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Abstract

We consider a new subproblem of unsuper-
vised parsing from raw text, unsupervised par-
tial parsing—the unsupervised version of text
chunking. We show that addressing this task
directly, using probabilistic finite-state meth-
ods, produces better results than relying on
the local predictions of a current best unsu-
pervised parser, Seginer’s (2007) CCL. These
finite-state models are combined in a cascade
to produce more general (full-sentence) con-
stituent structures; doing so outperforms CCL
by a wide margin in unlabeled PARSEVAL
scores for English, German and Chinese. Fi-
nally, we address the use of phrasal punctua-
tion as a heuristic indicator of phrasal bound-
aries, both in our system and in CCL.

1 Introduction

Unsupervised grammar induction has been an ac-
tive area of research in computational linguistics for
over twenty years (Lari and Young, 1990; Pereira
and Schabes, 1992; Charniak, 1993). Recent work
(Headden III et al., 2009; Cohen and Smith, 2009;
Hänig, 2010; Spitkovsky et al., 2010) has largely
built on the dependency model with valence of Klein
and Manning (2004), and is characterized by its re-
liance on gold-standard part-of-speech (POS) anno-
tations: the models are trained on and evaluated us-
ing sequences of POS tags rather than raw tokens.
This is also true for models which are not successors
of Klein and Manning (Bod, 2006; Hänig, 2010).

An exception which learns from raw text and
makes no use of POS tags is the common cover links
parser (CCL, Seginer 2007). CCL established state-
of-the-art results for unsupervised constituency pars-

ing from raw text, and it is also incremental and ex-
tremely fast for both learning and parsing. Unfortu-
nately, CCL is a non-probabilistic algorithm based
on a complex set of inter-relating heuristics and a
non-standard (though interesting) representation of
constituent trees. This makes it hard to extend.
Note that although Reichart and Rappoport (2010)
improve on Seginer’s results, they do so by select-
ing training sets to best match the particular test
sentences—CCL itself is used without modification.

Ponvert et al. (2010) explore an alternative strat-
egy of unsupervised partial parsing: directly pre-
dicting low-level constituents based solely on word
co-occurrence frequencies. Essentially, this means
segmenting raw text into multiword constituents. In
that paper, we show—somewhat surprisingly—that
CCL’s performance is mostly dependent on its ef-
fectiveness at identifying low-level constituents. In
fact, simply extracting non-hierarchical multiword
constituents from CCL’s output and putting a right-
branching structure over them actually works better
than CCL’s own higher level predictions. This result
suggests that improvements to low-level constituent
prediction will ultimately lead to further gains in
overall constituent parsing.

Here, we present such an improvement by using
probabilistic finite-state models for phrasal segmen-
tation from raw text. The task for these models is
chunking, so we evaluate performance on identifica-
tion of multiword chunks of all constituent types as
well as only noun phrases. Our unsupervised chun-
kers extend straightforwardly to a cascade that pre-
dicts higher levels of constituent structure, similar
to the supervised approach of Brants (1999). This
forms an overall unsupervised parsing system that
outperforms CCL by a wide margin.
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Mrs. Ward for one was relieved

                                

1

(a) Chunks: (Mrs. Ward), (for one), and (was relieved)

All
came

from
Cray Research

                          

(b) Only one chunk extracted: (Cray Research)

Fig. 1: Examples of constituent chunks extracted from
syntactic trees

2 Data

We use the standard data sets for unsupervised con-
stituency parsing research: for English, the Wall
Street Journal subset of the Penn Treebank-3 (WSJ,
Marcus et al. 1999); for German, the Negra corpus
v2 (Krenn et al., 1998); for Chinese, the Penn Chi-
nese Treebank v5.0 (CTB, Palmer et al., 2006). We
lower-case text but otherwise do not alter the raw
text of the corpus. Sentence segmentation and tok-
enization from the treebank is used. As in previous
work, punctuation is not used for evaluation.

In much unsupervised parsing work the test sen-
tences are included in the training material. Like Co-
hen and Smith, Headden III et al., Spitkovsky et al.,
we depart from this experimental setup and keep the
evaluation sets blind to the models during training.
For English (WSJ) we use sections 00-22 for train-
ing, section 23 for test and we develop using section
24; for German (Negra) we use the first 18602 sen-
tences for training, the last 1000 sentences for de-
velopment and the penultimate 1000 sentences for
testing; for Chinese (CTB) we adopt the data-split
of Duan et al. (2007).

3 Tasks and Benchmark

Evaluation. By unsupervised partial parsing, or
simply unsupervised chunking, we mean the seg-
mentation of raw text into (non-overlapping) multi-
word constituents. The models are intended to cap-
ture local constituent structure – the lower branches
of a constituent tree. For this reason we evaluate

WSJ
Chunks 203K

NPs 172K
Chnk ∩ NPs 161K

Negra
Chunks 59K

NPs 33K
Chnk ∩ NPs 23K

CTB
Chunks 92K

NPs 56K
Chnk ∩ NPs 43K

Table 1: Constituent chunks and base NPs in the datasets.

% constituents % words

WSJ Chunks 32.9 57.7
NPs 27.9 53.1

Negra Chunks 45.4 53.6
NPs 25.5 42.4

CTB Chunks 32.5 55.4
NPs 19.8 42.9

Table 2: Percentage of gold standard constituents and
words under constituent chunks and base NPs.

using what we call constituent chunks, the subset
of gold standard constituents which are i) branch-
ing (multiword) but ii) non-hierarchical (do not con-
tain subconstituents). We also evaluate our models
based on their performance at identifying base noun
phrases, NPs that do not contain nested NPs.

Examples of constituent chunks extracted from
treebank constituent trees are in Fig. 1. In English
newspaper text, constituent chunks largely corre-
spond with base NPs, but this is less the case with
Chinese and German. Moreover, the relationship be-
tween NPs and constituent chunks is not a subset re-
lation: some base NPs do have internal constituent
structure. The numbers of constituent chunks and
NPs for the training datasets are in Table 1. The per-
centage of constituents in these datasets which fall
under these definitions, and the percentage of words
under these constituents, are in Table 2.

For parsing, the standard unsupervised parsing
metric is unlabeled PARSEVAL. It measures preci-
sion and recall on constituents produced by a parser
as compared to gold standard constituents.

CCL benchmark. We use Seginer’s CCL as a
benchmark for several reasons. First, there is a
free/open-source implementation facilitating exper-
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imental replication and comparison.1 More im-
portantly, until recently it was the only unsuper-
vised raw text constituent parser to produce re-
sults competitive with systems which use gold POS
tags (Klein and Manning, 2002; Klein and Man-
ning, 2004; Bod, 2006) – and the recent improved
raw-text parsing results of Reichart and Rappoport
(2010) make direct use of CCL without modifica-
tion. There are other raw-text parsing systems of
note, EMILE (Adriaans et al., 2000), ABL (van Za-
anen, 2000) and ADIOS (Solan et al., 2005); how-
ever, there is little consistent treebank-based evalu-
ation of these models. One study by Cramer (2007)
found that none of the three performs particularly
well under treebank evaluation. Finally, CCL out-
performs most published POS-based models when
those models are trained on unsupervised word
classes rather than gold POS tags. The only excep-
tion we are aware of is Hänig’s (2010) unsuParse+,
which outperforms CCL on Negra, though this is
shown only for sentences with ten or fewer words.

Phrasal punctuation. Though punctuation is usu-
ally entirely ignored in unsupervised parsing re-
search, Seginer (2007) departs from this in one key
aspect: the use of phrasal punctuation – punctuation
symbols that often mark phrasal boundaries within a
sentence. These are used in two ways: i) they im-
pose a hard constraint on constituent spans, in that
no constituent (other than sentence root) may extend
over a punctuation symbol, and ii) they contribute to
the model, specifically in terms of the statistics of
words seen adjacent to a phrasal boundary. We fol-
low this convention and use the following set:

. ? ! ; , -- ◦ �

The last two are ideographic full-stop and comma.2

4 Unsupervised partial parsing

We learn partial parsers as constrained sequence
models over tags encoding local constituent struc-
ture (Ramshaw and Marcus, 1995). A simple tagset
is unlabeled BIO, which is familiar from supervised
chunking and named-entity recognition: the tag B

1http://www.seggu.net/ccl
2This set is essentially that of Seginer (2007). While it is

clear from our analysis of CCL that it does make use of phrasal
punctuation in Chinese, we are not certain whether ideographic
comma is included.

denotes the beginning of a chunk, I denotes mem-
bership in a chunk and O denotes exclusion from any
chunk. In addition we use the tag STOP for sentence
boundaries and phrasal punctuation.

HMMs and PRLGs. The models we use for un-
supervised partial parsing are hidden Markov mod-
els, and a generalization we refer to as probabilis-
tic right linear grammars (PRLGs). An HMM mod-
els a sequence of observed states (words) x =
{x1, x2, . . . , xN} and a corresponding set of hid-
den states y = {y1, y2, . . . , yN}. HMMs may be
thought of as a special case of probabilistic context-
free grammars, where the non-terminal symbols are
the hidden state space, terminals are the observed
states and rules are of the form NONTERM →
TERM NONTERM (assuming y1 and yN are fixed
and given). So, the emission and transition emanat-
ing from yn would be characterized as a PCFG rule
yn → xn yn+1. HMMs factor rule probabilities into
emission and transition probabilities:

P (yn → xn yn+1) = P (xn, yn+1|yn)

≈ P (xn|yn) P (yn+1|yn).

However, without making this independence as-
sumption, we can model right linear rules directly:

P (xn, yn+1|yn) = P (xn|yn, yn+1) P (yn+1|yn).

So, when we condition emission probabilities on
both the current state yn and the next state yn+1, we
have an exact model. This direct modeling of the
right linear grammar rule yn → xn yn+1 is what
we call a probabilistic right-linear grammar. To be
clear, a PRLG is just an HMM without the indepen-
dence of emissions and transitions. See Smith and
Johnson (2007) for a discussion, where they refer to
PRLGs as Mealy HMMs.

We use expectation maximization to estimate
model parameters. For the E step, the forward-
backward algorithm (Rabiner, 1989) works identi-
cally for the HMM and PRLG. For the M step, we
use maximum likelihood estimation with additive
smoothing on the emissions probabilities. So, for
the HMM and PRLG models respectively, for words
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STOP B

O I

1

Fig. 2: Possible tag transitions as a state diagram.

STOP B I O
STOP .33 .33 .33

B 1
I .25 .25 .25 .25
O .33 .33 .33

Fig. 3: Uniform initialization of transition probabilities
subject to the constraints in Fig. 2: rows correspond to
antecedent state, columns to following state.

w and tags s, t:

P̂ (w|t) =
C(t, w) + λ

C(t) + λV

P̂ (w|s, t) =
C(t, w, s) + λ

C(t, s) + λV

where C are the soft counts of emissions C(t, w),
rules C(t, w, s) = C(t → w s), tags C(t) and tran-
sitions C(t, s) calculated during the E step; V is the
number of terms w, and λ is a smoothing parameter.
We fix λ = .1 for all experiments; more sophisti-
cated smoothing could avoid dependence on λ.

We do not smooth transition probabilities (so
P̂ (s|t) = C(t, s)/C(t)) for two reasons. First, with
four tags, there is no data-sparsity concern with re-
spect to transitions. Second, the nature of the task
imposes certain constraints on transition probabili-
ties: because we are only interested in multiword
chunks, we expressly do not want to generate a B
following a B – in other words P (B|B) = 0.

These constraints boil down to the observation
that the B and I states will only be seen in BII∗ se-
quences. This may be expressed via the state transi-
tion diagram in Fig. 2. The constraints of also dic-
tate the initial model input to the EM process. We
use uniform probability distributions subject to the
constraints of Fig. 2. So, initial model transition
probabilities are given in Fig. 3. In EM, if a parame-
ter is equal to zero, subsequent iterations of the EM
process will not “unset” this parameter; thus, this
form of initialization is a simple way of encoding
constraints on model parameters. We also experi-

mented with random initial models (subject to the
constraints in Fig. 2). Uniform initialization usu-
ally works slightly better; also, uniform initializa-
tion does not require multiple runs of each experi-
ment, as random initialization does.

Motivating the HMM and PRLG. This approach
– encoding a chunking problem as a tagging prob-
lem and learning to tag with HMMs – goes back
to Ramshaw and Marcus (1995). For unsupervised
learning, the expectation is that the model will learn
to generalize on phrasal boundaries. That is, the
models will learn to associate terms like the and a,
which often occur at the beginnings of sentences and
rarely at the end, with the tag B, which cannot occur
at the end of a sentence. Likewise common nouns
like company or asset, which frequently occur at the
ends of sentences, but rarely at the beginning, will
come to be associated with the I tag, which cannot
occur at the beginning.

The basic motivation for the PRLG is the assump-
tion that information is lost due to the independence
assumption characteristic of the HMM. With so few
states, it is feasible to experiment with the more fine-
grained PRLG model.

Evaluation. Using the low-level predictions of
CCL as as benchmark, we evaluate the HMM and
PRLG chunkers on the tasks of constituent chunk
and base NP identification. Models were initialized
uniformly as illustrated in Fig. 3. Sequence models
learn via EM. We report accuracy only after conver-
gence, that is after the change in full dataset per-
plexity (log inverse probability) is less than %.01
between iterations. Precision, recall and F-score are
reported for full constituent identification – brack-
ets which do not match the gold standard exactly are
false positives.

Model performance results on held-out test
datasets are reported in Table 3. ‘CCL’ refers to the
lowest-level constituents extracted from full CCL
output, as a benchmark chunker. The sequence mod-
els outperform the CCL benchmark at both tasks and
on all three datasets. In most cases, the PRLG se-
quence model performs better than the HMM; the
exception is CTB, where the PRLG model is behind
the HMM in evaluation, as well as behind CCL.

As the lowest-level constituents of CCL were not
specifically designed to describe chunks, we also
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English / WSJ German / Negra Chinese / CTB
Task Model Prec Rec F Prec Rec F Prec Rec F

Chunking
CCL 57.5 53.5 55.4 28.4 29.6 29.0 23.5 23.9 23.7
HMM 53.8 62.2 57.7 35.0 37.7 36.3 37.4 41.3 39.3

PRLG 76.2 63.9 69.5 39.6 47.8 43.3 23.0 18.3 20.3

NP
CCL 46.2 51.1 48.5 15.6 29.2 20.3 10.4 17.3 13.0
HMM 47.7 65.6 55.2 23.8 46.2 31.4 17.0 30.8 21.9
PRLG 76.8 76.7 76.7 24.6 53.4 33.6 21.9 28.5 24.8

Table 3: Unsupervised chunking results for local constituent structure identification and NP chunking on held-out test
sets. CCL refers to the lowest constituents extracted from CCL output.

WSJ Negra CTB
Chunking 57.8 36.0 25.5
NPs 57.8 38.8 23.2

Table 4: Recall of CCL on the chunking tasks.

checked the recall of all brackets generated by CCL
against gold-standard constituent chunks. The re-
sults are given in Table 4. Even compared to this,
the sequence models’ recall is almost always higher.

The sequence models, as well as the CCL bench-
mark, show relatively low precision on the Negra
corpus. One possible reason for this lies in the
design decision of Negra to use relatively flat tree
structures. As a result, many structures that in
other treebanks would be prepositional phrases with
embedded noun phrases – and thus non-local con-
stituents – are flat prepositional phrases here. Exam-
ples include “auf die Wiesbadener Staatsanwaelte”
(on Wiesbaden’s district attorneys) and “in Han-
novers Nachbarstadt” (in Hannover’s neighbor city).

In fact, in Negra, the sequence model chunkers
often find NPs embedded in PPs, which are not an-
notated as such. For instance, in the PP “hinter den
Kulissen” (behind the scenes), both the PRLG and
HMM chunkers identify the internal NP, though this
is not identified in Negra and thus considered a false
positive. The fact that the HMM and PRLG have
higher recall on NP identification on Negra than pre-
cision is further evidence towards this.

Comparing the HMM and PRLG. To outline
some of the factors differentiating the HMM and
PRLG, we focus on NP identification in WSJ.

The PRLG has higher precision than the HMM,
while the two models are closer in recall. Com-
paring the predictions directly, the two models of-

POS Sequence # of errors
TO VB 673

NNP NNP 450
MD VB 407

DT JJ 368
DT NN 280

Table 5: Top 5 POS sequences of the false positives pre-
dicted by the HMM.

ten have the same correct predictions and often miss
the same gold standard constituents. The improved
results of the PRLG are based mostly on the fewer
overall brackets predicted, and thus fewer false pos-
itives: for WSJ the PRLG incorrectly predicts 2241
NP constituents compared to 6949 for the HMM.
Table 5 illustrates the top 5 POS sequences of the
false positives predicted by the HMM.3 (Recall that
we use gold standard POS only for post-experiment
results analysis—the model itself does not have ac-
cess to them.) By contrast, the sequence represent-
ing the largest class of errors of the PRLG is DT NN,
with 165 errors – this sequence represents the largest
class of predictions for both models.

Two of the top classes of errors, MD VB and
TO VB, represent verb phrase constituents, which
are often predicted by the HMM chunker, but not
by the PRLG. The class represented by NNP NNP
corresponds with the tendency of the HMM chun-
ker to split long proper names: for example, it sys-
tematically splits new york stock exchange into two
chunks, (new york) (stock exchange), whereas the
PRLG chunker predicts a single four-word chunk.

The most interesting class is DT JJ, which rep-
resents the difficulty the HMM chunker has at dis-

3For the Penn Treebank tagset, see Marcus et al. (1993).
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1 Start with raw text:
there is no asbestos in our products now

2 Apply chunking model:
there (is no asbestos) in (our products) now

3 Create pseudowords:
there is in our now

4 Apply chunking model (and repeat 1–4 etc.):
(there is ) (in our ) now

5 Unwind and create a tree:

there
is no asbestos

in
our products

now

1Fig. 4: Cascaded chunking illustrated. Pseudowords are
indicated with boxes.

tinguishing determiner-adjective from determiner-
noun pairs. The PRLG chunker systematically gets
DT JJ NN trigrams as chunks. The greater con-
text provided by right branching rules allows the
model to explicitly estimate separate probabilities
for P (I → recent I) versus P (I → recent O). That
is, recent within a chunk versus ending a chunk. Bi-
grams like the acquisition allow the model to learn
rules P (B → the I) and P (I → acquisition O).
So, the PRLG is better able to correctly pick out the
trigram chunk (the recent acquisition).

5 Constituent parsing with a cascade of

chunkers

We use cascades of chunkers for full constituent
parsing, building hierarchical constituents bottom-
up. After chunking is performed, all multiword con-
stituents are collapsed and represented by a single
pseudoword. We use an extremely simple, but effec-
tive, way to create pseudoword for a chunk: pick the
term in the chunk with the highest corpus frequency,
and mark it as a pseudoword. The sentence is now a
string of symbols (normal words and pseudowords),
to which a subsequent unsupervised chunking model
is applied. This process is illustrated in Fig. 4.

Each chunker in the cascade chunks the raw text,
then regenerates the dataset replacing chunks with
pseudowords; this process is iterated until no new
chunks are found. The separate chunkers in the cas-

Text : Mr. Vinken is chairman of Elsevier N.V.

Level 1 :
Mr. Vinken

is chairman of
Elsevier N.V.

1Level 2 :
Mr. Vinken is chairman

of

Elsevier N.V.

1
Level 3 :

Mr. Vinken is chairman of

Elsevier N.V.

1
Fig. 5: PRLG cascaded chunker output.

NPs PPs
Lev 1 Lev 2 Lev 1 Lev 2

WSJ HMM 66.5 68.1 20.6 70.2
PRLG 77.5 78.3 9.1 77.6

Negra HMM 54.7 62.3 24.8 48.1
PRLG 61.6 65.2 40.3 44.0

CTB HMM 33.3 35.4 34.6 38.4
PRLG 30.9 33.6 31.6 47.1

Table 7: NP and PP recall at cascade levels 1 and 2. The
level 1 NP numbers differ from the NP chunking numbers
from Table 3 since they include root-level constituents
which are often NPs.

cade are referred to as levels. In our experiments the
cascade process took a minimum of 5 levels, and a
maximum of 7. All chunkers in the cascade have the
same settings in terms of smoothing, the tagset and
initialization.

Evaluation. Table 6 gives the unlabeled PARSE-
VAL scores for CCL and the two finite-state models.
PRLG achieves the highest F-score for all datasets,
and does so by a wide margin for German and Chi-
nese. CCL does achieve higher recall for English.

While the first level of constituent analysis has
high precision and recall on NPs, the second level
often does well finding prepositional phrases (PPs),
especially in WSJ; see Table 7. This is illustrated
in Fig. 5. This example also illustrates a PP attach-
ment error, which are a common problem for these
models.

We also evaluate using short – 10-word or less –
sentences. That said, we maintain the training/test
split from before. Also, making use of the open
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Parsing English / WSJ German / Negra Chinese / CTB
Model Prec Rec F Prec Rec F Prec Rec F
CCL 53.6 50.0 51.7 33.4 32.6 33.0 37.0 21.6 27.3
HMM 48.2 43.6 45.8 30.8 50.3 38.2 43.0 29.8 35.2
PRLG 60.0 49.4 54.2 38.8 47.4 42.7 50.4 32.8 39.8

Table 6: Unlabeled PARSEVAL scores for cascaded models.

source implementation by F. Luque,4 we compare
on WSJ and Negra to the constituent context model
(CCM) of Klein and Manning (2002). CCM learns
to predict a set of brackets over a string (in prac-
tice, a string of POS tags) by jointly estimating con-
stituent and distituent strings and contexts using an
iterative EM-like procedure (though, as noted by
Smith and Eisner (2004), CCM is deficient as a gen-
erative model). Note that this comparison is method-
ologically problematic in two respects. On the one
hand, CCM is evaluated using gold standard POS
sequences as input, so it receives a major source of
supervision not available to the other models. On the
other hand, the other models use punctuation as an
indicator of constituent boundaries, but all punctu-
ation is dropped from the input to CCM. Also, note
that CCM performs better when trained on short sen-
tences, so here CCM is trained only on the 10-word-
or-less subsets of the training datasets.5

The results from the cascaded PRLG chunker
are near or better than the best performance by
CCL or CCM in these experiments. These and the
full-length parsing results suggest that the cascaded
chunker strategy generalizes better to longer sen-
tences than does CCL. CCM does very poorly on
longer sentences, but does not have the benefit of us-
ing punctuation, as do the raw text models; unfortu-
nately, further exploration of this trade-off is beyond
the scope of this paper. Finally, note that CCM has
higher recall, and lower precision, generally, than
the raw text models. This is due, in part, to the chart
structure used by CCM in the calculation of con-
stituent and distituent probabilities: as in CKY pars-
ing, the chart structure entails the trees predicted will
be binary-branching. CCL and the cascaded models
can predict higher-branching constituent structures,

4http://www.cs.famaf.unc.edu.ar/

˜francolq/en/proyectos/dmvccm/
5This setup is the same as Seginer’s (2007), except the

train/test split.

Prec Rec F

WSJ

CCM 62.4 81.4 70.7
CCL 71.2 73.1 72.1

HMM 64.4 64.7 64.6
PRLG 74.6 66.7 70.5

Negra

CCM 52.4 83.4 64.4
CCL 52.9 54.0 53.0

HMM 47.7 72.0 57.4
PRLG 56.3 72.1 63.2

CTB
CCL 54.4 44.3 48.8

HMM 55.8 53.1 54.4
PRLG 62.7 56.9 59.6

Table 8: Evaluation on 10-word-or-less sentences. CCM
scores are italicized as a reminder that CCM uses gold-
standard POS sequences as input, so its results are not
strictly comparable to the others.

so fewer constituents are predicted overall.

6 Phrasal punctuation revisited

Up to this point, the proposed models for chunking
and parsing use phrasal punctuation as a phrasal sep-
arator, like CCL. We now consider how well these
models perform in absence of this constraint.

Table 9a provides comparison of the sequence
models’ performance on the constituent chunking
task without using phrasal punctuation in training
and evaluation. The table shows absolute improve-
ment (+) or decline (−) in precision and recall
when phrasal punctuation is removed from the data.
The punctuation constraint seems to help the chun-
kers some, but not very much; ignoring punctuation
seems to improve chunker results for the HMM on
Chinese. Overall, the effect of phrasal punctuation
on the chunker models’ performance is not clear.

The results for cascaded parsing differ strongly
from those for chunking, as Table 9b indicates. Us-
ing phrasal punctuation to constrain bracket predic-
tion has a larger impact on cascaded parsing re-
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Fig. 6: Behavior of the PRLG model on CTB over the course of EM.

WSJ Negra CTB
Prec Rec Prec Rec Prec Rec

HMM −5.8 −9.8 −0.1 −0.4 +0.7 +4.9
PRLG −2.5 −2.1 −2.1 −2.1 −7.0 +1.2

a) Constituent Chunking

WSJ Negra CTB
Prec Rec Prec Rec Prec Rec

CCL −14.1 −13.5 −10.7 −4.6 −11.6 −6.0
HMM −7.8 −8.6 −2.8 +1.7 −13.4 −1.2
PRLG −10.1 −7.2 −4.0 −4.5 −22.0 −11.8

b) (Cascade) Parsing

Table 9: Effects of dropping phrasal punctuation in un-
supervised chunking and parsing evaluations relative to
Tables 3 and 6.

sults almost across the board. This is not surpris-
ing: while performing unsupervised partial parsing
from raw text, the sequence models learn two gen-
eral patterns: i) they learn to chunk rare sequences,
such as named entities, and ii) they learn to chunk
high-frequency function words next to lower fre-
quency content words, which often correlate with
NPs headed by determiners, PPs headed by prepo-
sitions and VPs headed by auxiliaries. When these
patterns are themselves replaced with pseudowords
(see Fig. 4), the models have fewer natural cues to
identify constituents. However, within the degrees
of freedom allowed by punctuation constraints as
described, the chunking models continue to find rel-
atively good constituents.

While CCL makes use of phrasal punctuation in
previously reported results, the open source imple-
mentation allows it to be evaluated without this con-
straint. We did so, and report results in Table 9b.

CCL is, in fact, very sensitive to phrasal punctu-
ation. Comparing CCL to the cascaded chunkers
when none of them use punctuation constraints, the
cascaded chunkers (both HMMs and PRLGs) out-
perform CCL for each evaluation and dataset.

For the CTB dataset, best chunking performance
and cascaded parsing performance flips from the
HMM to the PRLG. More to the point, the PRLG
is actually with worst performing model at the con-
stituent chunking task, but the best performing cas-
cade parser; also, this model has the most serious
degrade in performance when phrasal punctuation is
dropped from input. To investigate, we track the
performance of the chunkers on the development
dataset over iterations of EM. This is illustrated in
Fig. 6 with the PRLG model. First of all, Fig. 6a re-
veals the average length of the constituents predicted
by the PRLG model increases over the course of
EM. However, the average constituent chunk length
is 2.22. So, the PRLG chunker is predicting con-
stituents that are longer than the ones targeted in
the constituent chunking task: regardless of whether
they are legitimate constituents or not, often they
will likely be counted as false positives in this evalu-
ation. This is confirmed by observing the constituent
chunking precision in Fig. 6b, which peaks when
the average predicted constituent length is about the
same the actual average length of those in the eval-
uation. The question, then, is whether the longer
chunks predicted correspond to actual constituents
or not. Fig. 6c shows that the PRLG, when con-
strained by phrasal punctuation, does continue to
improve its constituent prediction accuracy over the
course of EM. These correctly predicted constituents
are not counted as such in the constituent chunking
or base NP evaluations, but they factor directly into
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improved accuracy when this model is part of a cas-
cade.

7 Related work

Our task is the unsupervised analogue of chunking
(Abney, 1991), popularized by the 1999 and 2000
Conference on Natural Language Learning shared
tasks (Tjong et al., 2000). In fact, our models follow
Ramshaw and Marcus (1995), treating structure pre-
diction as sequence prediction using BIO tagging.

In addition to Seginer’s CCL model, the unsu-
pervised parsing model of Gao and Suzuki (2003)
and Gao et al. (2004) also operates on raw text.
Like us, their model gives special treatment to lo-
cal constituents, using a language model to char-
acterize phrases which are linked via a dependency
model. Their output is not evaluated directly using
treebanks, but rather applied to several information
retrieval problems.

In the supervised realm, Hollingshead
et al. (2005) compare context-free parsers with
finite-state partial parsing methods. They find that
full parsing maintains a number of benefits, in spite
of the greater training time required: they can train
on less data more effectively than chunkers, and are
more robust to shifts in textual domain.

Brants (1999) reports a supervised cascaded
chunking strategy for parsing which is strikingly
similar to the methods proposed here. In both,
Markov models are used in a cascade to predict hi-
erarchical constituent structure; and in both, the pa-
rameters for the model at each level are estimated
independently. There are major differences, though:
the models here are learned from raw text with-
out tree annotations, using EM to train parameters;
Brants’ cascaded Markov models use supervised
maximum likelihood estimation. Secondly, between
the separate levels of the cascade, we collapse con-
stituents into symbols which are treated as tokens
in subsequent chunking levels; the Markov models
in the higher cascade levels in Brants’ work actu-
ally emit constituent structure. A related approach
is that of Schuler et al. (2010), who report a su-
pervised hierarchical hidden Markov model which
uses a right-corner transform. This allows the model
to predict more complicated trees with fewer levels
than in Brants’ work or this paper.

8 Conclusion

In this paper we have introduced a new subprob-
lem of unsupervised parsing: unsupervised partial
parsing, or unsupervised chunking. We have pro-
posed a model for unsupervised chunking from raw
text that is based on standard probabilistic finite-
state methods. This model produces better local
constituent predictions than the current best unsu-
pervised parser, CCL, across datasets in English,
German, and Chinese. By extending these proba-
bilistic finite-state methods in a cascade, we obtain
a general unsupervised parsing model. This model
outperforms CCL in PARSEVAL evaluation on En-
glish, German, and Chinese.

Like CCL, our models operate from raw (albeit
segmented) text, and like it our models decode very
quickly; however, unlike CCL, our models are based
on standard and well-understood computational lin-
guistics technologies (hidden Markov models and
related formalisms), and may benefit from new re-
search into these core technologies. For instance,
our models may be improved by the application
of (unsupervised) discriminative learning techniques
with features (Berg-Kirkpatrick et al., 2010); or by
incorporating topic models and document informa-
tion (Griffiths et al., 2005; Moon et al., 2010).

UPPARSE, the software used for the experiments
in this paper, is available under an open-source li-
cense to facilitate replication and extensions.6
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