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Abstract

We consider the problem of correcting errors
made by English as a Second Language (ESL)
writers and address two issues that are essen-
tial to making progress in ESL error correction
- algorithm selection and model adaptation to
the first language of the ESL learner.

A variety of learning algorithms have been
applied to correct ESL mistakes, but often
comparisons were made between incompara-
ble data sets. We conduct an extensive, fair
comparison of four popular learning methods
for the task, reversing conclusions from ear-
lier evaluations. Our results hold for different
training sets, genres, and feature sets.

A second key issue in ESL error correction
is the adaptation of a model to the first lan-
guage of the writer. Errors made by non-native
speakers exhibit certain regularities and, as we
show, models perform much better when they
use knowledge about error patterns of the non-
native writers. We propose a novel way to
adapt a learned algorithm to the first language
of the writer that is both cheaper to imple-
ment and performs better than other adapta-
tion methods.

1 Introduction

There has been a lot of recent work on correct-
ing writing mistakes made by English as a Second
Language (ESL) learners (Izumi et al., 2003; Eeg-
Olofsson and Knuttson, 2003; Han et al., 2006; Fe-
lice and Pulman, 2008; Gamon et al., 2008; Tetreault
and Chodorow, 2008; Elghaari et al., 2010; Tetreault
et al., 2010; Gamon, 2010; Rozovskaya and Roth,

2010c). Most of this work has focused on correcting
mistakes in article and preposition usage, which are
some of the most common error types among non-
native writers of English (Dalgish, 1985; Bitchener
et al., 2005; Leacock et al., 2010). Examples below
illustrate some of these errors:

1. “They listen to None*/the lecture carefully.”
2. “He is an engineer with a passion to*/for what he

does.”

In (1) the definite article is incorrectly omitted. In
(2), the writer uses an incorrect preposition.

Approaches to correcting preposition and article
mistakes have adopted the methods of the context-
sensitive spelling correction task, which addresses
the problem of correcting spelling mistakes that re-
sult in legitimate words, such as confusing their
and there (Carlson et al., 2001; Golding and Roth,
1999). A candidate set or a confusion set is defined
that specifies a list of confusable words, e.g., {their,
there}. Each occurrence of a confusable word in text
is represented as a vector of features derived from a
context window around the target, e.g., words and
part-of-speech tags. A classifier is trained on text
assumed to be error-free. At decision time, for each
word in text, e.g. there, the classifier predicts the
most likely candidate from the corresponding con-
fusion set {their, there}.

Models for correcting article and preposition er-
rors are similarly trained on error-free native English
text, where the confusion set includes all articles
or prepositions (Izumi et al., 2003; Eeg-Olofsson
and Knuttson, 2003; Han et al., 2006; Felice and
Pulman, 2008; Gamon et al., 2008; Tetreault and
Chodorow, 2008; Tetreault et al., 2010).
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Although the choice of a particular learning al-
gorithm differs, with the exception of decision trees
(Gamon et al., 2008), all algorithms used are lin-
ear learning algorithms, some discriminative (Han
et al., 2006; Felice and Pulman, 2008; Tetreault
and Chodorow, 2008; Rozovskaya and Roth, 2010c;
Rozovskaya and Roth, 2010b), some probabilistic
(Gamon et al., 2008; Gamon, 2010), or “counting”
(Bergsma et al., 2009; Elghaari et al., 2010).

While model comparison has not been the goal
of the earlier studies, it is quite common to com-
pare systems, even when they are trained on dif-
ferent data sets and use different features. Further-
more, since there is no shared ESL data set, sys-
tems are also evaluated on data from different ESL
sources or even on native data. Several conclusions
have been made when comparing systems devel-
oped for ESL correction tasks. A language model
was found to outperform a maximum entropy classi-
fier (Gamon, 2010). However, the language model
was trained on the Gigaword corpus, 17 · 109 words
(Linguistic Data Consortium, 2003), a corpus sev-
eral orders of magnitude larger than the corpus used
to train the classifier. Similarly, web-based models
built on Google Web1T 5-gram Corpus (Bergsma et
al., 2009) achieve better results when compared to a
maximum entropy model that uses a corpus 10, 000
times smaller (Chodorow et al., 2007)1.

In this work, we compare four popular learning
methods applied to the problem of correcting prepo-
sition and article errors and evaluate on a common
ESL data set. We compare two probabilistic ap-
proaches – Naı̈ve Bayes and language modeling; a
discriminative algorithm Averaged Perceptron; and a
count-based method SumLM (Bergsma et al., 2009),
which, as we show, is very similar to Naı̈ve Bayes,
but with a different free coefficient. We train our
models on data from several sources, varying train-
ing sizes and feature sets, and show that there are
significant differences in the performance of these
algorithms. Contrary to previous results (Bergsma et
al., 2009; Gamon, 2010), we find that when trained
on the same data with the same features, Averaged
Perceptron achieves the best performance, followed
by Naı̈ve Bayes, then the language model, and fi-
nally the count-based approach. Our results hold for

1These two models also use different features.

training sets of different sizes, genres, and feature
sets. We also explain the performance differences
from the perspective of each algorithm.

The second important question that we address is
that of adapting the decision to the source language
of the writer. Errors made by non-native speakers
exhibit certain regularities. Adapting a model so
that it takes into consideration the specific error pat-
terns of the non-native writers was shown to be ex-
tremely helpful in the context of discriminative clas-
sifiers (Rozovskaya and Roth, 2010c; Rozovskaya
and Roth, 2010b). However, this method requires
generating new training data and training a separate
classifier for each source language. Our key contri-
bution here is a novel, simple, and elegant adaptation
method within the framework of the Naı̈ve Bayes
algorithm, which yields even greater performance
gains. Specifically, we show how the error patterns
of the non-native writers can be viewed as a different
distribution on candidate priors in the confusion set.
Following this observation, we train Naı̈ve Bayes in
a traditional way, regardless of the source language
of the writer, and then, only at decision time, change
the prior probabilities of the model from the ones
observed in the native training data to the ones corre-
sponding to error patterns in the non-native writer’s
source language (Section 4). A related idea has been
applied in Word Sense Disambiguation to adjust the
model priors to a new domain with different sense
distributions (Chan and Ng, 2005).

The paper has two main contributions. First, we
conduct a fair comparison of four learning algo-
rithms and show that the discriminative approach
Averaged Perceptron is the best performing model
(Sec. 3). Our results do not support earlier conclu-
sions with respect to the performance of count-based
models (Bergsma et al., 2009) and language mod-
els (Gamon, 2010). In fact, we show that SumLM
is comparable to Averaged Perceptron trained with
a 10 times smaller corpus, and language model is
comparable to Averaged Perceptron trained with a 2
times smaller corpus.

The second, and most significant, of our contribu-
tions is a novel way to adapt a model to the source
language of the writer, without re-training the model
(Sec. 4). As we show, adapting to the source lan-
guage of the writer provides significant performance
improvement, and our new method also performs
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better than previous, more complicated methods.
Section 2 presents the theoretical component of

the linear learning framework. In Section 3, we
describe the experiments, which compare the four
learning models. Section 4 presents the key result of
this work, a novel method of adapting the model to
the source language of the learner.

2 The Models

The standard approach to preposition correction
is to cast the problem as a multi-class classifica-
tion task and train a classifier on features defined
on the surrounding context2. The model selects
the most likely candidate from the confusion set,
where the set of candidates includes the top n most
frequent English prepositions. Our confusion set
includes the top ten prepositions3: ConfSet =
{on, from, for, of, about, to, at, in, with, by}. We
use p to refer to a candidate preposition from
ConfSet.

Let preposition context denote the preposition and
the window around it. For instance, “a passion to
what he” is a context for window size 2. We use
three feature sets, varying window size from 2 to 4
words on each side (see Table 1). All feature sets
consist of word n-grams of various lengths span-
ning p and all the features are of the form s−kps+m,
where s−k and s+m denote k words before and m
words after p; we show two 3-gram features for il-
lustration:

1. a passion p
2. passion p what

We implement four linear learning models: the
discriminative method Averaged Perceptron (AP);
two probabilistic methods – a language model (LM)
and Naı̈ve Bayes (NB); and a “counting” method
SumLM (Bergsma et al., 2009).

Each model produces a score for a candidate in
the confusion set. Since all of the models are lin-
ear, the hypotheses generated by the algorithms dif-
fer only in the weights they assign to the features

2We also report one experiment on the article correction
task. We take the preposition correction task as an example;
the article case is treated in the same way.

3This set of prepositions is also considered in other works,
e.g. (Rozovskaya and Roth, 2010b). The usage of the ten most
frequent prepositions accounts for 82% of all preposition errors
(Leacock et al., 2010).

Feature Preposition context N-gram
set lengths
Win2 a passion [to] what he 2,3,4
Win3 with a passion [to] what he does 2,3,4
Win4 engineer with a passion [to] what he does . 2,3,4,5

Table 1: Description of the three feature sets used in
the experiments. All feature sets consist of word n-grams
of various lengths spanning the preposition and vary by
n-gram length and window size.

Method Free Coefficient Feature weights
AP bias parameter mistake-driven
LM λ · prior(p)

∑
vl◦vr

λvr · log(P (u|vr))

NB log(prior(p)) log(P (f |p))
SumLM |F (S, p)| · log(C(p)) log(P (f |p))

Table 2: Summary of the learning methods. C(p) de-
notes the number of times preposition p occurred in train-
ing. λ is a smoothing parameter, u is the rightmost word
in f , vl ◦ vr denotes all concatenations of substrings vl

and vr of feature f without u.

(Roth, 1998; Roth, 1999). Thus a score computed
by each of the models for a preposition p in the con-
text S can be expressed as follows:

g(S, p) = C(p) +
∑

f∈F (S,p)

wa(f), (1)

where F (S, p) is the set of features active in con-
text S relative to preposition p, wa(f) is the weight
algorithm a assigns to feature f ∈ F , and C(p) is
a free coefficient. Predictions are made using the
winner-take-all approach: argmaxpg(S, p). The al-
gorithms make use of the same feature set F and
differ only by how the weights wa(f) and C(p) are
computed. Below we explain how the weights are
determined in each method. Table 2 summarizes the
four approaches.

2.1 Averaged Perceptron

Discriminative classifiers represent the most com-
mon learning paradigm in error correction. AP (Fre-
und and Schapire, 1999) is a discriminative mistake-
driven online learning algorithm. It maintains a vec-
tor of feature weights w and processes one training
example at a time, updating w if the current weight
assignment makes a mistake on the training exam-
ple. In the case of AP, the C(p) coefficient refers to
the bias parameter (see Table 2).
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We use the regularized version of AP in Learn-
ing Based Java4 (LBJ, (Rizzolo and Roth, 2007)).
While classical Perceptron comes with a generaliza-
tion bound related to the margin of the data, Aver-
aged Perceptron also comes with a PAC-like gener-
alization bound (Freund and Schapire, 1999). This
linear learning algorithm is known, both theoreti-
cally and experimentally, to be among the best linear
learning approaches and is competitive with SVM
and Logistic Regression, while being more efficient
in training. It also has been shown to produce state-
of-the-art results on many natural language applica-
tions (Punyakanok et al., 2008).

2.2 Language Modeling
Given a feature f = s−kps+m, let u denote the
rightmost word in f and vl ◦ vr denote all concate-
nations of substrings vl and vr of feature f without
u. The language model computes several probabil-
ities of the form P (u|vr). If f =“with a passion
p what”, then u =“what”, and vr ∈ {“with a pas-
sion p”, “a passion p”, “passion p”, “p” }. In prac-
tice, these probabilities are smoothed and replaced
with their corresponding log values, and the total
weight contribution of f to the scoring function of
p is

∑
vl◦vr

λvr · log(P (u|vr)). In addition, this
scoring function has a coefficient that only depends
on p: C(p) = λ · prior(p) (see Table 2). The prior
probability of a candidate p is:

prior(p) =
C(p)∑

q∈ConfSetC(q)
, (2)

where C(p) and C(q) denote the number of
times preposition p and q, respectively, occurred in
the training data. We implement a count-based
LM with Jelinek-Mercer linear interpolation as a
smoothing method5 (Chen and Goodman, 1996),
where each n-gram length, from 1 to n, is associated
with an interpolation smoothing weight λ. Weights
are optimized on a held-out set of ESL sentences.

Win2 and Win3 features correspond to 4-gram
LMs and Win4 to 5-gram LMs. Language models
are trained with SRILM (Stolcke, 2002).

4LBJ can be downloaded from http://cogcomp.cs.
illinois.edu.

5Unlike other LM methods, this approach allows us to train
LMs on very large data sets. Although we found that backoff
LMs may perform slightly better, they still maintain the same
hierarchy in the order of algorithm performance.

2.3 Naı̈ve Bayes
NB is another linear model, which is often hard to
beat using more sophisticated approaches. NB ar-
chitecture is also particularly well-suited for adapt-
ing the model to the first language of the writer (Sec-
tion 4). Weights in NB are determined, similarly to
LM, by the feature counts and the prior probability
of each candidate p (Eq. (2)). For each candidate
p, NB computes the joint probability of p and the
feature space F , assuming that the features are con-
ditionally independent given p:

g(S, p) = log{prior(p) ·
∏

f∈F (S,p)

P (f |p)}

= log(prior(p)) +

+
∑

f∈F (S,p)

log(P (f |p)) (3)

NB weights and its free coefficient are also summa-
rized in Table 2.

2.4 SumLM
For candidate p, SumLM (Bergsma et al., 2009)6

produces a score by summing over the logs of all
feature counts:

g(S, p) =
∑

f∈F (S,p)

log(C(f))

=
∑

f∈F (S,p)

log(P (f |p)C(p))

= |F (S, p)|C(p) +
∑

f∈F (S,p)

log(P (f |p))

where C(f) denotes the number of times n-gram
feature f was observed with p in training. It should
be clear from equation 3 that SumLM is very similar
to NB, with a different free coefficient (Table 2).

3 Comparison of Algorithms

3.1 Evaluation Data
We evaluate the models using a corpus of ESL es-
says, annotated7 by native English speakers (Ro-
zovskaya and Roth, 2010a). For each preposition

6SumLM is one of several related methods proposed in this
work; its accuracy on the preposition selection task on native
English data nearly matches the best model, SuperLM (73.7%
vs. 75.4%), while being much simpler to implement.

7The annotation of the ESL corpus can be downloaded from
http://cogcomp.cs.illinois.edu.
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Source Prepositions Articles
language Total Incorrect Total Incorrect
Chinese 953 144 1864 150
Czech 627 28 575 55
Italian 687 43 - -
Russian 1210 85 2292 213
Spanish 708 52 - -
All 4185 352 4731 418

Table 3: Statistics on prepositions and articles in the
ESL data. Column Incorrect denotes the number of
cases judged to be incorrect by the annotator.

(article) used incorrectly, the annotator indicated the
correct choice. The data include sentences by speak-
ers of five first languages. Table 3 shows statistics by
the source language of the writer.

3.2 Training Corpora

We use two training corpora. The first corpus,
WikiNYT, is a selection of texts from English
Wikipedia and the New York Times section of the
Gigaword corpus and contains 107 preposition con-
texts. We build models of 3 sizes8: 106, 5 · 106, and
107.

To experiment with larger data sets, we use the
Google Web1T 5-gram Corpus, which is a collec-
tion of n-gram counts of length one to five over a
corpus of 1012 words. The corpus contains 2.6 ·1010

prepositions. We refer to this corpus as GoogleWeb.
We stress that GoogleWeb does not contain com-

plete sentences, but only n-gram counts. Thus, we
cannot generate training data for AP for feature sets
Win3 and Win4: Since the algorithm does not as-
sume feature independence, we need to have 7 and
9-word sequences, respectively, with a preposition
in the middle (as shown in Table 1) and their corpus
frequencies. The other three models can be eval-
uated with the n-gram counts available. For exam-
ple, we compute NB scores by obtaining the count
of each feature independently, e.g. the count for left
context 5-gram “engineer with a passion p” and right
context 5-gram “p what he does .”, due to the con-
ditional independence assumption that NB makes.
On GoogleWeb, we train NB, SumLM, and LM with
three feature sets: Win2, Win3, and Win4.

From GoogleWeb, we also generate a smaller
training set of size 108: We use 5-grams with
a preposition in the middle and generate a new

8Training size refers to the number of preposition contexts.

count, proportional to the size of the smaller cor-
pus9. For instance, a preposition 5-gram with a
count of 2600 in GoogleWeb, will have a count of
10 in GoogleWeb-108.

3.3 Results

Our key results of the fair comparison of the four
algorithms are shown in Fig. 1 and summarized in
Table 4. The table shows that AP trained on 5 · 106

preposition contexts performs as well as NB trained
on 107 (i.e., with twice as much data; the perfor-
mance of LM trained on 107 contexts is better than
that of AP trained with 10 times less data (106), but
not as good as that of AP trained with half as much
data (5·106); AP outperforms SumLM, when the lat-
ter uses 10 times more data. Fig. 1 demonstrates the
performance results reported in Table 4; it shows the
behavior of different systems with respect to preci-
sion and recall on the error correction task. We gen-
erate the curves by varying the decision threshold on
the confidence of the classifier (Carlson et al., 2001)
and propose a correction only when the confidence
of the classifier is above the threshold. A higher pre-
cision and a lower recall are obtained when the de-
cision threshold is high, and vice versa.

Key results
AP > NB > LM > SumLM
AP ∼ 2 ·NB
5 ·AP > 10 · LM > AP
AP > 10 · SumLM

Table 4: Key results on the comparison of algorithms.
2 ·NB refers to NB trained with twice as much data as
AP ; 10 · LM refers to LM trained with 10 times more
data asAP ; 10·SumLM refers to SumLM trained with
10 times more data as AP . These results are also shown
in Fig. 1.

We now show a fair comparison of the four algo-
rithms for different window sizes, training data and
training sizes. Figure 2 compares the models trained
on WikiNY T -107 corpus for Win4. AP is the su-
perior model, followed by NB, then LM, and finally
SumLM.

Results for other training sizes and feature10 set
9Scaling down GoogleWeb introduces some bias but we be-

lieve that it should not have an effect on our experiments.
10We have also experimented with additional POS-based fea-

tures that are commonly used in these tasks and observed simi-
lar behavior.
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Figure 1: Algorithm comparison across different
training sizes. (WikiNYT, Win3). AP (106 preposition
contexts) performs as well as SumLM with 10 times more
data, and LM requires at least twice as much data to
achieve the performance of AP.

configurations show similar behavior and are re-
ported in Table 5, which provides model compari-
son in terms of Average Area Under Curve (AAUC,
(Hanley and McNeil, 1983)). AAUC is a measure
commonly used to generate a summary statistic and
is computed here as an average precision value over
12 recall points (from 5 to 60):

AAUC =
1

12
·

12∑
i=1

Precision(i · 5)

The Table also shows results on the article correc-
tion task11.

Training data Feature Performance (AAUC)
set AP NB LM SumLM

WikiNY T -5 · 106 Win3 26 22 20 13
WikiNY T -107 Win4 33 28 24 16
GoogleWeb-108 Win2 30 29 28 15
GoogleWeb Win4 - 44 41 32
Article
WikiNY T -5 · 106 Win3 40 39 - 30

Table 5: Performance Comparison of the four algo-
rithms for different training data, training sizes, and win-
dow sizes. Each row shows results for training data of the
same size. The last row shows performance on the article
correction task. All other results are for prepositions.

11We do not evaluate the LM approach on the article correc-
tion task, since with LM it is difficult to handle missing article
errors, one of the most common error types for articles, but the
expectation is that it will behave as it does for prepositions.
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Figure 2: Model Comparison for training data of the
same size: Performance of models for feature set Win4
trained on WikiNY T -107.

3.3.1 Effects of Window Size
We found that expanding window size from 2 to 3

is helpful for all of the models, but expanding win-
dow to 4 is only helpful for the models trained on
GoogleWeb (Table 6). Compared to Win3, Win4 has
five additional 5-gram features. We look at the pro-
portion of features in the ESL data that occurred in
two corpora: WikiNY T -107 and GoogleWeb (Ta-
ble 7). We observe that only 4% of test 5-grams oc-
cur inWikiNY T -107. This number goes up 7 times
to 28% for GoogleWeb, which explains why increas-
ing the window size is helpful for this model. By
comparison, a set of native English sentences (dif-
ferent from the training data) has 50% more 4-grams
and about 3 times more 5-grams, because ESL sen-
tences often contain expressions not common for na-
tive speakers.

Training data Performance (AAUC)
Win2 Win3 Win4

GoogleWeb 35 39 44

Table 6: Effect of Window Size in terms ofAAUC. Per-
formance improves, as the window increases.

4 Adapting to Writer’s Source Language

In this section, we discuss adapting error correction
systems to the first language of the writer. Non-
native speakers make mistakes in a systematic man-
ner, and errors often depend on the first language of
the writer (Lee and Seneff, 2008; Rozovskaya and
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Test Train N-gram length
2 3 4 5

ESL WikiNY T -107 98% 66% 22% 4%
Native WikiNY T -107 98% 67% 32% 13%
ESL GoogleWeb 99% 92% 64% 28%
Native-B09 GoogleWeb - 99% 93% 70%

Table 7: Feature coverage for ESL and native data.
Percentage of test n-gram features that occurred in train-
ing. Native refers to data from Wikipedia and NYT. B09
refers to statistics from Bergsma et al. (2009).

Roth, 2010a). For instance, a Chinese learner of
English might say “congratulations to this achieve-
ment” instead of “congratulations on this achieve-
ment”, while a Russian speaker might say “congrat-
ulations with this achievement”.

A system performs much better when it makes use
of knowledge about typical errors. When trained
on annotated ESL data instead of native data, sys-
tems improve both precision and recall (Han et al.,
2010; Gamon, 2010). Annotated data include both
the writer’s preposition and the intended (correct)
one, and thus the knowledge about typical errors is
made available to the system.

Another way to adapt a model to the first language
is to generate in native training data artificial errors
mimicking the typical errors of the non-native writ-
ers (Rozovskaya and Roth, 2010c; Rozovskaya and
Roth, 2010b). Henceforth, we refer to this method,
proposed within the discriminative framework AP,
as AP-adapted. To determine typical mistakes, error
statistics are collected on a small set of annotated
ESL sentences. However, for the model to use these
language-specific error statistics, a separate classi-
fier for each source language needs to be trained.

We propose a novel adaptation method, which
shows performance improvement over AP-adapted.
Moreover, this method is much simpler to imple-
ment, since there is no need to train per source lan-
guage; only one classifier is trained. The method
relies on the observation that error regularities can
be viewed as a distribution on priors over the cor-
rection candidates. Given a preposition s in text, the
prior for candidate p is the probability that p is the
correct preposition for s. If a model is trained on na-
tive data without adaptation to the source language,
candidate priors correspond to the relative frequen-
cies of the candidates in the native training data.
More importantly, these priors remain the same re-

gardless of the source language of the writer or of
the preposition used in text. From the model’s per-
spective, it means that a correction candidate, for
example to, is equally likely given that the author’s
preposition is for or from, which is clearly incorrect
and disagrees with the notion that errors are regular
and language-dependent.

We use the annotated ESL data and define
adapted candidate priors that are dependent on the
author’s preposition and the author’s source lan-
guage. Let s be a preposition appearing in text by
a writer of source language L1, and p a correction
candidate. Then the adapted prior of p given s is:

prior(p, s, L1) =
CL1(s, p)

CL1(s)
,

where CL1(s) denotes the number of times s ap-
peared in the ESL data by L1 writers, and CL1(s, p)
denotes the number of times p was the correct prepo-
sition when s was used by an L1 writer.

Table 8 shows adapted candidate priors for two
author’s choices – when an ESL writer used on and
at – based on the data from Chinese learners. One
key distinction of the adapted priors is the high prob-
ability assigned to the author’s preposition: the new
prior for on given that it is also the preposition found
in text is 0.70, vs. the 0.07 prior based on the native
data. The adapted prior of preposition p, when p is
used, is always high, because the majority of prepo-
sitions are used correctly. Higher probabilities are
also assigned to those candidates that are most often
observed as corrections for the author’s preposition.
For example, the adapted prior for at when the writer
chose on is 0.10, since on is frequently incorrectly
chosen instead of at.

To determine a mechanism to inject the adapted
priors into a model, we note that while all of our
models use priors in some way, NB architecture di-
rectly specifies the prior probability as one of its pa-
rameters (Sec. 2.3). We thus train NB in a traditional
way, on native data, and then replace the prior com-
ponent in Eq. (3) with the adapted prior, language
and preposition dependent, to get the score for p of
the NB-adapted model:

g(S, p) = log{prior(p, s, L1) ·
∏

f∈F (S,p)

P (f |p)}
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Candidate Global Adapted prior
prior author’s prior author’s prior

choice choice
of 0.25 on 0.03 at 0.02
to 0.22 on 0.06 at 0.00
in 0.15 on 0.04 at 0.16
for 0.10 on 0.00 at 0.03
on 0.07 on 0.70 at 0.09
by 0.06 on 0.00 at 0.02

with 0.06 on 0.04 at 0.00
at 0.04 on 0.10 at 0.75

from 0.04 on 0.00 at 0.02
about 0.01 on 0.03 at 0.00

Table 8: Examples of adapted candidate priors for
two author’s choices – on and at – based on the er-
rors made by Chinese learners. Global prior denotes
the probability of the candidate in the standard model
and is based on the relative frequency of the candidate
in native training data. Adapted priors are dependent on
the author’s preposition and the author’s first language.
Adapted priors for the author’s choice are very high.
Other candidates are given higher priors if they often ap-
pear as corrections for the author’s choice.

We stress that in the new method there is no need
to train per source language, as with previous adap-
tion methods. Only one model is trained, and only
at decision time, we change the prior probabilities of
the model. Also, while we need a lot of data to train
the model, only one parameter depends on annotated
data. Therefore, with rather small amounts of data, it
is possible to get reasonably good estimates of these
prior parameters.

In the experiments below, we compare four mod-
els: AP, NB AP-adapted and NB-adapted. AP-
adapted is the adaptation through artificial errors
and NB-adapted is the method proposed here. Both
of the adapted models use the same error statistics in
k-fold cross-validation (CV): We randomly partition
the ESL data into k parts, with each part tested on
the model that uses error statistics estimated on the
remaining k − 1 parts. We also remove all prepo-
sition errors that occurred only once (23% of all er-
rors) to allow for a better evaluation of the adapted
models. Although we observe similar behavior on
all the data, the models especially benefit from the
adapted priors when a particular error occurred more
than once. Since the majority of errors are not due
to chance, we focus on those errors that the writers
will make repeatedly.

Fig. 3 shows the four models trained on
WikiNY T -107. First, we note that the adapted
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Figure 3: Adapting to Writer’s Source Language. NB-
adapted is the method proposed here. AP-adapted and
NB-adapted results are obtained using 2-fold CV, with
50% of the ESL data used for estimating the new priors.
All models are trained on WikiNY T -107.

models outperform their non-adapted counterparts
with respect to precision. Second, for the recall
points less than 20%, the adapted models obtain very
similar precision values. This is interesting, espe-
cially because NB does not perform as well as AP, as
we also showed in Sec. 3.3. Thus, NB-adapted not
only improves over NB, but its gap compared to the
latter is much wider than the gap between the AP-
based systems. Finally, an important performance
distinction between the two adapted models is the
loss in recall exhibited by AP-adapted – its curve is
shorter because AP-adapted is very conservative and
does not propose many corrections. In contrast, NB-
adapted succeeds in improving its precision over NB
with almost no recall loss.

To evaluate the effect of the size of the data used
to estimate the new priors, we compare the perfor-
mance of NB-adapted models in three settings: 2-
fold CV, 10-fold CV, and Leave-One-Out (Figure 4).
In 2-fold CV, priors are estimated on 50% of the ESL
data, in 10-fold on 90%, and in Leave-One-Out on
all data but the testing example. Figure 4 shows the
averaged results over 5 runs of CV for each setting.
The model converges very quickly: there is almost
no difference between 10-fold CV and Leave-One-
Out, which suggests that we can get a good estimate
of the priors using just a little annotated data.

Table 9 compares NB and NB-adapted for two
corpora: WikiNY T -107 and GoogleWeb. Since
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Figure 4: How much data are needed to estimate
adapted priors. Comparison of NB-adapted models
trained on GoogleWeb that use different amounts of data
to estimate the new priors. In 2-fold CV, priors are es-
timated on 50% of the data; in 10-fold on 90% of the
data; in Leave-One-Out, the new priors are based on all
the data but the testing example.

GoogleWeb is several orders of magnitude larger,
the adapted model behaves better for this corpus.

So far, we have discussed performance in terms
of precision and recall, but we can also discuss it
in terms of accuracy, to see how well the algorithm
is performing compared to the baseline on the task.
Following Rozovskaya and Roth (2010c), we con-
sider as the baseline the accuracy of the ESL data
before applying the model12, or the percentage of
prepositions used correctly in the test data. From
Table 3, the baseline is 93.44%13. Compared to
this high baseline, NB trained on WikiNY T -107

achieves an accuracy of 93.54, and NB-adapted
achieves an accuracy of 93.9314.

Training data Algorithms
NB NB-adapted

WikiNY T -107 29 53
GoogleWeb 38 62

Table 9: Adapting to writer’s source language. Re-
sults are reported in terms of AAUC. NB-adapted is the
model with adapted priors. Results for NB-adapted are
based on 10-fold CV.

12Note that this baseline is different from the majority base-
line used in the preposition selection task, since here we have
the author’s preposition in text.

13This is the baseline after removing the singleton errors.
14We select the best accuracy among different values that can

be achieved by varying the decision threshold.

5 Conclusion

We have addressed two important issues in ESL
error correction, which are essential to making
progress in this task. First, we presented an exten-
sive, fair comparison of four popular linear learning
models for the task and demonstrated that there are
significant performance differences between the ap-
proaches. Since all of the algorithms presented here
are linear, the only difference is in how they learn
the weights. Our experiments demonstrated that the
discriminative approach (AP) is able to generalize
better than any of the other models. These results
correct earlier conclusions, made with incompara-
ble data sets. The model comparison was performed
using two popular tasks – correcting errors in article
and preposition usage – and we expect that our re-
sults will generalize to other ESL correction tasks.

The second, and most important, contribution of
the paper is a novel method that allows one to
adapt the learned model to the source language of
the writer. We showed that error patterns can be
viewed as a distribution on priors over the correc-
tion candidates and proposed a method of injecting
the adapted priors into the learned model. In ad-
dition to performing much better than the previous
approaches, this method is also very cheap to im-
plement, since it does not require training a separate
model for each source language, but adapts the sys-
tem to the writer’s language at decision time.
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