

We presented a confusion forest based method for
system combination in which system outputs are
merged into a packed forest using their syntactic

3We measure the hypergraph size before intersecting with
non-local features, like n-gram language models.

language cz-en de-en es-en fr-en
system avg. 24.84 25.62 25.63 25.75
CN min 11.09 3.39 12.27 7.94

max 33.69 40.65 33.22 36.27
CFv=∞ min 15.97 10.88 17.67 16.62

max 35.20 47.20 35.28 37.94
CFv=4 min 15.52 10.58 17.02 15.85

max 37.11 53.67 38.56 42.64
CFv=3 min 15.15 10.34 16.54 15.30

max 39.88 68.45 42.85 49.55

Table 5: Average min/max hypothesis length pro-
ducible by each method (h = 1 for CF).

similarity. The forest construction is treated as a
generation from a CFG compiled from the parsed
outputs. Our experiments indicate comparable per-
formance to a strong confusion network baseline
with smaller space, and statistically significant gains
in some language pairs.

To our knowledge, this is the first work to directly
introduce syntactic consensus to system combina-
tion by encoding multiple system outputs into a sin-
gle forest structure. We believe that the confusion
forest based approach to system combination has
future exploration potential. For instance, we did
not employ syntactic features in Section 5.2 which
would be helpful in discriminating hypotheses in
larger forests. We would also like to analyze the
trade-offs, if any, between parsing errors and confu-
sion forest constructions by controlling the parsing
qualities. As an alternative to the grammar-based
forest generation, we are investigating an edit dis-
tance measure for tree alignment, such as tree edit
distance (Bille, 2005) which basically computes in-
sertion/deletion/replacement of nodes in trees.
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