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Abstract

Arabic handwriting recognition (HR) is a
challenging problem due to Arabic’s con-
nected letter forms, consonantal diacritics and
rich morphology. In this paper we isolate
the task of identification of erroneous words
in HR from the task of producing corrections
for these words. We consider a variety of
linguistic (morphological and syntactic) and
non-linguistic features to automatically iden-
tify these errors. Our best approach achieves
a roughly ∼15% absolute increase in F-score
over a simple but reasonable baseline. A de-
tailed error analysis shows that linguistic fea-
tures, such as lemma (i.e., citation form) mod-
els, help improve HR-error detection precisely
where we expect them to: semantically inco-
herent error words.

1 Introduction

After years of development, optical character recog-
nition (OCR) for Latin-character languages, such as
English, has been refined greatly. Arabic, however,
possesses a complex orthography and morphology
that makes OCR more difficult (Märgner and Abed,
2009; Halima and Alimi, 2009; Magdy and Dar-
wish, 2006). Because of this, only a few systems
for Arabic OCR of printed text have been devel-
oped, and these have not been thoroughly evalu-
ated (Märgner and Abed, 2009). OCR of Arabic
handwritten text (handwriting recognition, or HR),
whether online or offline, is even more challenging
compared to printed Arabic OCR, where the unifor-
mity of letter shapes and other factors allow for eas-
ier recognition (Biadsy et al., 2006; Natarajan et al.,
2008; Saleem et al., 2009).

OCR and HR systems are often improved by per-
forming post-processing; these are attempts to eval-
uate whether each word, phrase or sentence in the

OCR/HR output is legal and/or probable. When an
illegal word or phrase is discovered (error detec-
tion), these systems usually attempt to generate a le-
gal alternative (error correction). In this paper, we
present a HR error detection system that uses deep
lexical and morphological feature models to locate
possible "problem zones" – words or phrases that
are likely incorrect – in Arabic HR output. We use
an off-the-shelf HR system (Natarajan et al., 2008;
Saleem et al., 2009) to generate an N-best list of hy-
potheses for each of several scanned segments of
Arabic handwriting. Our problem zone detection
(PZD) system then tags the potentially erroneous
(problem) words. A subsequent HR post-processing
system can then focus its effort on these words when
generating additional alternative hypotheses. We
only discuss the PZD system and not the task of
new hypothesis generation; the evaluation is on er-
ror/problem identification. PZD can also be useful in
highlighting erroneous text for human post-editors.

This paper is structured as follows: Section 2 pro-
vides background on the difficulties of the Arabic
HR task. Section 3 presents an analysis of HR er-
rors and defines what is considered a problem zone
to be tagged. The experimental features, data and
other variables are outlined in Section 4. The exper-
iments are presented and discussed in Section 5. We
discuss and compare to some related work in detail
in Section 6. Conclusions and suggested avenues of
for future progress are presented in Section 7.

2 Arabic Handwriting Recognition
Challenges

Arabic has several orthographic and morphological
properties that make HR challenging (Darwish and
Oard, 2002; Magdy and Darwish, 2006; Märgner
and Abed, 2009).
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2.1 Arabic Orthography Challenges

The use of cursive, connected script creates prob-
lems in that it becomes more difficult for a machine
to distinguish between individual characters. This is
certainly not a property unique to Arabic; methods
developed for other cursive script languages (such
as Hidden Markov Models) can be applied success-
fully to Arabic (Natarajan et al., 2008; Saleem et al.,
2009; Märgner and Abed, 2009; Lu et al., 1999).

Arabic writers often make use of elongation
(tatweel/kashida) to beautify the script. Arabic also
contains certain ligature constructions that require
consideration during OCR/HR (Darwish and Oard,
2002). Sets of dots and optional diacritic markers
are used to create character distinctions in Arabic.
However, trace amounts of dust or dirt on the origi-
nal document scan can be easily mistaken for these
markers (Darwish and Oard, 2002). Alternatively,
these markers in handwritten text may be too small,
light or closely-spaced to readily distinguish, caus-
ing the system to drop them entirely. While Arabic
disconnective letters may make it hard to determine
word boundaries, they could plausibly contribute to
reduced ambiguity of otherwise similar shapes.

2.2 Arabic Morphology Challenges

Arabic words can be described in terms of their
morphemes. In addition to concatenative prefixes
and suffixes, Arabic has templatic morphemes called
roots and patterns. For example, the word ÑîD

.
�
KA¾Ò»ð

wkmkAtbhm1 (w+k+mkAtb+hm) ‘and like their of-
fices’ has two prefixes and one suffix, in addition
to a stem composed of the root H.

�
H¼ k-t-b ‘writ-

ing related’ and the pattern m1A23.2 Arabic words
can also be described in terms of lexemes and inflec-
tional features. The set of word forms that only vary
inflectionally among each other is called the lexeme.
A lemma is a particular word form used to represent
the lexeme word set – a citation form that stands
in for the class (Habash, 2010). For instance, the
lemma I.

�
JºÓ mktb ‘office’ represents the class of

all forms sharing the core meaning ‘office’: I.
�
KA¾Ó

mkAtb ‘offices’ (irregular plural), I.
�
JºÖÏ @ Almktb ‘the

1All Arabic transliterations are presented in the HSB
transliteration scheme (Habash et al., 2007).

2The digits in the pattern correspond to positions where root
radicals are inserted.

office’, AîD
.
�
JºÖÏ lmktbhA ‘for her office’, and so on.

Just as the lemma abstracts over inflectional mor-
phology, the root abstracts over both inflectional
and derivational morphology and thus provides a
very high level of lexical abstraction, indicating the
“core” meaning of the word. The Arabic root H.

�
H¼

k-t-b ‘writing related’, e.g., relates words like I.
�
JºÓ

mktb ‘office’, H. ñ
�
JºÓ mktwb ‘letter’, and �

éJ. �

�
J» ktybh̄

‘military unit (of conscripts)’.
Arabic morphology allows for tens of billions of

potential, legal words (Magdy and Darwish, 2006;
Moftah et al., 2009). The large potential vocabulary
size by itself complicates HR methods that rely on
conventional, word-based dictionary lookup strate-
gies. In this paper we consider the value of morpho-
lexical and morpho-syntactic features such as lem-
mas and part-of-speech tags, respectively, that may
allow machine learning algorithms to learn general-
izations. We do not consider the root since it has
been shown to be too general for NLP purposes
(Larkey et al., 2007). Other researchers have used
stems for OCR correction (Magdy and Darwish,
2006); we discuss their work and compare to it in
Section 6, but we do not present a direct experimen-
tal comparison.

3 Problem Zones in Handwriting
Recognition

3.1 HR Error Classifications

We can classify three types of HR errors: substi-
tutions, insertions and deletions. Substitutions in-
volve replacing the correct word by another incor-
rect form. Insertions are words that are incorrectly
added into the HR hypothesis. An insertion error
is typically paired with a substitution error, where
the two errors reflect a mis-identification of a single
word as two words. Deletions are simply missing
words. Examples of these different types of errors
appear in Table 1. In the dev set that we study here
(see Section 4.1), 25.8% of the words are marked as
problematic. Of these, 87.2% are letter-based words
(henceforth words), as opposed to 9.3% punctuation
and 3.5% digits.

Orthogonally, 81.4% of all problem words are
substitution errors, 10.6% are insertion errors and
7.9% are deletion errors. Whereas punctuation sym-
bols are 9.3% of all errors, they represent over 38%
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PZD PROB OK PROB PROB PROB PROB PROB PROB PROB OK OK PROB OK PROB PROB PROB

DELX INS SUB DOTS SUB ORTH INS SUB SUB ORTH INS SUB

Table 1: An example highlighting the different types of Arabic HR errors. The first row shows the reference sentence
(right-to-left). The second row shows an automatically generated hypothesis of the same sentence. The last row shows
which words in the hypothesis are marked as problematic (PROB) by the system and the specific category of the
problem (illustrative, not used by system): SUB (substituted), ORTH (substituted by an orthographic variant), DOTS
(substituted by a word with different dotting), INS (inserted), and DELX (adjacent to a deleted word). The remaining
words are tagged as OK. The reference translates as ‘Are you unable O’Moslems, you who conquered Constantinople
and Persia and Andalusia, to manufacture a tub of high quality butter!’. The hypothesis roughly translates as ‘I loan
then O’Moslems Pattani Constantinople, and Persia and taking from whom that you spend on him N Yeoh high quality’.

of all deletion errors, almost 22% of all insertion er-
rors and less than 5% of substitution errors. Simi-
larly digits, which are 3.5% of all errors, are almost
14% of deletions, 7% of insertions and just over 2%
of all substitutions. Punctuation and digits bring dif-
ferent challenges: whereas punctuation marks are a
small class, their shape is often confusable with Ara-
bic letters or letter components, e.g., @



Ǎ and ! or

P r and ,. Digits on the other hand are a hard class
to language model since the vocabulary (of multi-
digit numbers) is infinite. Potentially this can be
addressed using a pattern-based model that captures
forms of digit sequences (such as date and currency
formats); we leave this as future work.

Words (non-digit, non-punctuation) still consti-
tute the majority in every category of error: 47.7%
of deletions, 71.3% of insertions and over 93%
of substitutions. Among substitutions, 26.5% are
simple orthographic variants that are often normal-
ized in Arabic NLP because they result from fre-
quent inconsistencies in spelling: Alef Hamza forms
( @/



@/ @



/
�
@ A/Â/Ǎ/Ā) and Ya/Alef-Maqsura (ø



/ø y/ý). If

we consider whether the lemma of the correct word
and its incorrect form are matchable, an additional
6.9% can be added to the orthographic variant sum
(since all of these cases can share the same lemmas).
The rest of the cases, or 59.7% of the words, in-
volve complex orthographic errors. Simple dot mis-
placement can only account for 2.4% of all substi-
tution errors. The HR system output does not con-
tain any illegal non-words since its vocabulary is re-
stricted by its training data and language models.
The large proportion of errors involving lemma dif-

ferences is consistent with the perception that most
OCR/HR errors create semantically incoherent sen-
tences. This suggests that lemma models can be
helpful in identifying such errors.

3.2 Problem Zone Definition
Prior to developing a model for PZD, it is necessary
to define what is considered a ‘problem’. Once a
definition is chosen, gold problem tags can be gen-
erated for the training and test data by comparing the
hypotheses to their references.3 We decided in this
paper to use a simple binary problem tag: a hypothe-
sis word is tagged as "PROB" if it is the result of an
insertion or substitution of a word. Deleted words
in a hypothesis, which cannot be tagged themselves,
cause their adjacent words to be marked as PROB in-
stead. In this way, a subsequent HR post-processing
system can be alerted to the possibility of a miss-
ing word via its surroundings (hence the idea of a
problem ‘zone’). Any words not marked as PROB
are given an "OK" tag (see the PZD row of Table 1).
We describe in Section 5.6 some preliminary exper-
iments we conducted using more fine-grained tags.

4 Experimental Settings

4.1 Training and Evaluation Data
The data used in this paper is derived from im-
age scans provided by the Linguistic Data Consor-
tium (LDC) (Strassel, 2009). This data consists of
high-resolution (600 dpi) handwriting scans of Ara-
bic text taken from newswire articles, web logs and

3For clarity, we refer to these tags as ‘gold’, whereas the cor-
rect segment for a given hypothesis set is called the ‘reference’.
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newsgroups, along with ground truth annotations
and word bounding box information. The scans in-
clude variations in scribe demographic background,
writing instrument, paper and writing speed.

The BBN Byblos HR system (Natarajan et al.,
2008; Saleem et al., 2009) is then used to pro-
cess these scanned images into sequences of seg-
ments (sentence fragments). The system generates
a ranked N-best list of hypotheses for each segment,
where N could be as high as 300. On average, a seg-
ment has 6.87 words (including punctuation).

We divide the N-best list data into training, de-
velopment (dev) and test sets.4 For training, we
consider two sets of size 2000 and 4000 segments
(S) with the 10 top-ranked hypotheses (H) for each
segment to provide additional variations.5 The ref-
erences are also included in the training sets to pro-
vide examples of perfect text. The dev and test sets
use 500 segments with one top-ranked hypothesis
each {H=1}. We can construct a trivial PZD base-
line by assuming all the input words are PROBs;
this results in baseline % Precision/Recall/F-scores
of 25.8/100/41.1 and 26.0/100/41.2 for the dev and
test sets, respectively. Note that in this paper we
eschew these baselines in favor of comparison to
a non-trivial baseline generated by a simple PZD
model.

4.2 PZD Models and Features

The PZD system relies on a set of SVM classi-
fiers trained using morphological and lexical fea-
tures. The SVM classifiers are built using Yamcha
(Kudo and Matsumoto, 2003). The SVMs use a
quadratic polynomial kernel. For the models pre-
sented in this paper, the static feature window con-
text size is set to +/- 2 words; the previous two (dy-
namic) classifications (i.e. targets) are also used as
features. Experiments with smaller window sizes re-
sult in poorer performance, while a larger window
size (+/- 6 words) yields roughly the same perfor-
mance at the expense of an order-of-magnitude in-
crease in required training time. Over 30 different

4Naturally, we do not use data that the BBN Byblos HR sys-
tem was trained on.

5We conducted additional experiments where we varied the
number of segments and hypotheses and found that the system
benefited from added variety of segments more than hypotheses.
We also modified training composition in terms of the ratio of
problem/non-problem words; this did not help performance.

Simple Description
word The surface word form
nw Normalized word: the word after Alef,

Ya and digit normalization
pos The part-of-speech (POS) of the word
lem The lemma of the word
na No-analysis: a binary feature indicat-

ing whether the morphological analyzer
produced any analyses for the word

Binned Description
nw N-grams Normword 1/2/3-gram probabilities
lem N-grams Lemma 1/2/3-gram probabilities
pos N-grams POS 1/2/3-gram probabilities

conf Word confidence: the ratio of the num-
ber of hypotheses in the N-best list that
contain the word over the total number
of hypotheses

Table 2: PZD model features. Simple features are used
directly by the PZD SVM models, whereas Binned fea-
tures’ (numerical) values are reduced to a small, labeled
category set whose labels are used as model features.

combinations of features were considered. Table 2
shows the individual feature definitions.

In order to obtain the morphological features,
all of the training and test data is passed through
MADA 3.0, a software tool for Arabic morpholog-
ical analysis disambiguation (Habash and Rambow,
2005; Roth et al., 2008; Habash et al., 2010). For
these experiments, MADA provides the pos (using
MADA’s native 34-tag set) and the lemma for each
word. Occasionally MADA will not be able to pro-
duce any interpretations (analyses) for a word; since
this is often a sign that the word is misspelled or un-
common, we define a binary na feature to indicate
when MADA fails to generate analyses.

In addition to using the MADA features directly,
we also develop a set of nine N-gram models (where
N=1, 2, and 3) for the nw, pos, and lem features de-
fined in Table 2. We train these models using 220M
words from the Arabic Gigaword 3 corpus (Graff,
2007) which had also been run through MADA 3.0
to extract the pos and lem information. The models
are built using the SRI Language Modeling Toolkit
(Stolcke, 2002). Each word in a hypothesis can then
be assigned a probability by each of these nine mod-
els. We reduce these probabilities into one of nine
bins, with each successive bin representing an order
of magnitude drop in probability (the final bin is re-
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served for word N-grams which did not appear in
the models). The bin labels are used as the SVM
features.

Finally, we also use a word confidence (conf)
feature, which is aimed at measuring the frequency
with which a given word is chosen by the HR system
for a given segment scan. The conf is defined here
as the ratio of the number of hypotheses in the N-
best list that the word appears in to the total number
of hypotheses. These numbers are calculated using
the original N-best hypothesis list, before the data is
trimmed to H={1, 10}. Like the N-grams, this num-
ber is binned; in this case there are 11 bins, with 10
spread evenly over the [0,1) range, and an extra bin
for values of exactly 1 (i.e., when the word appears
in every hypothesis in the set).

5 Results

We describe next different experiments conducted
by varying the features used in the PZD model. We
present the results in terms of F-score only for sim-
plicity; we then conduct an error analysis that exam-
ines precision and recall.

5.1 Effect of Feature Set Choice

Selecting an appropriate set of features for PZD re-
quires extensive testing. Even when only consider-
ing the few features described in Table 2, the param-
eter space is quite large. Rather then exhaustively
test every possible feature combination, we selec-
tively choose feature subsets that can be compared
to gain a sense of the incremental benefit provided
by individual features.

5.1.1 Simple Features
Table 3 illustrates the result of taking a baseline fea-
ture set (containing word as the only feature) and
adding a single feature from the Simple set to it. The
result of combining all the Simple features is also in-
dicated. From this, we see that Simple features, even
collectively, provide only minor improvements.

5.1.2 Binned Features
Table 4 shows models which include both Simple
and Binned features. First, Table 4 shows the effect
of adding nw N-grams of successively higher orders
to the word baseline. Here we see that even a sim-
ple unigram provides a significant benefit (compared

Feature Set F-score %Imp
word 43.85 –
word+nw 43.86 ∼0
word+na 44.78 2.1
word+lem 45.85 4.6
word+pos 45.91 4.7
word+nw+pos+lem+na 46.34 5.7

Table 3: PZD F-scores for simple feature combinations.
The training set used was {S=2000, H=10} and the mod-
els were evaluated on the dev set. The improvement over
the word baseline case is also indicated. %Imp is the rel-
ative improvement over the first row.

Feature Set F-score %Imp
word 43.85 –
word+nw 1-gram 49.51 12.9
word+nw 1-gram+nw 2-gram 59.26 35.2
word+nw N-grams 59.33 35.3

+pos 58.50 33.4
+pos N-grams 57.35 30.8

+lem+lem N-grams 59.63 36.0
+lem+lem N-grams+na 59.93 36.7
+lem+lem N-grams+na+nw 59.77 36.3

+lem 60.92 38.9
+lem+na 60.47 37.9
+lem+lem N-grams 60.44 37.9

Table 4: PZD F-scores for models that include Binned
features. The training set used was {S=2000, H=10} and
the models were evaluated on the dev set. The improve-
ment over the word baseline case is also indicated. The
label "N-grams" following a Binned feature refers to us-
ing 1, 2 and 3-grams of that feature. Indentation marks
accumulative features in model. The best performing row
(with bolded score) is word+nw N-grams+lem.

to the improvements gained in Table 3). The largest
improvement comes with the addition of the bigram
(thus introducing context into the model), but the tri-
gram provides only a slight improvement above that.
This implies that pursuing higher order N-grams will
result in negligible returns.

In the next part of Table 4, we see that the sin-
gle feature (pos) which provided the highest single-
feature benefit in Table 3 does not provide simi-
lar improvements under these combinations, and in
fact seems detrimental. We also note that using
all the features in one model is outperformed by
more selective choices. Here, the best performer is
the model which utilizes the word, nw N-grams,
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Base Feature Set F-score %Imp
+conf

word 43.85 55.83 27.3
+nw N-grams 59.33 61.71 4.0

+lem 60.92 62.60 2.8
+lem+na 60.47 63.14 4.4
+lem+lem N-grams 60.44 62.88 4.0

+pos+pos N-grams
+na+nw (all system) 59.77 62.44 4.5

Table 5: PZD F-scores for models when word confi-
dence is added to the feature set. The training set used
was {S=2000, H=10} and the models were evaluated on
the dev set. The improvement generated by including
word confidence is indicated. The label "N-grams" fol-
lowing a Binned feature refers to using 1, 2 and 3-grams
of that feature. Indentation marks accumulative features
in model. %Imp is the relative improvement gained by
adding the conf feature.

and lem as the only features. However, the dif-
ferences among this model and the other models
using lem Table 4 are not statistically significant.
The differences between this model and the other
lower performing models are statistically significant
(p<0.05).

5.1.3 Word Confidence
The conf feature deserves special consideration be-
cause it is the only feature which draws on informa-
tion from across the entire hypothesis set. In Table 5,
we show the effect of adding conf as a feature to
several base feature sets taken from Table 4. Except
for the baseline case, conf provides a relatively
consistent benefit. The large (27.3%) improvement
gained by adding conf to the word baseline shows
that conf is a valuable feature, but the smaller im-
provements in the other models indicate that the in-
formation it provides largely overlaps with the in-
formation already present in those models. The dif-
ferences among the last four models (all including
lem) in Table 5 are not statistically significant. The
differences between these four models and the first
two are statistically significant (p<0.05).

5.2 Effect of Training Data Size

In order to allow for rapid examination of multi-
ple feature combinations, we restricted the size of
the training set (S) to maintain manageable train-
ing times. With this decision comes the implicit as-

S = 2000 S = 4000
Feature Set F-score F-score %Imp
word 43.85 52.08 18.8
word+conf 55.83 57.50 3.0
word+nw N-grams+lem

+conf (best system) 62.60 66.34 6.0
+na 63.14 66.21 4.9
+lem N-grams 62.88 64.43 2.5

all 62.44 65.62 5.1

Table 6: PZD F-scores for selected models when the
number of training segments (S) is doubled. The training
set used was {S=2000, H=10} and {S=4000, H=10},
and the models were evaluated on the dev set. The label
"N-grams" following a Binned feature refers to using 1, 2
and 3-grams of that feature. Indentation marks accumu-
lative features in model.

sumption that the results obtained will scale with ad-
ditional training data. We test this assumption by
taking the best-performing feature sets from Table 5
and training new models using twice the training
data {S=4000}. The results are shown in Table 6.
In each case, the improvements are relatively con-
sistent (and on the order of the gains provided by the
inclusion of conf as seen in Table 5), indicating that
the model performance does scale with data size.
However, these improvements come with a cost of
a roughly 4-7x increase in training time. We note
that the value of doubling S is roughly 3-6x times
greater for the word baseline than the others; how-
ever, simply adding conf to the baseline provides
an even greater improvement than doubling S. The
differences between the final four models in Table 6
are not statistically significant. The differences be-
tween these models and the first two models in the
table are statistically significant (p<0.05). For con-
venience, in the next section we refer to the third
model listed in Table 6 as the best system (because
it has the highest absolute F-score on the large data
set), but readers should recall that these four models
are roughly equivalent in performance.

5.3 Error Analysis

In this section, we look closely at the performance
of a subset of systems on different types of prob-
lem words. We compare the following model set-
tings: for {S=4000} training, we use word, word
+ conf, the best system from Table 6 and the model
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(a) S=4000 S=2000
word wconf best all all

Precision 54.7 59.5 67.1 67.4 62.4
Recall 49.7 55.7 65.6 64.0 62.5
F-score 52.1 57.5 66.3 65.6 62.4

Accuracy 76.4 78.7 82.8 82.7 80.6

(b) %Prob word wconf best all all
Words 87.2 51.8 57.3 68.5 67.1 64.9
Punc. 9.3 39.5 44.7 50.0 46.1 40.8
Digits 3.5 24.1 44.8 34.5 34.5 62.1
INS 10.6 46.0 49.4 62.1 62.1 55.2
DEL 7.9 29.2 20.0 24.6 21.5 27.7
SUB 81.4 52.2 60.0 70.0 68.4 66.9

Ortho 21.6 63.3 51.4 52.5 53.7 48.6
Lemma 5.6 45.7 52.2 63.0 52.2 54.4

Semantic 54.2 48.4 64.2 77.7 75.9 75.5

Table 7: Error analysis results comparing the perfor-
mance of multiple systems over different metrics (a) and
word/error types (b). %Prob shows the distribution of
problem words into different word types (word, punctua-
tion and digit) and error types. INS, DEL and SUB stand
for insertion, deletion and substitution error types, re-
spectively. Ortho stands for orthographic variant. Lemma
stands for ‘shared lemma’. The columns to the right
of the %Prob column show recall percentage for each
word/error type.

using all possible features (word, wconf, best and
all, respectively); and we also use all trained with
{S=2000}. We consider the performance in terms
of precision and recall in addition to F-score – see
Table 7 (a). We also consider the percentage of re-
call per error type, such as word/punctuation/digit or
deletion/insertion/substitution and different types of
substitution errors – see Table 7 (b). The second col-
umn in this table (%Prob) shows the distribution of
gold-tagged problem words into word and error type
categories.

Overall, there is no major tradeoff between preci-
sion and recall across the different settings; although
we can observe the following: (i) adding more train-
ing data helps precision more than recall (over three
times more) – compare the last two columns in Ta-
ble 7 (a); and (ii) the best setting has a slightly lower
precision than all features, although a much better
recall – compare columns 4 and 5 in Table 7 (a).

The performance of different settings on words is
generally better than punctuation and that is better

than digits. The only exceptions are in the digit cat-
egory, which may be explained by that category’s
small count which makes it prone to large percent-
age fluctuations.

In terms of error type, the performance on sub-
stitutions is better than insertions, which is in turn
better than deletions, for all systems compared. This
makes sense since deletions are rather hard to de-
tect and they are marked on possibly correct adja-
cent words, which may confuse the classifiers. One
insight for future work is to develop systems for
different types of errors. Considering substitutions
in more detail, we see that surprisingly, the simple
approach of using the word feature only (without
conf) correctly recalls a bigger proportion of prob-
lems involving orthographic variants than other set-
tings. It seems that the more complex the model,
the harder it is to model these cases correctly. Er-
ror types that include semantic variations (different
lemmas) or shared lemmas (but not explained by or-
thographic variation), are by contrast much harder
for the simple models. The more complex models do
quite well recalling errors involving semantically in-
coherent substitutions (around 77.7% of those cases)
and words that share the same lemma but vary in in-
flectional features (63% of those cases). These two
results are quite a jump from the basic word baseline
(around 29% and 18% respectively).

The simple addition of data seems to contribute
more towards the orthographic variation errors and
less towards semantic errors. The different settings
we use (training size and features) show some de-
gree of complementarity in how they identify errors.
We try to exploit this fact in Section 5.5 exploring
some simple system combination ideas.

5.4 Blind Test Set

Table 8 shows the results of applying the same mod-
els described in Table 7 to a blind test set of yet un-
seen data. As mentioned in Section 4.1, the trivial
baseline of the test set is comparable to the dev set.
However, the test set is harder to tag than the dev
set; this can be seen in the overall lower F-scores.
That said, the relative order of performing features
is the same as with the dev set, confirming that our
best model is optimal for test too. On further study,
we noticed that the reason for the test set difference
is that the overlap in word forms between test and
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word wconf best all
Precision 37.55 51.48 57.01 55.46

Recall 51.73 53.39 61.97 60.44
F-score 43.51 52.42 59.39 57.84

Accuracy 65.13 74.83 77.99 77.13

Table 8: Results on test set of 500 segments with one hy-
pothesis each. The models were trained on the {S=4000,
H=10} training set.

train is less than dev and train: 63% versus 81%,
respectively on {S=4000}.

5.5 Preliminary Combination Analysis
In a preliminarily investigation of the value of com-
plementarity across these different systems, we tried
two simple model combination techniques. We re-
stricted the search to the systems in the error analy-
sis (Table 7).

First, we considered a sliding voting scheme
where a word is marked as problematic if at least
n systems agreed to that. Naturally, as n increases,
precision increases and recall decreases, provid-
ing multiple tradeoff options. The range spans
49.1/83.2/61.8 (% Precision/Recall/F-score) at one
end (n = 1) to 80.4/27.5/41.0 on the other (n = all).
The best F-score combination was with n = 2 (any
two agree) producing 62.8/72.4/67.3, an almost 1%
higher than our best system.

In a different combination exploration, we ex-
haustively sought the best three systems from which
any agreement (2 or 3) can produce an even better
system. The best combination included the word
model, the best model (both in {S=4000} training)
and the all model (in {S=2000}). This combination
yields 70.2/64.0/66.9, a lower F-score than the best
general voting approach discussed above, but with a
different bias towards better precision.

These basic exploratory experiments show that
there is a lot of value in pursuing combinations of
systems, if not for overall improvement, then at least
to benefit from tradeoffs in precision and recall that
may be appropriate for different applications.

5.6 Preliminary Tag Set Exploration
In all of the experiments described so far, the
PZD models tag words using a binary tag set
of PROB/OK. We may also consider more com-
plex tag sets based on problem subtypes, such

as SUB/INS/DEL/OK (where all the problem sub-
types are differentiated), SUB/INS/OK (ignores
deletions), and SUB/OK (ignores deletions and in-
sertions). Care must be taken when comparing these
systems, because the differences in tag set definition
results in different baselines. Therefore we com-
pare the % error reduction over the trivial baseline
achieved in each case.

For an all model trained on the {S=2000, H=10}
set, using the PROB/OK tag set results in a 36.3%
error reduction over its trivial baseline (using the
dev set). The corresponding SUB/INS/DEL/OK tag
set only achieves a 34.8% error reduction. The
SUB/INS/OK tag set manages a 40.1% error re-
duction, however. The SUB/OK tag set achieves
a 38.9% error reduction. We suspect that the very
low relative number of deletions (7.9% in the dev
data) and the awkwardness of a DEL tag indicating
a neighboring deletion (rather than the current word)
may be confusing the models, and so ignoring them
seems to result in a clearer picture.

6 Related Work

Common OCR/HR post-processing strategies are
similar to spelling correction solutions involving
dictionary lookup (Kukich, 1992; Jurafsky and Mar-
tin, 2000) and morphological restrictions (Domeij
et al., 1994; Oflazer, 1996). Error detection sys-
tems using dictionary lookup can sometimes be im-
proved by adding entries representing morphologi-
cal variations of root words, particularly if the lan-
guage involved has a complex morphology (Pal et
al., 2000). Alternatively, morphological information
can be used to construct supplemental lexicons or
language models (Sari and Sellami, 2002; Magdy
and Darwish, 2006).

In comparison to (Magdy and Darwish, 2006),
our paper is about error detection only (done in us-
ing discriminative machine learning); whereas their
work is on error correction (done in a standard gen-
erative manner (Kolak and Resnik, 2002)) with no
assumptions of some cases being correct or incor-
rect. In essence, their method of detection is the
same as our trivial baseline. The morphological fea-
tures they use are shallow and restricted to breaking
up a word into prefix+stem+suffix; whereas we ana-
lyze words into their lemmas, abstracting away over
a large number of variations. We also made use of
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part-of-speech tags, which they do not use, but sug-
gest may help. In their work, the morphological fea-
tures did not help (and even hurt a little), whereas for
us, the lemma feature actually helped. Their hypoth-
esis that their large language model (16M words)
may be responsible for why the word-based mod-
els outperformed stem-based (morphological) mod-
els is challenged by the fact that our language model
data (220M words) is an order of magnitude larger,
but we are still able to show benefit for using mor-
phology. We cannot directly compare to their re-
sults because of the different training/test sets and
target (correction vs detection); however, we should
note that their starting error rate was quite high (39%
on Alef/Ya normalized words), whereas our start-
ing error rate is almost half of that (∼26% with un-
normalized Alef/Yas, which account for almost 5%
absolute of the errors). Perhaps a combination of
the two kinds of efforts can push the perfomance on
correction even further by biasing towards problem-
atic words and avoiding incorrectly changing correct
words. Magdy and Darwish (2006) do not report on
percentages of words that they incorrectly modify.

7 Conclusions and Future Work

We presented a study with various settings (linguis-
tic and non-linguistic features and learning curve)
for automatically detecting problem words in Ara-
bic handwriting recognition. Our best approach
achieves a roughly ∼15% absolute increase in F-
score over a simple baseline. A detailed error anal-
ysis shows that linguistic features, such as lemma
models, help improve HR-error detection specifi-
cally where we expect them to: identifying semanti-
cally inconsistent error words.

In the future, we plan to continue improving our
system by considering smarter trainable combina-
tion techniques and by separating the training for
different types of errors, particularly deletions from
insertions and substitutions. We would also like
to conduct an extended evaluation comparing other
types of morphological features, such as roots and
stems, directly. One additional idea is to implement
a lemma-confidence feature that examines lemma
use in hypotheses across the document. This could
potentially provide valuable semantic information at
the document level.

We also plan to integrate our system with a system

for producing correction hypotheses. We also will
consider different uses for the basic system setup
we developed to identify other types of text errors,
such as spelling errors or code-switching between
languages and dialects.
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