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Abstract

We evaluate several popular models of local

discourse coherence for domain and task gen-

erality by applying them to chat disentangle-

ment. Using experiments on synthetic multi-

party conversations, we show that most mod-

els transfer well from text to dialogue. Co-

herence models improve results overall when

good parses and topic models are available,

and on a constrained task for real chat data.

1 Introduction

One property of a well-written document is coher-

ence, the way each sentence �ts into its context� sen-

tences should be interpretable in light of what has

come before, and in turn make it possible to inter-

pret what comes after. Models of coherence have

primarily been used for text-based generation tasks:

ordering units of text for multidocument summariza-

tion or inserting new text into an existing article.

In general, the corpora used consist of informative

writing, and the tasks used for evaluation consider

different ways of reordering the same set of textual

units. But the theoretical concept of coherence goes

beyond both this domain and this task setting� and

so should coherence models.

This paper evaluates a variety of local coher-

ence models on the task of chat disentanglement or

�threading�: separating a transcript of a multiparty

interaction into independent conversations1. Such

simultaneous conversations occur in internet chat

1A public implementation is available via https://

bitbucket.org/melsner/browncoherence.

rooms, and on shared voice channels such as push-

to-talk radio. In these situations, a single, correctly

disentangled, conversational thread will be coherent,

since the speakers involved understand the normal

rules of discourse, but the transcript as a whole will

not be. Thus, a good model of coherence should be

able to disentangle sentences as well as order them.

There are several differences between disentan-

glement and the newswire sentence-ordering tasks

typically used to evaluate coherence models. Inter-

net chat comes from a different domain, one where

topics vary widely and no reliable syntactic annota-

tions are available. The disentanglement task mea-

sures different capabilities of a model, since it com-

pares documents that are not permuted versions of

one another. Finally, full disentanglement requires

a large-scale search, which is computationally dif-

�cult. We move toward disentanglement in stages,

carrying out a series of experiments to measure the

contribution of each of these factors.

As an intermediary between newswire and inter-

net chat, we adopt the SWITCHBOARD (SWBD) cor-

pus. SWBD contains recorded telephone conversa-

tions with known topics and hand-annotated parse

trees; this allows us to control for the performance

of our parser and other informational resources. To

compare the two algorithmic settings, we use SWBD

for ordering experiments, and also arti�cially entan-

gle pairs of telephone dialogues to create synthetic

transcripts which we can disentangle. Finally, we

present results on actual internet chat corpora.

On synthetic SWBD transcripts, local coherence

models improve performance considerably over our

baseline model, Elsner and Charniak (2008b). On
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internet chat, we continue to do better on a con-

strained disentanglement task, though so far, we are

unable to apply these improvements to the full task.

We suspect that, with better low-level annotation

tools for the chat domain and a good way of integrat-

ing prior information, our improvements on SWBD

could transfer fully to IRC chat.

2 Related work

There is extensive previous work on coherence mod-

els for text ordering; we describe several speci�c

models below, in section 2. This study focuses on

models of local coherence, which relate text to its

immediate context. There has also been work on

global coherence, the structure of a document as a

whole (Chen et al., 2009; Eisenstein and Barzilay,

2008; Barzilay and Lee, 2004), typically modeled

in terms of sequential topics. We avoid using them

here, because we do not believe topic sequences are

predictable in conversation and because such models

tend to be algorithmically cumbersome.

In addition to text ordering, local coherence mod-

els have also been used to score the �uency of texts

written by humans or produced by machine (Pitler

and Nenkova, 2008; Lapata, 2006; Miltsakaki and

Kukich, 2004). Like disentanglement, these tasks

provide an algorithmic setting that differs from or-

dering, and so can demonstrate previously unknown

weaknesses in models. However, the target genre is

still informative writing, so they reveal little about

cross-domain �exibility.

The task of disentanglement or �threading� for

internet chat was introduced by Shen et al. (2006).

Elsner and Charniak (2008b) created the publicly

available #LINUX corpus; the best published re-

sults on this corpus are those of Wang and Oard

(2009). These two studies use overlapping unigrams

to measure similarity between two sentences; Wang

and Oard (2009) use a message expansion tech-

nique to incorporate context beyond a single sen-

tence. Unigram overlaps are used to model coher-

ence, but more sophisticated methods using syntax

(Lapata and Barzilay, 2005) or lexical features (La-

pata, 2003) often outperform them on ordering tasks.

This study compares several of these methods with

Elsner and Charniak (2008b), which we use as a

baseline because there is a publicly available imple-

mentation2.

Adams (2008) also created and released a disen-

tanglement corpus. They use LDA (Blei et al., 2001)

to discover latent topics in their corpus, then measur-

ing similarity by looking for shared topics. These

features fail to improve their performance, which is

puzzling in light of the success of topic modeling for

other coherence and segmentation problems (Eisen-

stein and Barzilay, 2008; Foltz et al., 1998). The

results of this study suggest that topic models can

help with disentanglement, but that it is dif�cult to

�nd useful topics for IRC chat.

A few studies have attempted to disentangle con-

versational speech (Aoki et al., 2003; Aoki et al.,

2006), mostly using temporal features. For the most

part, however, this research has focused on auditory

processing in the context of the cocktail party prob-

lem, the task of attending to a speci�c speaker in

a noisy room (Haykin and Chen, 2005). Utterance

content has some in�uence on what the listener per-

ceives, but only for extremely salient cues such as

the listener's name (Moray, 1959), so cocktail party

research does not typically use lexical models.

3 Models

In this section, we brie�y describe the models we in-

tend to evaluate. Most of them are drawn from pre-

vious work; one, the topical entity grid, is a novel

extension of the entity grid. For the experiments be-

low, we train the models on SWBD, sometimes aug-

mented with a larger set of automatically parsed con-

versations from the FISHER corpus. Since the two

corpora are quite similar, FISHER is a useful source

for extra data; McClosky et al. (2010) uses it for

this purpose in parsing experiments. (We continue

to use SWBD/FISHER even for experiments on IRC,

because we do not have enough disentangled train-

ing data to learn lexical relationships.)

3.1 Entity grid

The entity grid (Lapata and Barzilay, 2005; Barzilay

and Lapata, 2005) is an attempt to model some prin-

ciples of Centering Theory (Grosz et al., 1995) in a

statistical manner. It represents a document in terms

of entities and their syntactic roles: subject (S), ob-

ject (O), other (X) and not present (-). In each new

2cs.brown.edu/�melsner
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utterance, the grid predicts the role in which each

entity will appear, given its history of roles in the

previous sentences, plus a salience feature counting

the total number of times the entity occurs. For in-

stance, for an entity which is the subject of sentence

1, the object of sentence 2, and occurs four times in

total, the grid predicts its role in sentence 3 accord-

ing to the conditional P (�jS;O; sal = 4).

As in previous work, we treat each noun in a doc-

ument as denoting a single entity, rather than using

a coreference technique to attempt to resolve them.

In our development experiments, we noticed that

coreferent nouns often occur farther apart in conver-

sation than in newswire, since they are frequently

referred to by pronouns and deictics in the interim.

Therefore, we extend the history to six previous ut-

terances. For robustness with this long history, we

model the conditional probabilities using multilabel

logistic regression rather than maximum likelihood.

This requires the assumption of a linear model, but

makes the estimator less vulnerable to over�tting

due to sparsity, increasing performance by about 2%

in development experiments.

3.2 Topical entity grid

This model is a variant of the generative entity

grid, intended to take into account topical informa-

tion. To create the topical entity grid, we learn a

set of topic-to-word distributions for our corpus us-

ing LDA (Blei et al., 2001)3 with 200 latent top-

ics. This model embeds our vocabulary in a low-

dimensional space: we represent each word w as

the vector of topic probabilities p(tijw). We ex-

perimented with several ways to measure relation-

ships between words in this space, starting with the

standard cosine. However, the cosine can depend on

small variations in probability (for instance, if w has

most of its mass in dimension 1, then it is sensitive

to the exact weight of v for topic 1, even if this es-

sentially never happens).

To control for this tendency, we instead use the

magnitude of the dimension of greatest similarity:

sim(w; v) = maxi min(wi; vi)

Tomodel coherence, we generalize the binary his-

3www.cs.princeton.edu/�blei/

topicmodeling.html

tory features of the standard entity grid, which de-

tect, for example, whether entity e is the subject of

the previous sentence. In the topical entity grid, we

instead compute a real-valued feature which sums

up the similarity between entity e and the subject(s)

of the previous sentence.

These features can detect a transition like: �The

House voted yesterday. The Senate will consider the

bill today.�. If �House� and �Senate� have a high

similarity, then the feature will have a high value,

predicting that �Senate� is a good subject for the cur-

rent sentence. As in the previous section, we learn

the conditional probabilities with logistic regression;

we train in parallel by splitting the data and averag-

ing (Mann et al., 2009). The topics are trained on

FISHER, and on NANC for news.

3.3 IBM-1

The IBM translation model was �rst considered for

coherence by Soricut and Marcu (2006), although a

less probabilistically elegant version was proposed

earlier (Lapata, 2003). This model attempts to gen-

erate the content words of the next sentence by trans-

lating them from the words of the previous sentence,

plus a null word; thus, it will learn alignments be-

tween pairs of words that tend to occur in adjacent

sentences. We learn parameters on the FISHER cor-

pus, and on NANC for news.

3.4 Pronouns

The use of a generative pronoun resolver for co-

herence modeling originates in Elsner and Char-

niak (2008a). That paper used a supervised model

(Ge et al., 1998), but we adapt a newer, unsuper-

vised model which they also make publicly available

(Charniak and Elsner, 2009)4. They model each pro-

noun as generated by an antecedent somewhere in

the previous two sentences. If a good antecedent is

found, the probability of the pronoun's occurrence

will be high; otherwise, the probability is low, sig-

naling that the text is less coherent because the pro-

noun is hard to interpret correctly.

We use the model as distributed for news text. For

conversation, we adapt it by running a few iterations

of their EM training algorithm on the FISHER data.

4bllip.cs.brown.edu/resources.shtml\

#software
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3.5 Discourse-newness

Building on work from summarization (Nenkova

and McKeown, 2003) and coreference resolution

(Poesio et al., 2005), Elsner and Charniak (2008a)

use a model which recognizes discourse-new versus

old NPs as a coherence model. For instance, the

model can learn that �President Barack Obama� is

a more likely �rst reference than �Obama�. Follow-

ing their work, we score discourse-newness with a

maximum-entropy classi�er using syntactic features

counting different types of NP modi�ers, and we use

NP head identity as a proxy for coreference.

3.6 Chat-speci�c features

Most disentanglement models use non-linguistic in-

formation alongside lexical features; in fact, times-

tamps and speaker identities are usually better cues

than words are. We capture three essential non-

linguistic features using simple generative models.

The �rst feature is the time gap between one utter-

ance and the next within the same thread. Consistent

short gaps are a sign of normal turn-taking behavior;

long pauses do occur, but much more rarely (Aoki et

al., 2003). We round all time gaps to the nearest sec-

ond and model the distribution of time gaps using a

histogram, choosing bucket sizes adaptively so that

each bucket contains at least four datapoints.

The second feature is speaker identity; conver-

sations usually involve a small subset of the to-

tal number of speakers, and a few core speakers

make most of the utterances. We model the distri-

bution of speakers in each conversation using a Chi-

nese Restaurant Process (CRP) (Aldous, 1985) (tun-

ing the dispersion � to maximize development pe-

formance). The CRP's �rich-get-richer� dynamics

capture our intuitions, favoring conversations domi-

nated by a few vociferous speakers.

Finally, we model name mentioning. Speakers

in IRC chat often use their addressee's names to co-

ordinate the chat (O'Neill and Martin, 2003), and

this is a powerful source of information (Elsner and

Charniak, 2008b). Our model classi�es each utter-

ance into either the start or continuation of a conver-

sational turn, by checking if the previous utterance

had the same speaker. Given this status, it computes

probabilities for three outcomes: no name mention,

a mention of someone who has previously spoken

in the conversation, or a mention of someone else.

(The third option is extremely rare; this accounts

for most of the model's predictive power). We learn

these probabilities from IRC training data.

3.7 Model combination

To combine these different models, we adopt the

log-linear framework of Soricut and Marcu (2006).

Here, each model Pi is assigned a weight �i, and the

combined score P (d) is proportional to:

X

i

�ilog(Pi(d))

The weights � can be learned discriminatively,

maximizing the probability of d relative to a task-

speci�c contrast set. For ordering experiments, the

contrast set is a single random permutation of d; we

explain the training regime for disentanglement be-

low, in subsection 4.1.

4 Comparing orderings of SWBD

To measure the differences in performance caused

by moving from news to a conversational domain,

we �rst compare our models on an ordering task,

discrimination (Barzilay and Lapata, 2005; Karama-

nis et al., 2004). In this task, we take an original

document and randomly permute its sentences, cre-

ating an arti�cial incoherent document. We then test

to see if our model prefers the coherent original.

For SWBD, rather than compare permutations

of the individual utterances, we permute conversa-

tional turns (sets of consecutive utterances by each

speaker), since turns are natural discourse units in

conversation. We take documents numbered 2000�

3999 as training/development and the remainder as

test, yielding 505 training and 153 test documents;

we evaluate 20 permutations per document. As a

comparison, we also show results for the same mod-

els on WSJ, using the train-test split from Elsner and

Charniak (2008a); the test set is sections 14-24, to-

talling 1004 documents.

Purandare and Litman (2008) carry out similar ex-

periments on distinguishing permuted SWBD doc-

uments, using lexical and WordNet features in a

model similar to Lapata (2003). Their accuracy for

this task (which they call �switch-hard�) is roughly

68%.
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WSJ SWBD

EGrid 76.4z 86.0

Topical EGrid 71.8z 70.9z
IBM-1 77.2z 84.9y
Pronouns 69.6z 71.7z
Disc-new 72.3z 55.0z

Combined 81.9 88.4

-EGrid 81.0 87.5

-Topical EGrid 82.2 90.5

-IBM-1 79.0z 88.9

-Pronouns 81.3 88.5

-Disc-new 82.2 88.4

Table 1: Discrimination F scores on news and dialogue.

z indicates a signi�cant difference from the combined

model at p=.01 and y at p=.05.

In Table 1, we show the results for individual

models, for the combined model, and ablation re-

sults for mixtures without each component. WSJ is

more dif�cult than SWBD overall because, on av-

erage, news articles are shorter than SWBD con-

versations. Short documents are harder, because

permuting disrupts them less. The best SWBD re-

sult is 91%; the best WSJ result is 82% (both for

mixtures without the topical entity grid). The WSJ

result is state-of-the-art for the dataset, improving

slightly on Elsner and Charniak (2008a) at 81%. We

test results for signi�cance using the non-parametric

Mann-Whitney U test.

Controlling for the fact that discrimination is eas-

ier on SWBD, most of the individual models perform

similarly in both corpora. The strongest models in

both cases are the entity grid and IBM-1 (at about

77% for news, 85% for dialogue). Pronouns and the

topical entity grid are weaker. The major outlier is

the discourse-new model, whose performance drops

from 72% for news to only 55%, just above chance,

for conversation.

The model combination results show that all the

models are quite closely correlated, since leaving

out any single model does not degrade the combi-

nation very much (only one of the ablations is sig-

ni�cantly worse than the combination). The most

critical in news is IBM-1 (decreasing performance

by 3% when removed); in conversation, it is the

entity grid (decreasing by about 1%). The topical

entity grid actually has a (nonsigni�cant) negative

impact on combined performance, implying that its

predictive power in this setting comes mainly from

information that other models also capture, but that

it is noisier and less reliable. In each domain, the

combined models outperform the best single model,

showing the information provided by the weaker

models is not completely redundant.

Overall, these results suggest that most previ-

ously proposed local coherence models are domain-

general; they work on conversation as well as

news. The exception is the discourse-newness

model, which bene�ts most from the speci�c con-

ventions of a written style. Full names with titles

(like �President Barack Obama�) are more common

in news, while conversation tends to involve fewer

completely unfamiliar entities and more cases of

bridging reference, in which grounding information

is given implicitly (Nissim, 2006). Due to its poor

performance, we omit the discourse-newness model

in our remaining experiments.

5 Disentangling SWBD

We now turn to the task of disentanglement, test-

ing whether models that are good at ordering also

do well in this new setting. We would like to hold

the domain constant, but we do not have any disen-

tanglement data recorded from naturally occurring

speech, so we create synthetic instances by merging

pairs of SWBD dialogues. Doing so creates an arti-

�cial transcript in which two pairs of people appear

to be talking simultaneously over a shared channel.

The situation is somewhat contrived in that each

pair of speakers converses only with each other,

never breaking into the other pair's dialogue and

rarely using devices like name mentioning to make

it clear who they are addressing. Since this makes

speaker identity a perfect cue for disentanglement,

we do not use it in this section. The only chat-

speci�c model we use is time.

Because we are not using speaker information, we

remove all utterances which do not contain a noun

before constructing synthetic transcripts� these are

mostly backchannels like �Yeah�. Such utterances

cannot be correctly assigned by our coherence mod-

els, which deal with content; we suspect most of

them could be dealt with by associating them with

the nearest utterance from the same speaker.
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Once the backchannels are stripped, we can cre-

ate a synthetic transcript. For each dialogue, we �rst

simulate timestamps by sampling the number of sec-

onds between each utterance and the next from a dis-

cretized Gaussian: bN(0; 2:5)c. The interleaving of
the conversations is dictated by the timestamps. We

truncate the longer conversation at the length of the

shorter; this ensures a baseline score of 50% for the

degenerate model that assigns all utterances to the

same conversation.

We create synthetic instances of two types� those

where the two entangled conversations had differ-

ent topical prompts and those where they were the

same. (Each dialogue in SWBD focuses on a prese-

lected topic, such as �shing or movies.) We entangle

dialogues from our ordering development set to use

for mixture training and validation; for testing, we

use 100 instances of each type, constructed from di-

alogues in our test set.

When disentangling, we treat each thread as inde-

pendent of the others. In other words, the probability

of the entire transcript is the product of the probabil-

ities of the component threads. Our objective is to

�nd the set of threads maximizing this. As a com-

parison, we use the model of Elsner and Charniak

(2008b) as a baseline. To make their implementa-

tion comparable to ours, in this section we constrain

it to �nd only two threads.

5.1 Disentangling a single utterance

Our �rst disentanglement task is to correctly assign

a single utterance, given the true structure of the rest

of the transcript. For each utterance, we compare

two versions of the transcript, the original, and a

version where it is swapped into the other thread.

Our accuracy measures how often our models prefer

the original. Unlike full-scale disentanglement, this

task does not require a computationally demanding

search, so it is possible to run experiments quickly.

We also use it to train our mixture models for disen-

tanglement, by construct a training example for each

utterance i in our training transcripts. Since the El-

sner and Charniak (2008b) model maximizes a cor-

relation clustering objective which sums up indepen-

dent edge weights, we can also use it to disentangle

a single sentence ef�ciently.

Our results are shown in Table 2. Again, re-

sults for individual models are above the line, then

Different Same Avg.

EGrid 80.2 72.9 76.6

Topical EGrid 81.7 73.3 77.5

IBM-1 70.4 66.7 68.5

Pronouns 53.1 50.1 51.6

Time 58.5 57.4 57.9

Combined 86.8 79.6 83.2

-EGrid 86.0 79.1 82.6

-Topical EGrid 85.2 78.7 81.9

-IBM-1 86.2 78.7 82.4

-Pronouns 86.8 79.4 83.1

-Time 84.5 76.7 80.6

E+C `08 78.2 73.5 75.8

Table 2: Average accuracy for disentanglement of a sin-

gle utterance on 200 synthetic multiparty conversations

from SWBD test.

our combined model, and �nally ablation results for

mixtures omitting a single model. The results show

that, for a pair of dialogues that differ in topic, our

best model can assign a single sentence with 87%

accuracy. For the same topic, the accuracy is 80%.

In each case, these results improve on (Elsner and

Charniak, 2008b), which scores 78% and 74%.

Changing to this new task has a substantial im-

pact on performance. The topical model, which per-

formed poorly for ordering, is actually stronger than

the entity grid in this setting. IBM-1 underperforms

either grid model (69% to 77%); on ordering, it was

nearly as good (85% to 86%).

Despite their ordering performance of 72%, pro-

nouns are essentially useless for this task, at 52%.

This decline is due partly to domain, and partly

to task setting. Although SWBD contains more

pronominals than WSJ, many of them are �rst

and second-person pronouns or deictics, which our

model does not attempt to resolve. Since the disen-

tanglement task involves moving only a single sen-

tence, if moving this sentence does not sever a re-

solvable pronoun from its antecedent, the model will

be unable to make a good decision.

As before, the ablation results show that all the

models are quite correlated, since removing any sin-

gle model from the mixture causes only a small de-

crease in performance. The largest drop (83% to

81%) is caused by removing time; though time is

a weak model on its own, it is completely orthogo-
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nal to the other models, since unlike them, it does

not depend on the words in the sentences.

Comparing results between �different topic� and

�same topic� instances shows that �same topic� is

harder� by about 7% for the combined model. The

IBM model has a relatively small gap of 3.7%, and

in the ablation results, removing it causes a larger

drop in performance for �same� than �different�;

this suggests it is somewhat more robust to similar-

ity in topic than entity grids.

Disentanglement accuracy is hard to predict given

ordering performance; the two tasks plainly make

different demands on models. One difference is that

the models which use longer histories (the two entity

grids) remain strong, while the models considering

only one or two previous sentences (IBM and pro-

nouns) do not do as well. Since the changes being

considered here affect only a single sentence, while

permutation affects the entire transcript, more his-

tory may help by making the model more sensitive

to small changes.

5.2 Disentangling an entire transcript

We now turn to the task of disentangling an entire

transcript at once. This is a practical task, motivated

by applications such as search and information re-

trieval. However, it is more dif�cult than assign-

ing only a single utterance, because decisions are

interrelated� an error on one utterance may cause

a cascade of poor decisions further down. It is also

computationally harder.

We use tabu search (Glover and Laguna, 1997) to

�nd a good solution. The search repeatedly �nds and

moves the utterance which would most improve the

model score if swapped from one thread to the other.

Unlike greedy search, tabu search is constrained not

to repeat a solution that it has recently visited; this

forces it to keep exploring when it reaches a local

maximum. We run 500 iterations of tabu search

(usually �nding the �rst local maximum after about

100) and return the best solution found.

We measure performance with one-to-one over-

lap, which maps the two clusters to the two gold

dialogues, then measures percent correct5. Our re-

sults (Table 3) show that, for transcripts with dif-

ferent topics, our disentanglement has 68% over-

5The other popular metrics, F and loc 3, are correlated.

Different Same Avg.

EGrid 60.3 57.1 58.7

Topical EGrid 62.3 56.8 59.6

IBM-1 56.5 55.2 55.9

Pronouns 54.5 54.4 54.4

Time 55.4 53.8 54.6

Combined 67.9 59.8 63.9

E+C `08 59.1 57.4 58.3

Table 3: One-to-one overlap between disentanglement re-

sults and truth on 200 synthetic multiparty conversations

from SWBD test.

lap with truth, extracting about two thirds of the

structure correctly; this is substantially better than

Elsner and Charniak (2008b), which scores 59%.

Where the entangled conversations have the same

topic, performance is lower, about 60%, but still bet-

ter than the comparison model with 57%. Since cor-

relations with the previous section are fairly reliable,

and the disentanglement procedure is computation-

ally intensive, we omit ablation experiments.

As we expect, full disentanglement is more dif-

�cult than single-sentence disentanglement (com-

bined scores drop by about 20%), but the single-

sentence task is a good predictor of relative perfor-

mance. Entity grid models do best, the IBM model

remains useful, but less so than for discrimination,

and pronouns are very weak. The IBM model per-

forms similarly under both metrics (56% and 57%),

while other models perform worse on loc 3. This

supports our suggestion that IBM's decline in per-

formance from ordering is indeed due to its using a

single sentence history; it is still capable of getting

local structures right, but misses global ones.

6 IRC data

In this section, we move from synthetic data to

real multiparty discourse recorded from internet chat

rooms. We use two datasets: the #LINUX corpus

(Elsner and Charniak, 2008b), and three larger cor-

pora, #IPHONE, #PHYSICS and #PYTHON (Adams,

2008). We use the 1000-line �development� sec-

tion of #LINUX for tuning our mixture models and

the 800-line �test� section for development experi-

ments. We reserve the Adams (2008) corpora for

testing; together, they consist of 19581 lines of chat,

with each section containing 500 to 1000 lines.
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Chat-speci�c 74.0

+EGrid 79.3

+Topical EGrid 76.8

+IBM-1 76.3

+Pronouns 73.9

+EGrid/Topic/IBM-1 78.3

E+C `08b 76.4

Table 4: Accuracy for single utterance disentanglement,

averaged over annotations of 800 lines of #LINUX data.

In order to use syntactic models like the entity

grid, we parse the transcripts using (McClosky et

al., 2006). Performance is bad, although the parser

does identify most of the NPs; poor results are typi-

cal for a standard parser on chat (Foster, 2010). We

postprocess the parse trees to retag �lol�, �haha� and

�yes� as UH (rather than NN, NNP and JJ).

In this section, we use all three of our chat-

speci�c models (sec. 2.0.6; time, speaker andmen-

tion) as a baseline. This baseline is relatively strong,

so we evaluate our other models in combination with

it.

6.1 Disentangling a single sentence

As before, we show results on correctly disentan-

gling a single sentence, given the correct structure

of the rest of the transcript. We average perfor-

mance on each transcript over the different annota-

tions, then average the transcripts, weighing them by

length to give each utterance equal weight.

Table 4 gives results on our development corpus,

#LINUX. Our best result, for the chat-speci�c fea-

tures plus entity grid, is 79%, improving on the com-

parison model, Elsner and Charniak (2008b), which

gets 76%. (Although the table only presents an av-

erage over all annotations of the dataset, this model

is also more accurate for each individual annota-

tor than the comparison model.) We then ran the

same model, chat-speci�c features plus entity grid,

on the test corpora from Adams (2008). These re-

sults (Table 5) are also better than Elsner and Char-

niak (2008b), at an average of 93% over 89%.

As pointed out in Elsner and Charniak (2008b),

the chat-speci�c features are quite powerful in this

domain, and it is hard to improve over them. Elsner

and Charniak (2008b), which has simple lexical fea-

tures, mostly based on unigram overlap, increases

#IPHONE #PHYSICS #PYTHON

+EGrid 92.3 96.6 91.1

E+C `08b 89.0 90.2 88.4

Table 5: Average accuracy for disentanglement of a sin-

gle utterance for 19581 total lines from Adams (2008).

performance over baseline by 2%. Both IBM and

the topical entity grid achieve similar gains. The en-

tity grid does better, increasing performance to 79%.

Pronouns, as before for SWBD, are useless.

We believe that the entity grid's good perfor-

mance here is due mostly to two factors: its use of

a long history, and its lack of lexicalization. The

grid looks at the previous six sentences, which dif-

ferentiates it from the IBM model and from Elsner

and Charniak (2008b), which treats each pair of sen-

tences independently. Using this long history helps

to distinguish important nouns from unimportant

ones better than frequency alone. We suspect that

our lexicalized models, IBM and the topical entity

grid, are hampered by poor parameter settings, since

their parameters were learned on FISHER rather than

IRC chat. In particular, we believe this explains why

the topical entity grid, which slightly outperformed

the entity grid on SWBD, is much worse here.

6.2 Full disentanglement

Running our tabu search algorithm on the full disen-

tanglement task yields disappointing results. Accu-

racies on the #LINUX dataset are not only worse than

previous work, but also worse than simple baselines

like creating one thread for each speaker. The model

�nds far too many threads� it detects over 300, when

the true number is about 81 (averaging over annota-

tions). This appears to be related to biases in our

chat-speci�c models as well as in the entity grid;

the time model (which generates gaps between adja-

cent sentences) and the speaker model (which uses

a CRP) both assign probability 1 to single-utterance

conversations. The entity grid also has a bias toward

short conversations, because unseen entities are em-

pirically more likely to occur toward the beginning

of a conversation than in the middle.

A major weakness in our model is that we aim

only to maximize coherence of the individual con-

versations, with no prior on the likely length or num-

ber of conversations that will appear in the tran-
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script. This allows the model to create far too many

conversations. Integrating a prior into our frame-

work is not straightforward because we currently

train our mixture to maximize single-utterance dis-

entanglement performance, and the prior is not use-

ful for this task.

We experimented with �xing parts of the tran-

script to the solution obtained by Elsner and Char-

niak (2008b), then using tabu search to �ll in the

gaps. This constrains the number of conversations

and their approximate positions. With this structure

in place, we were able to obtain scores comparable

to Elsner and Charniak (2008b), but not improve-

ments. It appears that our performance increase on

single-sentence disentanglement does not transfer to

this task because of cascading errors and the neces-

sity of using external constraints.

7 Conclusions

We demonstrate that several popular models of lo-

cal coherence transfer well to the conversational do-

main, suggesting that they do indeed capture coher-

ence in general rather than speci�c conventions of

newswire text. However, their performance across

tasks is not as stable; in particular, models which

use less history information are worse for disentan-

glement.

Our results study suggest that while sophisticated

coherence models can potentially contribute to dis-

entanglement, they would bene�t greatly from im-

proved low-level resources for internet chat. Bet-

ter parsing, or at least NP chunking, would help for

models like the entity grid which rely on syntactic

role information. Larger training sets, or some kind

of transfer learning, could improve the learning of

topics and other lexical parameters. In particular,

our results on SWBD data con�rm the conjecture of

(Adams, 2008) that LDA topic modeling is in prin-

ciple a useful tool for disentanglement� we believe a

topic-based model could also work on IRC chat, but

would require a better set of extracted topics. With

better parameters for these models and the integra-

tion of a prior, we believe that our good performance

on SWBD and single-utterance disentanglement for

IRC can be extended to full-scale disentanglement

of IRC.
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