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Abstract

We present a novel computational formula-
tion of speaker authority in discourse. This
notion, which focuses on how speakers posi-
tion themselves relative to each other in dis-
course, is first developed into a reliable cod-
ing scheme (0.71 agreement between human
annotators). We also provide a computational
model for automatically annotating text using
this coding scheme, using supervised learning
enhanced by constraints implemented with In-
teger Linear Programming. We show that this
constrained model’s analyses of speaker au-
thority correlates very strongly with expert hu-
man judgments (r2 coefficient of 0.947).

1 Introduction

In this work, we seek to formalize the ways speak-
ers position themselves in discourse. We do this in
a way that maintains a notion of discourse structure,
and which can be aggregated to evaluate a speaker’s
overall stance in a dialogue. We define the body of
work in positioning to include any attempt to formal-
ize the processes by which speakers attempt to influ-
ence or give evidence of their relations to each other.
Constructs such as Initiative and Control (Whittaker
and Stenton, 1988), which attempt to operationalize
the authority over a discourse’s structure, fall under
the umbrella of positioning. As we construe posi-
tioning, it also includes work on detecting certainty
and confusion in speech (Liscombe et al., 2005),
which models a speaker’s understanding of the in-
formation in their statements. Work in dialogue act
tagging is also relevant, as it seeks to describe the ac-

tions and moves with which speakers display these
types of positioning (Stolcke et al., 2000).

To complement these bodies of work, we choose
to focus on the question of how speakers position
themselves as authoritative in a discourse. This
means that we must describe the way speakers intro-
duce new topics or discussions into the discourse;
the way they position themselves relative to that
topic; and how these functions interact with each
other. While all of the tasks mentioned above focus
on specific problems in the larger rhetorical question
of speaker positioning, none explicitly address this
framing of authority. Each does have valuable ties
to the work that we would like to do, and in section
2, we describe prior work in each of those areas, and
elaborate on how each relates to our questions.

We measure this as an authoritativeness ratio. Of
the contentful dialogue moves made by a speaker,
in what fraction of those moves is the speaker po-
sitioned as the primary authority on that topic? To
measure this quantitatively, we introduce the Nego-
tiation framework, a construct from the field of sys-
temic functional linguistics (SFL), which addresses
specifically the concepts that we are interested in.
We present a reproducible formulation of this so-
ciolinguistics research in section 3, along with our
preliminary findings on reliability between human
coders, where we observe inter-rater agreement of
0.71. Applying this coding scheme to data, we see
strong correlations with important motivational con-
structs such as Self-Efficacy (Bandura, 1997) as well
as learning gains.

Next, we address automatic coding of the Ne-
gotiation framework, which we treat as a two-
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dimensional classification task. One dimension is
a set of codes describing the authoritative status of
a contribution1. The other dimension is a segmen-
tation task. We impose constraints on both of these
models based on the structure observed in the work
of SFL. These constraints are formulated as boolean
statements describing what a correct label sequence
looks like, and are imposed on our model using an
Integer Linear Programming formulation (Roth and
Yih, 2004). In section 5, this model is evaluated
on a subset of the MapTask corpus (Anderson et
al., 1991) and shows a high correlation with human
judgements of authoritativeness (r2 = 0.947). After
a detailed error analysis, we will conclude the paper
in section 6 with a discussion of our future work.

2 Background

The Negotiation framework, as formulated by the
SFL community, places a special emphasis on how
speakers function in a discourse as sources or recip-
ients of information or action. We break down this
concept into a set of codes, one code per contribu-
tion. Before we break down the coding scheme more
concretely in section 3, it is important to understand
why we have chosen to introduce a new framework,
rather than reusing existing computational work.

Much work has examined the emergence of dis-
course structure from the choices speakers make at
the linguistic and intentional level (Grosz and Sid-
ner, 1986). For instance, when a speaker asks a
question, it is expected to be followed with an an-
swer. In discourse analysis, this notion is described
through dialogue games (Carlson, 1983), while con-
versation analysis frames the structure in terms of
adjacency pairs (Schegloff, 2007). These expec-
tations can be viewed under the umbrella of con-
ditional relevance (Levinson, 2000), and the ex-
changes can be labelled discourse segments.

In prior work, the way that people influence dis-
course structure is described through the two tightly-
related concepts of initiative and control. A speaker
who begins a discourse segment is said to have ini-
tiative, while control accounts for which speaker is
being addressed in a dialogue (Whittaker and Sten-
ton, 1988). As initiative passes back and forth be-
tween discourse participants, control over the con-

1We treat each line in our corpus as a single contribution.

versation similarly transfers from one speaker to an-
other (Walker and Whittaker, 1990). This relation is
often considered synchronous, though evidence sug-
gests that the reality is not straightforward (Jordan
and Di Eugenio, 1997).

Research in initiative and control has been ap-
plied in the form of mixed-initiative dialogue sys-
tems (Smith, 1992). This is a large and ac-
tive field, with applications in tutorial dialogues
(Core, 2003), human-robot interactions (Peltason
and Wrede, 2010), and more general approaches to
effective turn-taking (Selfridge and Heeman, 2010).
However, that body of work focuses on influenc-
ing discourse structure through positioning. The
question that we are asking instead focuses on how
speakers view their authority as a source of informa-
tion about the topic of the discourse.

In particular, consider questioning in discourse.
In mixed-initiative analysis of discourse, asking a
question always gives you control of a discourse.
There is an expectation that your question will be
followed by an answer. A speaker might already
know the answer to a question they asked - for
instance, when a teacher is verifying a student’s
knowledge. However, in most cases asking a ques-
tion represents a lack of authority, treating the other
speakers as a source for that knowledge. While there
have been preliminary attempts to separate out these
specific types of positioning in initiative, such as
Chu-Carroll and Brown (1998), it has not been stud-
ied extensively in a computational setting.

Another similar thread of research is to identify
a speaker’s certainty, that is, the confidence of a
speaker and how that self-evaluation affects their
language (Pon-Barry and Shieber, 2010). Substan-
tial work has gone into automatically identifying
levels of speaker certainty, for example in Liscombe
et al. (2005) and Litman et al. (2009). The major
difference between our work and this body of liter-
ature is that work on certainty has rarely focused on
how state translates into interaction between speak-
ers (with some exceptions, such as the application
of certainty to tutoring dialogues (Forbes-Riley and
Litman, 2009)). Instead, the focus is on the person’s
self-evaluation, independent of the influence on the
speaker’s positioning within a discourse.

Dialogue act tagging seeks to describe the moves
people make to express themselves in a discourse.
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This task involves defining the role of each contri-
bution based on its function (Stolcke et al., 2000).
We know that there are interesting correlations be-
tween these acts and other factors, such as learning
gains (Litman and Forbes-Riley, 2006) and the rel-
evance of a contribution for summarization (Wrede
and Shriberg, 2003). However, adapting dialogue
act tags to the question of how speakers position
themselves is not straightforward. In particular,
the granularity of these tagsets, which is already a
highly debated topic (Popescu-Belis, 2008), is not
ideal for the task we have set for ourselves. Many
dialogue acts can be used in authoritative or non-
authoritative ways, based on context, and can posi-
tion a speaker as either giver or receiver of informa-
tion. Thus these more general tagsets are not specific
enough to the role of authority in discourse.

Each of these fields of prior work is highly valu-
able. However, none were designed to specifically
describe how people present themselves as a source
or recipient of knowledge in a discourse. Thus, we
have chosen to draw on a different field of soci-
olinguistics. Our formalization of that theory is de-
scribed in the next section.

3 The Negotiation Framework

We now present the Negotiation framework2, which
we use to answer the questions left unanswered in
the previous section. Within the field of SFL, this
framework has been continually refined over the last
three decades (Berry, 1981; Martin, 1992; Martin,
2003). It attempts to describe how speakers use their
role as a source of knowledge or action to position
themselves relative to others in a discourse.

Applications of the framework include distin-
guishing between focus on teacher knowledge and
student reasoning (Veel, 1999) and distribution of
authority in juvenile trials (Martin et al., 2008). The
framework can also be applied to problems similar
to those studied through the lens of initiative, such
as the distinction between authority over discourse
structure and authority over content (Martin, 2000).

A challenge of applying this work to language
technologies is that it has historically been highly

2All examples are drawn from the MapTask corpus and in-
volve an instruction giver (g) and follower (f). Within examples,
discourse segment boundaries are shown by horizontal lines.

qualitative, with little emphasis placed on repro-
ducibility. We have formulated a pared-down, repro-
ducible version of the framework, presented in Sec-
tion 3.1. Evidence of the usefulness of that formu-
lation for identifying authority, and of correlations
that we can study based on these codes, is presented
briefly in Section 3.2.

3.1 Our Formulation of Negotiation

The codes that we can apply to a contribution us-
ing the Negotiation framework are comprised of four
main codes, K1, K2, A1, and A2, and two additional
codes, ch and o. This is a reduction over the many
task-specific or highly contextual codes used in the
original work. This was done to ensure that a ma-
chine learning classification task would not be over-
whelmed with many infrequent classes.

The main codes are divided by two questions.
First, is the contribution related to exchanging infor-
mation, or to exchanging services and actions? If the
former, then it is a K move (knowledge); if the latter,
then an A move (action). Second, is the contribution
acting as a primary actor, or secondary? In the case
of knowledge, this often correlates to the difference
between assertions (K1) and queries (K2). For in-
stance, a statement of fact or opinion is a K1:

g K1 well i’ve got a great viewpoint
here just below the east lake

By contrast, asking for someone else’s knowledge
or opinion is a K2:

g K2 what have you got underneath the
east lake

f K1 rocket launch
In the case of action, the codes usually corre-

spond to narrating action (A1) and giving instruc-
tions (A2), as below:

g A2 go almost to the edge of the lake
f A1 yeah

A challenge move (ch) is one which directly con-
tradicts the content or assertion of the previous line,
or makes that previous contribution irrelevant. For
instance, consider the exchange below, where an in-
struction is rejected because its presuppositions are
broken by the challenging statement.

g A2 then head diagonally down to-
wards the bottom of the dead tree

f ch i have don’t have a dead tree i
have a dutch elm
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All moves that do not fit into one of these cate-
gories are classified as other (o). This includes back-
channel moves, floor-grabbing moves, false starts,
and any other non-contentful contributions.

This theory makes use of discourse segmenta-
tion. Research in the SFL community has focused
on intra-segment structure, and empirical evidence
from this research has shown that exchanges be-
tween speakers follow a very specific pattern:

o* X2? o* X1+ o*

That is to say, each segment contains a primary
move (a K1 or an A1) and an optional preceding
secondary move, with other non-contentful moves
interspersed throughout. A single statement of fact
would be a K1 move comprising an entire segment,
while a single question/answer pair would be a K2
move followed by a K1. Longer exchanges of many
lines obviously also occur.

We iteratively developed a coding manual which
describes, in a reproducible way, how to apply the
codes listed above. The six codes we use, along with
their frequency in our corpus, are given in Table 1.
In the next section, we evaluate the reliability and
utility of hand-coded data, before moving on to au-
tomation in section 4.

3.2 Preliminary Evaluation

This coding scheme was evaluated for reliability on
two corpora using Cohen’s kappa (Cohen, 1960).
Within the social sciences community, a kappa
above 0.7 is considered acceptable. Two conversa-
tions were each coded by hand by two trained anno-
tators. The first conversation was between three stu-
dents in a collaborative learning task; inter-rater re-
liability kappa for Negotiation labels was 0.78. The
second conversation was from the MapTask corpus,
and kappa was 0.71. Further data was labelled by
hand by one trained annotator.

In our work, we label conversations using the cod-
ing scheme above. To determine how well these
codes correlate with other interesting factors, we
choose to assign a quantitative measure of authori-
tativeness to each speaker. This measure can then
be compared to other features of a speaker. To do
this, we use the coded labels to assign an Authori-
tativeness Ratio to each speaker. First, we define a

Code Meaning Count Percent
K1 Primary Knower 984 22.5
K2 Secondary Knower 613 14.0
A1 Primary Actor 471 10.8
A2 Secondary Actor 708 16.2
ch Challenge 129 2.9
o Other 1469 33.6

Total 4374 100.0

Table 1: The six codes in our coding scheme, along with
their frequency in our corpus of twenty conversations.

functionA(S, c, L) for a speaker, a contribution, and
a set of labels L ⊆ {K1,K2, A1, A2, o, ch} as:

A(S, c, L) =

{
1 c spoken by S with label l ∈ L
0 otherwise.

We then define the Authoritativeness ratio
Auth(S) for a speaker S in a dialogue consisting
of contributions c1...cn as:

Auth(S) =

n∑
i=1

A(S, ci, {K1, A2})

n∑
i=1

A(S, ci, {K1,K2, A1, A2})

The intuition behind this ratio is that we are only
interested in the four main label types in our analy-
sis - at least for an initial description of authority, we
do not consider the non-contentful o moves. Within
these four main labels, there are clearly two that ap-
pear “dominant” - statements of fact or opinion, and
commands or instructions - and two that appear less
dominant - questions or requests for information,
and narration of an action. We sum these together
to reach a single numeric value for each speaker’s
projection of authority in the dialogue.

The full details of our external validations of this
approach are available in Howley et al. (2011). To
summarize, we considered two data sets involving
student collaborative learning. The first data set con-
sisted of pairs of students interacting over two days,
and was annotated for aggressive behavior, to assess
warning factors in social interactions. Our analysis
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showed that aggressive behavior correlated with au-
thoritativeness ratio (p < .05), and that less aggres-
sive students became less authoritative in the second
day (p < .05, effect size .15σ). The second data
set was analyzed for Self-Efficacy - the confidence
of each student in their own ability (Bandura, 1997)
- as well as actual learning gains based on pre- and
post-test scores. We found that the Authoritativeness
ratio was a significant predictor of learning gains
(r2 = .41, p < .04). Furthermore, in a multiple re-
gression, we determined that the Authoritativeness
ratio of both students in a group predict the average
Self-Efficacy of the pair (r2 = .12, p < .01).

4 Computational Model

We know that our coding scheme is useful for mak-
ing predictions about speakers. We now judge
whether it can be reproduced fully automatically.
Our model must select, for each contribution ci in a
dialogue, the most likely classification label li from
{K1,K2, A1, A2, o, ch}. We also build in paral-
lel a segmentation model to select si from the set
{new, same}. Our baseline approach to both prob-
lems is to use a bag-of-words model of the contribu-
tion, and use machine learning for classification.

Certain types of interactions, explored in section
4.1, are difficult or impossible to classify without
context. We build a contextual feature space, de-
scribed in section 4.2, to enhance our baseline bag-
of-words model. We can also describe patterns that
appear in discourse segments, as detailed in section
3.1. In our coding manual, these instructions are
given as rules for how segments should be coded by
humans. Our hypothesis is that by enforcing these
rules in the output of our automatic classifier, per-
formance will increase. In section 4.3 we formalize
these constraints using Integer Linear Programming.

4.1 Challenging cases
We want to distinguish between phenomena such as
in the following two examples.

f K2 so I’m like on the bank on the
bank of the east lake

g K1 yeah
In this case, a one-token contribution is indis-

putably a K1 move, answering a yes/no question.
However, in the dialogue below, it is equally inar-
guable that the same move is an A1:

g A2 go almost to the edge of the lake
f A1 yeah

Without this context, these moves would be indis-
tinguishable to a model. With it, they are both easily
classified correctly.

We also observed that markers for segmentation
of a segment vary between contentful initiations and
non-contentful ones. For instance, filler noises can
often initiate segments:

g o hmm...
g K2 do you have a farmer’s gate?
f K1 no

Situations such as this are common. This is also a
challenge for segmentation, as demonstrated below:

g K1 oh oh it’s on the right-hand side
of my great viewpoint

f o okay yeah
g o right eh
g A2 go almost to the edge of the lake
f A1 yeah

A long statement or instruction from one speaker
is followed up with a terse response (in the same
segment) from the listener. However, after that back-
channel move, a short floor-grabbing move is often
made to start the next segment. This is a distinc-
tion that a bag-of-words model would have difficulty
with. This is markedly different from contentful seg-
ment initiations:

g A2 come directly down below the
stone circle and we come up

f ch I don’t have a stone circle
g o you don’t have a stone circle

All three of these lines look like statements, which
often initiate new segments. However, only the first
should be marked as starting a new segment. The
other two are topically related, in the second line by
contradicting the instruction, and in the third by re-
peating the previous person’s statement.

4.2 Contextual Feature Space Additions

To incorporate the insights above into our model, we
append features to our bag-of-words model. First,
in our classification model we include both lexical
bigrams and part-of-speech bigrams to encode fur-
ther lexical knowledge and some notion of syntac-
tic structure. To account for restatements and topic
shifts, we add a feature based on cosine similarity
(using term vectors weighted by TF-IDF calculated
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over training data). We then add a feature for the
predicted label of the previous contribution - after
each contribution is classified, the next contribution
adds a feature for the automatic label. This requires
our model to function as an on-line classifier.

We build two segmentation models, one trained
on contributions of less than four tokens, and an-
other trained on contributions of four or more to-
kens, to distinguish between characteristics of con-
tentful and non-contentful contributions. To the
short-contribution model, we add two additional fea-
tures. The first represents the ratio between the
length of the current contribution and the length of
the previous contribution. The second represents
whether a change in speaker has occurred between
the current and previous contribution.

4.3 Constraints using Integer Linear
Programming

We formulate our constraints using Integer Linear
Programming (ILP). This formulation has an ad-
vantage over other sequence labelling formulations,
such as Viterbi decoding, in its ability to enforce
structure through constraints. We then enhance this
classifier by adding constraints, which allow expert
knowledge of discourse structure to be enforced in
classification. We can use these constraints to elim-
inate label options which would violate the rules for
a segment outlined in our coding manual.

Each classification decision is made at the contri-
bution level, jointly optimizing the Negotiation la-
bel and segmentation label for a single contribution,
then treating those labels as given for the next con-
tribution classification.

To define our objective function for optimization,
for each possible label, we train a one vs. all SVM,
and use the resulting regression for each label as
a score, giving us six values ~li for our Negotiation
label and two values ~si for our segmentation label.
Then, subject to the constraints below, we optimize:

arg max
l∈~li,s∈~si

l + s

Thus, at each contribution, if the highest-scoring
Negotiation label breaks a constraint, the model can
optimize whether to drop to the next-most-likely la-
bel, or start a new segment.

Recall from section 3.1 that our discourse seg-
ments follow strict rules related to ordering and rep-
etition of contributions. Below, we list the con-
straints that we used in our model to enforce that
pattern, along with a brief explanation of the intu-
ition behind each.

∀ci ∈ s, (li = K2)⇒
∀j < i, cj ∈ t⇒ (lj 6= K1)

(1)

∀ci ∈ s, (li = A2)⇒
∀j < i, cj ∈ t⇒ (lj 6= A1)

(2)

The first constraints enforce the rule that a pri-
mary move cannot occur before a secondary move
in the same segment. For instance, a question must
initiate a new segment if it follows a statement.

∀ci ∈ s, (li ∈ {A1, A2})⇒
∀j < i, cj ∈ s⇒ (lj /∈ {K1,K2}) (3)

∀ci ∈ s, (li ∈ {K1,K2})⇒
∀j < i, cj ∈ s⇒ (lj /∈ {A1, A2}) (4)

These constraints specify that A moves and K
moves cannot cooccur in a segment. An instruc-
tion for action and a question requesting information
must be considered separate segments.

∀ci ∈ s, (li = A1)⇒ ((li−1 = A1) ∨
∀j < i, cj ∈ s⇒ (lj 6= A1))

(5)

∀ci ∈ s, (li = K1)⇒ ((li−1 = K1) ∨
∀j < i, cj ∈ s⇒ (lj 6= K1))

(6)

This pair states that two primary moves cannot oc-
cur in the same segment unless they are contiguous,
in rapid succession.

∀ci ∈ s, (li = A1)⇒
∀j < i, cj ∈ s, (lj = A2)⇒ (Si 6= Sj)

(7)

∀ci ∈ s, (li = K1)⇒
∀j < i, cj ∈ s, (lj = K2)⇒ (Si 6= Sj)

(8)

The last set of constraints enforce the intuitive
notion that a speaker cannot follow their own sec-
ondary move with a primary move in that segment
(such as answering their own question).

1023



Computationally, an advantage of these con-
straints is that they do not extend past the current
segment in history. This means that they usually
are only enforced over the past few moves, and do
not enforce any global constraint over the structure
of the whole dialogue. This allows the constraints
to be flexible to various conversational styles, and
tractable for fast computation independent of the
length of the dialogue.

5 Evaluation

We test our models on a twenty conversation sub-
set of the MapTask corpus detailed in Table 1. We
compare the use of four models in our results.

• Baseline: This model uses a bag-of-words fea-
ture space as input to an SVM classifier. No
segmentation model is used and no ILP con-
straints are enforced.

• Baseline+ILP: This model uses the baseline
feature space as input to both classification and
segmentation models. ILP constraints are en-
forced between these models.

• Contextual: This model uses our enhanced
feature space from section 4.2, with no segmen-
tation model and no ILP constraints enforced.

• Contextual+ILP: This model uses the en-
hanced feature spaces for both Negotiation la-
bels and segment boundaries from section 4.2
to enforce ILP constraints.

For segmentation, we evaluate our models using
exact-match accuracy. We use multiple evaluation
metrics to judge classification. The first and most
basic is accuracy - the percentage of accurately cho-
sen Negotiation labels. Secondly, we use Cohen’s
Kappa (Cohen, 1960) to judge improvement in ac-
curacy over chance. The final evaluation is the r2

coefficient computed between predicted and actual
Authoritativeness ratios per speaker. This represents
how much variance in authoritativeness is accounted
for in the predicted ratios. This final metric is the
most important for measuring reproducibility of hu-
man analyses of speaker authority in conversation.

We use SIDE for feature extraction (Mayfield
and Rosé, 2010), SVM-Light for machine learning

Model Accuracy Kappa r2

Baseline 59.7% 0.465 0.354
Baseline+ILP 61.6% 0.488 0.663
Segmentation 72.3%
Contextual 66.7% 0.565 0.908
Contextual+ILP 68.4% 0.584 0.947
Segmentation 74.9%

Table 2: Performance evaluation for our models. Each
line is significantly improved in both accuracy and r2 er-
ror from the previous line (p < .01).

(Joachims, 1999), and Learning-Based Java for ILP
inference (Rizzolo and Roth, 2010). Performance
is evaluated by 20-fold cross-validation, where each
fold is trained on 19 conversations and tested on the
remaining one. Statistical significance was calcu-
lated using a student’s paired t-test. For accuracy
and kappa, n = 20 (one data point per conversation)
and for r2, n = 40 (one data point per speaker).

5.1 Results
All classification results are given in Table 2 and
charts showing correlation between predicted and
actual speaker Authoritativeness ratios are shown in
Figure 1. We observe that the baseline bag-of-words
model performs well above random chance (kappa
of 0.465); however, its accuracy is still very low
and its ability to predict Authoritativeness ratio of
a speaker is not particularly high (r2 of 0.354 with
ratios from manually labelled data). We observe a
significant improvement when ILP constraints are
applied to this model.

The contextual model described in section 4.2
performs better than our baseline constrained model.
However, the gains found in the contextual model
are somewhat orthogonal to the gains from using
ILP constraints, as applying those constraints to
the contextual model results in further performance
gains (and a high r2 coefficient of 0.947).

Our segmentation model was evaluated based on
exact matches in boundaries. Switching from base-
line to contextual features, we observe an improve-
ment in accuracy of 2.6%.

5.2 Error Analysis
An error analysis of model predictions explains the
large effect on correlation despite relatively smaller
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Figure 1: Plots of predicted (x axis) and actual (y axis) Authoritativeness ratios for speakers across 20 conversations,
for the Baseline (left), Baseline+Constraints (center), and Contextual+Constraints (right) models.

changes in accuracy. Our Authoritativeness ratio
does not take into account moves labelled o or
ch. What we find is that the most advanced model
still makes many mistakes at determining whether a
move should be labelled as o or a core move. This er-
ror rate is, however, fairly consistent across the four
core move codes. When a move is determined (cor-
rectly) to not be an o move, the system is highly ac-
curate in distinguishing between the four core labels.

The one systematic confusion that continues to
appear most frequently in our results is the inabil-
ity to distinguish between a segment containing an
A2 move followed by an A1 move, and a segment
containing a K1 move followed by an o move. The
surface structure of these types of exchanges is very
similar. Consider the following two exchanges:

g A2 if you come down almost to the
bottom of the map that I’ve got

f A1 uh-huh

f K1 but the meadow’s below my bro-
ken gate

g o right yes
These two exchanges on a surface level are highly

similar. Out of context, making this distinction is
very hard even for human coders, so it is not surpris-
ing then that this pattern is the most difficult one to
recognize in this corpus. It contributes most of the
remaining confusion between the four core codes.

6 Conclusions

In this work we have presented one formulation of
authority in dialogue. This formulation allows us
to describe positioning in discourse in a way that

is complementary to prior work in mixed-initiative
dialogue systems and analysis of speaker certainty.
Our model includes a simple understanding of dis-
course structure while also encoding information
about the types of moves used, and the certainty of a
speaker as a source of information. This formulation
is reproducible by human coders, with an inter-rater
reliability of 0.71.

We have then presented a computational model
for automatically applying these codes per contribu-
tion. In our best model, we see a good 68.4% accu-
racy on a six-way individual contribution labelling
task. More importantly, this model replicates human
analyses of authoritativeness very well, with an r2

coefficient of 0.947.
There is room for improvement in our model in

future work. Further use of contextual features will
more thoroughly represent the information we want
our model to take into account. Our segmentation
accuracy is also fairly low, and further examination
of segmentation accuracy using a more sophisticated
evaluation metric, such as WindowDiff (Pevzner and
Hearst, 2002), would be helpful.

In general, however, we now have an automated
model that is reliable in reproducing human judg-
ments of authoritativeness. We are now interested in
how we can apply this to the larger questions of po-
sitioning we began this paper by asking, especially
in describing speaker positioning at various instants
throughout a single discourse. This will be the main
thrust of our future work.
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