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Abstract

We propose a novel technique of learning how to
transform the source parse trees to improve the trans-
lation qualities of syntax-based translation mod-
els using synchronous context-free grammars. We
transform the source tree phrasal structure into a
set of simpler structures, expose such decisions to
the decoding process, and find the least expensive
transformation operation to better model word re-
ordering. In particular, we integrate synchronous bi-
narizations, verb regrouping, removal of redundant
parse nodes, and incorporate a few important fea-
tures such as translation boundaries. We learn the
structural preferences from the data in a generative
framework. The syntax-based translation system in-
tegrating the proposed techniques outperforms the
best Arabic-English unconstrained system in NIST-
08 evaluations by 1.3 absolute BLEU, which is sta-
tistically significant.

1 Introduction

Most syntax-based machine translation models with syn-
chronous context free grammar (SCFG) have been re-
lying on the off-the-shelf monolingual parse structures
to learn the translation equivalences for string-to-tree,
tree-to-string or tree-to-tree grammars. However, state-
of-the-art monolingual parsers are not necessarily well
suited for machine translation in terms of both labels
and chunks/brackets. For instance, in Arabic-to-English
translation, we find only 45.5% of Arabic NP-SBJ struc-
tures are mapped to the English NP-SBJ with machine
alignment and parse trees, and only 60.1% of NP-SBIJs
are mapped with human alignment and parse trees as in
§ 2. The chunking is of more concern; at best only 57.4%
source chunking decisions are translated contiguously on
the target side. To translate the rest of the chunks one
has to frequently break the original structures. The main
issue lies in the strong assumption behind SCFG-style
nonterminals — each nonterminal (or variable) assumes a
source chunk should be rewritten into a contiguous chunk
in the target. Without integrating techniques to mod-
ify the parse structures, the SCFGs are not to be effec-
tive even for translating NP-SBJ in linguistically distant
language-pairs such as Arabic-English.
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Such problems have been noted in previous literature.
Zollmann and Venugopal (2006) and Marcu et al. (2006)
used broken syntactic fragments to augment their gram-
mars to increase the rule coverage; while we learn opti-
mal tree fragments transformed from the original ones via
a generative framework, they enumerate the fragments
available from the original trees without learning pro-
cess. Mi and Huang (2008) introduced parse forests to
blur the chunking decisions to a certain degree, to ex-
pand search space and reduce parsing errors from 1-best
trees (Mi et al., 2008); others tried to use the parse trees
as soft constraints on top of unlabeled grammar such as
Hiero (Marton and Resnik, 2008; Chiang, 2010; Huang
et al., 2010; Shen et al., 2010) without sufficiently lever-
aging rich tree context. Recent works tried more com-
plex approaches to integrate both parsing and decoding
in one single search space as in (Liu and Liu, 2010), at
the cost of huge search space. In (Zhang et al., 2009),
combinations of tree forest and tree-sequence (Zhang et
al., 2008) based approaches were carried out by adding
pseudo nodes and hyper edges into the forest. Overall,
the forest-based translation can reduce the risks from up-
stream parsing errors and expand the search space, but
it cannot sufficiently address the syntactic divergences
between various language-pairs. The tree sequence ap-
proach adds pseudo nodes and hyper edges to the forest,
which makes the forest even denser and harder for nav-
igation and search. As trees thrive in the search space,
especially with the pseudo nodes and edges being added
to the already dense forest, it is becoming harder to wade
through the deep forest for the best derivation path out.

We propose to simplify suitable subtrees to a reason-
able level, at which the correct reordering can be easily
identified. The transformed structure should be frequent
enough to have rich statistics for learning a model. In-
stead of creating pseudo nodes and edges and make the
forest dense, we transform a tree with a few simple oper-
ators; only meaningful frontier nodes, context nodes and
edges are kept to induce the correct reordering; such oper-
ations also enable the model to share the statistics among
all similar subtrees.

On the basis of our study on investigating the language
divergence between Arabic-English with human aligned
and parsed data, we integrate several simple statistical op-
erations, to transform parse trees adaptively to serve the
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translation purpose better. For each source span in the
given sentence, a subgraph, corresponding to an elemen-
tary tree (in Eqn. 1), is proposed for PSCFG translation;
we apply a few operators to transform the subgraph into
some frequent subgraphs seen in the whole training data,
and thus introduce alternative similar translational equiv-
alences to explain the same source span with enriched
statistics and features. For instance, if we regroup two
adjacent nodes IV and NP-SBJ in the tree, we can ob-
tain the correct reordering pattern for verb-subject order,
which is not easily available otherwise. By finding a set
of similar elementary trees derived from the original ele-
mentary trees, statistics can be shared for robust learning.

We also investigate the features using the context be-
yond the phrasal subtree. This is to further disambiguate
the transformed subgraphs so that informative neighbor-
ing nodes and edges can influence the reordering prefer-
ences for each of the transformed trees. For instance, at
the beginning and end of a sentence, we do not expect
dramatic long distance reordering to happen; or under
SBAR context, the clause may prefer monotonic reorder-
ing for verb and subject. Such boundary features were
treated as hard constraints in previous literature in terms
of re-labeling (Huang and Knight, 2006) or re-structuring
(Wang et al., 2010). The boundary cases were not ad-
dressed in the previous literature for trees, and here we
include them in our feature sets for learning a MaxEnt
model to predict the transformations. We integrate the
neighboring context of the subgraph in our transforma-
tion preference predictions, and this improve translation
qualities further.

The rest of the paper is organized as follows: in sec-
tion 2, we analyze the projectable structures using hu-
man aligned and parsed data, to identify the problems for
SCFG in general; in section 3, our proposed approach
is explained in detail, including the statistical operators
using a MaxEnt model; in section 4, we illustrate the in-
tegration of the proposed approach in our decoder; in sec-
tion 5, we present experimental results; in section 6, we
conclude with discussions and future work.

2 The Projectable Structures

A context-free style nonterminal in PSCFG rules means
the source span governed by the nonterminal should be
translated into a contiguous target chunk. A “projectable”
phrase-structure means that it is translated into a con-
tiguous span on the target side, and thus can be gener-
alized into a nonterminal in our PSCFG rule. We carried
out a controlled study on the projectable structures using
human annotated parse trees and word alignment for 5k
Arabic-English sentence-pairs.

In Table 1, the unlabeled F-measures with machine
alignment and parse trees show that, for only 48.71% of
the time, the boundaries introduced by the source parses
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Alignment | Parse | Labels | Accuracy
NP-SBJ 0.6011

PP 0.3436

H H NP 0.4832
unlabel 0.5739

NP-SBJ 0.5356

PP 0.2765

M H NP 0.3959
unlabel 0.5305

NP-SBJ 0.4555

PP 0.1935

M M NP 0.3556
unlabel 0.4871

Table 1: The labeled and unlabeled F-measures for projecting
the source nodes onto the target side via alignments and parse
trees; unlabeled F-measures show the bracketing accuracies for
translating a source span contiguously. H: human, M: machine.

are real translation boundaries that can be explained by a
nonterminal in PSCFG rule. Even for human parse and
alignment, the unlabeled F-measures are still as low as
57.39%. Such statistics show that we should not blindly
learn tree-to-string grammar; additional transformations
to manipulate the bracketing boundaries and labels ac-
cordingly have to be implemented to guarantee the reli-
ability of source-tree based syntax translation grammars.
The transformations could be as simple as merging two
adjacent nonterminals into one bracket to accommodate
non-contiguity on the target side, or lexicalizing those
words which have fork-style, many-to-many alignment,
or unaligned content words to enable the rest of the span
to be generalized into nonterminals. We illustrate several
cases using the tree in Figure 1.

NP
WHNP PP CLR
NP SBJ
PREP PRON NOUN NOUN ADJ
Alty ttAlf mn +hA Azmp Al$rq AlAwsT
that make up the milde east crisis
Figure 1: Non-projectable structures in an SBAR tree with

human parses and alignment; there are non-projectable struc-
tures: the deleted nonterminals PRON (+hA), the many-to-
many alignment for IV(ttAlf) PREP(mn), fork-style alignment
for NOUN (Azmp).

In Figure 1, several non-projectable nodes were illus-



trated: the deleted nonterminals PRON (+hA), the many-
to-many alignment for IV(ttAlf) PREP(mn), fork-style
alignment for NOUN (Azmp). Intuitively, it would be
good to glue the nodes NOUN(AI1$rq) ADJ(AlAwsT) un-
der the node of NP, because it is more frequent for moving
ADJ before NOUN in our training data. It should be eas-
ier to model the swapping of (NOUN ADJ) using the tree
(NP NOUN, ADJ) instead of the original bigger tree of
(NP-SBJ Azmp, NOUN, ADJ) with one lexicalized node.

Approaches in tree-sequence based grammar (Zhang et
al., 2009) tried to address the bracketing problem by us-
ing arbitrary pseudo nodes to weave a new “tree” back
into the forest for further grammar extractions. Such ap-
proach may improve grammar coverage, but the pseudo
node labels would be arguably a worse choice to split
the already sparse data. Some of the interior nodes con-
necting the frontier nodes might be very informative for
modeling reordering. Also, due to the introduced pseudo
nodes, it would need exponentially many nonterminals to
keep track of the matching tree-structures for translations.
The created pseudo node could easily block the informa-
tive neighbor nodes associated with the subgraph which
could change the reordering nature. For instance, IV and
NP-SBJ tends to swap at the beginning of a sentence, but
it may prefer monotone if they share a common parent of
SBAR for a subclause. In this case, it is unnecessary to
create a pseudo node “IV+SBJ” to block useful factors.

We propose to navigate through the forest, via simpli-
fying trees by grouping the nodes, cutting the branches,
and attaching connected neighboring informative nodes
to further disambiguate the derivation path. We apply ex-
plicit translation motivated operators, on a given mono-
lingual elementary tree, to transform it into similar but
simpler trees, and expose such statistical preferences to
the decoding process to select the best rewriting rule
from the enriched grammar rule sets, for generating tar-
get strings.

3 Elementary Trees to String Grammar

‘We propose to use variations of an elementary tree, which
is a connected subgraph fitted in the original monolingual
parse tree. The subgraph is connected so that the frontiers
(two or more) are connected by their immediate common
parent. Let y be a source elementary tree:

v =< ﬁ;vfﬂ)",E >, (D

where v/ is a set of frontier nodes which contain nonter-
minals or words; v* are the interior nodes with source la-
bels/symbols; £ is the set of edges connecting the nodes
v = vf +0 into a connected subgraph fitted in the source
parse tree; ¢ is the immediate common parent of the fron-
tier nodes v/. Our proposed grammar rule is formulated
as follows:

2
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where « is the target string, containing the terminals
and/or nonterminals in a target language; ~ is the one-
to-one alignment of the nonterminals between v and «; £
contains possible sequence of transform operations (to be
explained later in this section) associated with each rule;
m is a function of enumerating the neighborhood of the
source elementary tree v, and certain tree context (nodes
and edges) can be used to further disambiguate the re-
ordering or the given lexical choices. The interior nodes
of v.v%, however, are not necessarily informative for the
reordering decisions, like the unary nodes WHNP, VP, and
PP-CLR in Figure 1; while the frontier nodes 7.vf are the
ones directly executing the reordering decisions. We can
selectively cut off the interior nodes, which have no or
only weak causal relations to the reordering decisions.
This will enable the frequency or derived probabilities
for executing the reordering to be more focused. We call
such transformation operators t. We specified a few op-
erators for transforming an elementary tree vy, including
flattening tree operators such as removing interior nodes
in v’, or grouping the children via binarizations.

Let’s use the trigram “Alty ttAlf mn” in Figure 1 as
an example, the immediate common parent for the span
is SBAR: 7./ = SBAR; the interior nodes are v.v' =
{WHNP VP S PP-CLR}; the frontier nodes are v.v/ =
(x:PRON x:1V x:PREP). The edges ~v.FE (as highlighted
in Figure 1) connect .v* and y.v7 into a subgraph for the
given source ngram.

For any source span, we look up one elementary tree ~y
covering the span, then we select an operator ¢ € T, to
explore a set of similar elementary trees ¢(y,m) = {7}
as simplified alternatives for translating that source tree
(span) vy into an optimal target string a* accordingly. Our
generative model is summarized in Eqn. 3:

af =

argmax  pa(a’ly)x

teT;y' €t(y,m)
pb(’Y/ﬁa e m) X

pe(tly, m). (3)

In our generative scheme, for a given elementary tree
~, we sample an operator (or a combination of operations)
t with the probability of p.(f]v); with operation ¢, we
transform ~y into a set of simplified versions ' € £(~y, m)
with the probability of py(7'|t,~); finally we select the
transformed version ' to generate the target string o’
with a probability of p,(a’|7"). Note here, 7" and ~y share
the same immediate common parent ¢, but not necessar-
ily the frontier, or interior, or even neighbors. The frontier
nodes can be merged, lexicalized, or even deleted in the
tree-to-string rule associated with 4/, as long as the align-
ment for the nonterminals are book-kept in the deriva-
tions. To simplify the model, one can choose the operator
t to be only one level, and the model using a single oper-
ator £ is to be deterministic. Thus, the final set of models



to learn are p,(a’|y’) for rule alignment, and the pref-
erence model py(7'|¢,v,m), and the operator proposal
model p.(t|y,m), which in our case is a maximum en-
tropy model— the key model in our proposed approach
in this paper for transforming the original elementary tree
into similar trees for evaluating the reordering probabili-
ties.

Eqn. 3 significantly enriches reordering powers for
syntax-based machine translation. This is because it uses
all similar set of elementary trees to generate the best tar-
get strings. In the next section, we’ll first define the op-
erators conceptually, and then explain how we learn each
of the models.

3.1 Model p,(c’|7)

A log linear model is applied here to approximate
pala’|y') o< exp(A- f f) via weighted combination (\) of
feature functions ff(a’,~’), including relative frequen-
cies in both directions, and IBM Model-1 scores in both
directions as v and o’ have lexical items within them.
We also employed a few binary features listed in the fol-
lowing table.

~" is observed less than 2 times
(a’,~") deletes a src content word
(o’,~") deletes a src function word
(a’,~") over generates a tgt content word
(«,7)

o’,~") over generates a tgt function word

Table 2: Additional 5 Binary Features for p, (a’|y")

3.2 Model p,(Y'|t,7,m)

pu(Y'|t, v, m) is our preference model. For instance us-
ing the operator ¢ of cutting an unary interior node in
'y.vi, if 'y.vi has more than one unary interior node, like
the SBAR tree in Figure 1, having three unary interior
node: WHNP, VP and PP-CLR, py(v'|¢,~y, m) specifies
which one should have more probabilities to be cut. In
our case, to make model simple, we simply choose his-
togram/frequency for modeling the choices.

3.3 Model p.(t]y,m)

pe(tly,m) is our operator proposal model. It ranks
the operators which are valid to be applied for the
given source tree 7y together with its neighborhood m.
Here, in our approach, we applied a Maximum Entropy
model, which is also employed to train our Arabic parser:
pe(tly,m) o< exp - ff(t,v,m). The feature sets we
use here are almost the same set we used to train our Ara-
bic parser; the only difference is the future space here is
operator categories, and we check bag-of-nodes for inte-
rior nodes and frontier nodes. The key feature categories
we used are listed as in the Table 3. The headtable used
in our training is manually built for Arabic.
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bag-of-nodes 7.’

bag-of-nodes and ngram of v.v/

chunk-level features: left-child, right-child, etc.
lexical features: unigram and bigram

pos features: unigram and bigram

contextual features: surrounding words

Table 3: Feature Features for learning p. (|7, m)

3.4 t: Tree Transformation Function

Obvious systematic linguistic divergences between
language-pairs could be handled by some simple oper-
ators such as using binarization to re-group contiguously
aligned children. Here, we start from the human aligned
and parsed data as used in section 2 to explore potential
useful operators.

3.4.1 Binarizations

One of the simplest way for transforming a tree is via bi-
narization. Monolingual binarization chooses to re-group
children into smaller subtree with a suitable label for the
newly created root. We choose a function mapping to se-
lect the top-frequent label as the root for the grouped chil-
dren; if such label is not found we simply use the label of
the immediate common parent for . In decoding time,
we need to select trees from all possible binarizations,
while in the training time, we restrict the choices allowed
with the alignment constraint, that every grouped chil-
dren should be aligned contiguously on the target side.
Our goal is to simulate the synchronous binarization as
much as we can. In this paper, we applied the four ba-
sic operators for binarizing a tree: left-most, right-most
and additionally head-out left and head-out right for more
than three children. Two examples are given in Table 4,
in which we used LDC style representation for the trees.

With the proper binarization, the structure becomes
rich in sub-structures which allow certain reordering to
happen more likely than others. For instance for the sub-
tree (VP PV NP-SBJ), one would apply stronger statistics
from training data to support the swap of NP-SBJ and PV
for translation.

3.4.2 Regrouping verbs

Verbs are keys for reordering especially for Araic-English
with VSO translated into SVO. However, if the verb and
its relevant arguments for reordering are at different lev-
els in the tree, the reordering is difficult to model as more
interior nodes combinations will distract the distributions
and make the model less focused. We provide the fol-
lowing two operations specific for verb in VP trees as in
Table 5.

3.4.3 Removing interior nodes and edges

For reordering patterns, keeping the deep tree structure
might not be the best choice. Sometimes it is not even



Binarization Operations \

Examples \

right-most
left-most

(NP Xhoun )(adj1
(VP X,y Xnp-sey Xsgar) — (VP (VP X,y Xnp-sey) X

Xadjg) — (NP Xpoun (ADJP Xadj, Xadjz))

SBAR)

Table 4: Operators for binarizing the trees

] Operators for regroup verbs \

Examples ‘

regroup verb
regroup verb and remove the top level VP

VP X, VPBY) — (VP (VP X, Y))
(R (VP X, (R Y))) — (R (R X,Y))

Table 5: Operators for manipulating the trees

possible due to the many-to-many alignment, insertions
and deletions of terminals. So, we introduce the oper-
ators to remove the interior nodes v.vi selectively; this
way, we can flatten the tree, remove irrelevant nodes and
edges, and can use more frequent observations of simpli-
fied structures to capture the reordering patterns. We use
two operators as shown in Table 6.

The second operator deletes all the interior nodes, la-
bels and edges; thus reordering will become a Hiero-alike
(Chiang, 2007) unlabeled rule, and additionally a spe-
cial glue rule: X7 X9 — X;Xo. This operator is neces-
sary, we need a scheme to automatically back off to the
meaningful glue or Hiero-alike rules, which may lead to a
cheaper derivation path for constructing a partial hypoth-
esis, at the decoding time.

NP
NP*/\ -

P P

NOUN
dfE

DET+NOUN
AIAWDAE

PREP
Aly

DET+NOUN
AlAnfjAr

to ignite the situation
Figure 2: A NP tree with an “inside-out” alignment. The nodes
“NP*” and “PP*” are not suitable for generalizing into NTs

used in PSCFG rules.

As shown in Table 1, NP brackets has only 35.56% of
time to be translated contiguously as an NP in machine
aligned & parsed data. The NP tree in Figure 2 happens to
be an “inside-out” style alignment, and context free gram-
mar such as ITG (Wu, 1997) can not explain this structure
well without necessary lexicalization. Actually, the Ara-
bic tokens of “dfE Aly AlAnfjAr” form a combination
and is turned into English word “ignite” in an idiomatic
way. With lexicalization, a Hiero style rule “dfE X Aly
AlAnfjAr — to ignite X” is potentially a better alterna-
tive for translating the NP tree. Our operators allow us
to back off to such Hiero-style rules to construct deriva-
tions, which share the immediate common parent NP, as
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defined for the elementary tree, for the given source span.

3.5 m: Neighboring Function

For a given elementary tree, we use function m to check
the context beyond the subgraph. This includes looking
the nodes and edges connected to the subgraph. Similar
to the features used in (Dyer et al., 2009), we check the
following three cases.

3.5.1 Sentence boundaries

When the tree -y frontier sets contain the left-most token,
right-most token, or both sides, we will add to the neigh-
boring nodes the corresponding decoration tags L (left),
R (right), and B (both), respectively. These decorations
are important especially when the reordering patterns for
the same trees are depending on the context. For instance,
at the beginning or end of a sentence, we do not expect
dramatic reordering — moving a token too far away in the
middle of the sentences.

3.5.2 SBAR/IP/PP/FRAG boundaries

We check siblings of the root for v for a few special la-
bels, including SBAR, IP, PP, and FRAG. These labels
indicate a partial sentence or clause, and the reordering
patterns may get different distributions due to the posi-
tion relative to these nodes. For instance, the PV and SBJ
nodes under SBAR tends to have more monotone prefer-
ence for word reordering (Carpuat et al., 2010). We mark
the boundaries with position markers such as L-PP, to in-
dicate having a left sibling PP, R-IP for having a right
sibling IP, and C'-SBAR to indicate the elementary tree is
a child of SBAR. These labels are selected mainly based
on our linguistic intuitions and errors in our translation
system. A data-driven approach might be more promis-
ing for identifying useful markups w.r.t specific reorder-
ing patterns.

3.5.3 Translation boundaries

In the Figure 2, there are two special nodes under NP:
NP* and PP*. These two nodes are aligned in a “inside-
out” fashion, and none of them can be generalized into
a nonterminal to be rewritten in a PSCFG rule. In other
words, the phrasal brackets induced from NP* and PP*



operators for removing nodes/edges \

Examples \

remove unary nodes
remove all labels

(R Xy, (R (R2 Xy,))) — (R Xy, (R2 Xy,)))
(R (Rl th(RQ Xt2))) — (R Xt2Xt1)

Table 6: Operators for simplifying the trees

are not translation boundaries, and to avoid translation
errors we should identify them by applying a PSCFG
rule on top of them. During training, we label nodes
with translation boundaries, as one additional function
tag; during decoding, we employ the MaxEnt model to
predict the translation boundary label probability for each
span associated with a subgraph -, and discourage deriva-
tions accordingly for using nonterminals over the non-
translation boundary span. The translation boundaries
over elementary trees have much richer representation
power. The previous works as in Xiong et al. (2010),
defined translation boundaries on phrase-decoder style
derivation trees due to the nature of their shift-reduce al-
gorithm, which is a special case in our model.

4 Decoding

Decoding using the proposed elementary tree to string
grammar naturally resembles bottom up chart parsing al-
gorithms. The key difference is at the grammar querying
step. Given a grammar (G, and the input source parse tree
7 from a monolingual parser, we first construct the ele-
mentary tree for a source span, and then retrieve all the
relevant subgraphs seen in the given grammar through
the proposed operators. This step is called populating,
using the proposed operators to find all relevant elemen-
tary trees v which may have contributed to explain the
source span, and put them in the corresponding cells in
the chart. There would have been exponential number of
relevant elementary trees to search if we do not have any
restrictions in the populating step; we restrict the maxi-
mum number of interior nodes |7y.v¢| to be 3, and the size
of frontier nodes |y.vf| to be less than 6; additional prun-
ing for less frequent elementary trees is carried out.
After populating the elementary trees, we construct
the partial hypotheses bottom up, by rewriting the fron-
tier nodes of each elementary tree with the probabili-
ties(costs) for v — a as in Eqn. 3. Our decoder (Zhao
and Al-Onaizan, 2008) is a template-based chart decoder
in C++. It generalizes over the dotted-product operator in
Earley style parser, to allow us to leverage many opera-
tors ¢ € T as above-mentioned, such as binarizations, at
different levels for constructing partial hypothesis.

S Experiments

In our experiments, we built our system using most of the
parallel training data available to us: 250M Arabic run-
ning tokens, corresponding to the “unconstrained” condi-
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tion in NIST-MTO08. We chose the testsets of newswire
and weblog genres from MTO8 and DEV10'. In partic-
ular, we choose MTOS to enable the comparison of our
results to the reported results in NIST evaluations. Our
training and test data is summarized in Table 5. For test-
ings, we have 129,908 tokens in our testsets. For lan-
guage models (LM), we used 6-gram LM trained with
10.3 billion English tokens, and also a shrinkage-based
LM (Chen, 2009) — “ModelM” (Chen and Chu, 2010;
Emami et al., 2010) with 150 word-clusters learnt from
2.1 million tokens.

From the parallel data, we extract phrase pairs(blocks)
and elementary trees to string grammar in various con-
figurations: basic tree-to-string rules (Tr2str), elementary
tree-to-string rules with boundaries t(elm2str+1m), and
with both ¢ and m (elm2str+t + m). This is to evalu-
ate the operators’ effects at different levels for decoding.
To learn our MaxEnt models defined in § 3.3, we collect
the events during extracting elm2str grammar in training
time, and learn the model using improved iterative scal-
ing. We use the same training data as that used in training
our Arabic parser. There are 16 thousand human parse
trees with human alignment; additional 1 thousand hu-
man parse and aligned sent-pairs are used as unseen test
set to verify our MaxEnt models and parsers. For our
Arabic parser, we have a labeled F-measure of 78.4%,
and POS tag accuracy 94.9%. In particular, we’ll evaluate
model p,(t]y,m) in Eqn. 3 for predicting the translation
boundaries in § 3.5.3 for projectable spans as detailed in
§5.1.

Our decoder (Zhao and Al-Onaizan, 2008) supports
grammars including monotone, ITG, Hiero, tree-to-
string, string-to-tree, and several mixtures of them (Lee
et al., 2010). We used 19 feature functions, mainly from
those used in phrase-based decoder like Moses (Koehn
et al., 2007), including two language models (one for a
6-gram LM, one for ModelM, one brevity penalty, IBM
Model-1 (Brown et al., 1993) style alignment probabil-
ities in both directions, relative frequency in both direc-
tions, word/rule counts, content/function word mismatch,
together with features on tr2str rule probabilities. We
use BLEU (Papineni et al., 2002) and TER (Snover et
al., 2006) to evaluate translation qualities. Our base-
line used basic elementary tree to string grammar without
any manipulations and boundary markers in the model,

IDEV10 are unseen testsets used in our GALE project. It was se-
lected from recently released LDC data LDC2010E43.v3.



Data || Train | MTO8-NW | MT08-WB | Dev10-NW | Dev10-WB
# Sents 8,032,837 813 547 1089 1059
# Tokens || 349M(ar)/230M(en) | 25,926 19,654 41,240 43,088

Table 7: Training and test data; using all training parallel training data for 4 test sets

and we achieved a BLEUr4n4 55.01 for MTO8-NW, or
a cased BLEU of 53.31, which is close to the best offi-
cially reported result 53.85 for unconstrained systems.?
We expose the statistical decisions in Eqn. 3 as the rule
probability as one of the 19 dimensions, and use Sim-
plex Downhill algorithm with Armijo line search (Zhao
and Chen, 2009) to optimize the weight vector for de-
coding. The algorithm moves all dimensions at the same
time, and empirically achieved more stable results than
MER(Och, 2003) in many of our experiments.

5.1 Predicting Projectable Structures

The projectable structure is important for our proposed
elementary tree to string grammar (elm2str). When a
span is predicted not to be a translation boundary, we
want the decoder to prefer alternative derivations out-
side of the immediate elementary tree, or more aggres-
sive manipulation of the trees, such as deleting inte-
rior nodes, to explore unlabeled grammar such as Hi-
ero style rules, with proper costs. We test separately
on predicting the projectable structures, like predicting
function tags in § 3.5.3, for each node in syntactic parse
tree. We use one thousand test sentences with two con-
ditions: human parses and machine parses. There are
totally 40,674 nodes excluding the sentence-level node.
The results are shown in Table 8. It showed our Max-
Ent model is very accurate using human trees: 94.5% of
accuracy, and about 84.7% of accuracy for using the ma-
chine parsed trees. Our accuracies are higher compared
with the 714+% accuracies reported in (Xiong et al., 2010)
for their phrasal decoder.

Setups | Accuracy |
Human Parses 94.5%
Machine Parses 84.7%

Table 8: Accuracies of predicting projectable structures

We zoom in the translation boundaries for MTO8-NW,
in which we studied a few important frequent labels in-
cluding VP and NP-SBJ as in Table 9. According to our
MaxEnt model, 20% of times we should discourage a VP
tree to be translated contiguously; such VP trees have an
average span length of 16.9 tokens in MTO8-NW. Simi-
lar statistics are 15.9% for S-tree with an average span of
13.8 tokens.

2See link: http://www.itl.nist.gov/iad/mig/tests/mt/2008/doc/mt08_
official _results_v0.html
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’ Labels \ total H NonProj \ Percent \ Avg.len ‘
Vp* 4479 920 20.5% 16.9
NP* 14164 825 5.8% 8.12
S* 3123 495 15.9% 13.8
NP-SBJ* | 1284 53 4.12% 11.9

Table 9: The predicted projectable structures in MTO8-NW

Using the predicted projectable structures for elm2str
grammar, together with the probability defined in Eqn. 3
as additional cost, the translation results in Table 11 show
it helps BLEU by 0.29 BLEU points (56.13 v.s. 55.84).
The boundary decisions penalize the derivation paths us-
ing nonterminals for non-projectable spans for partial hy-
pothesis construction.

| Setups | TER [ BLEUr4n4 |

’ Baseline \ 39.87 \ 55.01 ‘
right-binz (rbz) 39.10 55.19
left-binz (Ibz) 39.67 55.31
Head-out-left (hlbz) 39.56 55.50
Head-out-right (hrbz) 39.52 55.53
+all binzation (abz) 39.42 55.60
+regroup-verb 39.29 55.72
+deleting interior nodes v.v’ | 38.98 55.84

Table 10: TER and BLEU for MT08-NW, using only ()

5.2 Integrating { and m

We carried out a series of experiments to explore the im-
pacts using ¢ and m for elm2str grammar. We start from
transforming the trees via simple operator £(7y), and then
expand the function with more tree context to include the
neighboring functions: ¢(~y, m).

Setups | TER | BLEUr4n4 |
Baseline w/ ¢ 38.98 55.84
+ TM Boundaries | 38.89 56.13
+ SENT Bound 38.63 56.46
all (y,m) 38.61 56.87

Table 11: TER and BLEU for MTO08-NW, using (v, m).

Experiments in Table 10 focus on testing operators es-
pecially binarizations for transforming the trees. In Ta-
ble 10, the four possible binarization methods all improve



Data || MTO8-NW | MT08-WB | Dev10-NW | Dev10-WB
Tr2Str 55.01 39.19 3733 41.77
elm2str+f 55.84 39.43 38.02 42.70
elm2str-+m 55.57 39.60 37.67 42.54
elm2str+£(y, ) 56.87 39.82 38.62 42.75

Table 12: BLEU scores on various test sets; comparing elementary tree-to-string grammar (tr2str), transformation of the trees
(elm2str+-t), using the neighboring function for boundaries ( elm2str+m), and combination of all together ( elm2str+t(vy, m)).
MTO08-NW and MTO8-WB have four references; Dev10-WB has three references, and Dev10-NW has one reference. BLEUn4

were reported.

over the baseline from +0.18 (via right-most binarization)
to +0.52 (via head-out-right) BLEU points. When we
combine all binarizations (abz), we did not see additive
gains over the best individual case — hrbz. Because during
our decoding time, we do not frequently see large number
of children (maximum at 6), and for smaller trees (with
three or four children), these operators will largely gen-
erate same transformed trees, and that explains the differ-
ences from these individual binarization are small. For
other languages, these binarization choices might give
larger differences. Additionally, regrouping the verbs is
marginally helpful for BLEU and TER. Upon close ex-
aminations, we found it is usually beneficial to group
verb (PV or IV) with its neighboring nodes for expressing
phrases like “have to do” and “will not only”. Deleting
the interior nodes helps on shrinking the trees, so that we
can translate it with more statistics and confidences. It
helps more on TER than BLEU for MTO8-NW.

Table 11 extends Table 10 with neighboring function
to further disambiguate the reordering rule using the tree
context. Besides the translation boundary, the reorder-
ing decisions should be different with regard to the posi-
tions of the elementary tree relative to the sentence. At
the sentence-beginning one might expect more for mono-
tone decoding, while in the middle of the sentence, one
might expect more reorderings. Table 11 shows when we
add such boundary markups in our rules, an improvement
of 0.33 BLEU points were obtained (56.46 v.s. 56.13)
on top of the already improved setups. A close check
up showed that the sentence-begin/end markups signifi-
cantly reduced the leading “and” (from Arabic word w#)
in the decoding output. Also, the verb subject order un-
der SBAR seems to be more like monotone with a lead-
ing pronoun, rather than the general strong reordering of
moving verb after subject. Overall, our results showed
that such boundary conditions are helpful for executing
the correct reorderings. We conclude the investigation
with full function (+, m), which leads to a BLEUr4n4 of
56.87 (cased BLEUr4n4c 55.16), a significant improve-
ment of 1.77 BLEU point over a already strong baseline.

We apply the setups for several other NW and WEB
datasets to further verify the improvement. Shown in Ta-
ble 12, we apply separately the operators for ¢ and m first,
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then combine them as the final results. Varied improve-
ments were observed for different genres. On DEV10-
NW, we observed 1.29 BLEU points improvement, and
about 0.63 and 0.98 improved BLEU points for MT08-
WB and DEV10-WB, respectively. The improvements
for newwire are statistically significant. The improve-
ments for weblog are, however, only marginally better.
One possible reason is the parser quality for web genre is
reliable, as our training data is all in newswire. Regarding
to the individual operators proposed in this paper, we ob-
served consistent improvements of applying them across
all the datasets. The generative model in Eqn. 3 leverages
the operators further by selecting the best transformed
tree form for executing the reorderings.

5.3 A Translation Example

To illustrate the advantages of the proposed grammar, we
use a testing case with long distance word reordering and
the source side parse trees. We compare the translation
from a strong phrasal decoder (DTM?2) (Ittycheriah and
Roukos, 2007), which is one of the top systems in NIST-
08 evaluation for Arabic-English. The translations from
both decoders with the same training data (LM+TM) are
in Table 13. The highlighted parts in Figure 3 show that,
the rules on partial trees are effectively selected and ap-
plied for capturing long-distance word reordering, which
is otherwise rather difficult to get correct in a phrasal sys-
tem even with a MaxEnt reordering model.

6 Discussions and Conclusions

We proposed a framework to learn models to predict
how to transform an elementary tree into its simplified
forms for better executing the word reorderings. Two
types of operators were explored, including (a) trans-
forming the trees via binarizations, grouping or deleting
interior nodes to change the structures; and (b) neighbor-
ing boundary context to further disambiguate the reorder-
ing decisions. Significant improvements were observed
on top of a strong baseline system, and consistent im-
provements were observed across genres; we achieved a
cased BLEU of 55.16 for MT08-NW, which is signifi-
cantly better than the officially reported results in NIST
MTO8 Arabic-English evaluations.



Src Sent

gAl AlAmyr EbdAlrHmn bn EbdAlEzyz nA}b wzyr AIdfAE AlsEwdy AlsAbq fy tSryH SHAfy An +h
mtfA}l b# qdrp Almmlkp Ely AyjAd HI 1# Alm$klp .

Phrasal Decoder

Elm2Str+¢(y, m)

prince abdul rahman bin abdul aziz , deputy minister of defense former saudi said in a press statement
that he was optimistic about the kingdom ’s ability to find a solution to the problem .

former saudi deputy defense minister prince abdul rahman bin abdul aziz said in a press statement
that he was optimistic of the kingdom ’s ability to find a solution to the problem .

Table 13: A translation example, comparing with phrasal decoder.

S—VP BV 1g o8 former g 12ALSARQ—RLOCK—X—TREE—X-TREE—¥-TREE—¥ TREE-X—GLUE—¥—TREE
| hME_SBO-NP—DET NOUN 2g  sa¥i -\ saudi g 2ALSEWDY—— | | | |
il —NOUNERROP 3g tmasiee /- deputy g 3njs | \ \ \
| ] —NouN@EROR 4g @ \ 7 ~defense g 4niorac | | \ \ \
|1 L NOUNGFROP 5g Judise ¢ minister g S5WIYR : | | | |
| | lup—np HOUN 6 s N prince g B6RLRMYR BLOCK—X—TREE—X] | | |
[ || e NOUN 7g abdul g 7EBDRLRHMN BLOCK—X] | | |
[ ] ] Lyp DET NOUN 8g rahman g S8EBDALRHMN | | | |
| | mpip DET_RDJ 9g bin g 98N BLOCK—%] \ \ \
| | ————DET aDJ10g . abdul g10EBDRLEZYS | | | |
| |eE PREP11g . aziz g1llEBDRLEZYS ‘ | | |
| | tue NOUN12g " said gl120aL BLOCK—X- | |
| | b4——~mpJ13g in g13FY TREE—X—GLUE—x |
| LsBmr SUBGCONT 14g a g14SHAFY BLOCK—X—TREE— | |
| Lls—np_sBJ PRON15g press g155HAFY I | |
| lnoge ADJ16g statement g16 TSRYH ‘ | |
| Lpp EREE17¢ that g17AN BLOCK—X—GLUE—X] |
| lyp—nE NOUN18g he g18R_H | ‘
\ | wP—DET NOUN19g was g19r_H ‘ ‘ ‘
| Lpp PREFP20g " optimistic g20MIFA]L TREE—% |
| Lup NOUN21g ™ of g21p# TREE—3¢ |
| Lup—np NOUN22g the g22~LMMLEP: BLOCK—X—HIBRG—X—GLUE—X |
| Lep PREP23g kingdom g23ALMMLEP——| | |
| LNP—DET_NOUN24g s 924~LMMLKP——— | |
‘ PUNC25g “lability  g25o0RE | |
to g26L# | |

find g27RYJIRD TREE-X{ | \

a g28HL BLOCK—X] | | \

solution g¢g29vL—————— | | |

to q30L# | | |

the g31ALMSKLP: BLOCK—] |

\ problem g32ALMSKLP ‘ |

. g33.- BLOCK—X

Figure 3: A testing case: illustrating the derivations from chart decoder. The left panel is source parse tree for the Arabic sentence
— the input to our decoder; the right panel is the English translation together with the simplified derivation tree and alignment
from our decoder output. Each “X” is a nonterminal in the grammar rule; a “Block” means a phrase pair is applied to rewrite a
nonterminal; “Glue” and “Hiero” means the unlabeled rules were chosen to explain the span as explained in § 3.4.3 ; “Tree” means
a labeled rule is applied for the span. For instance, for the source span [1,10], a rule is applied on a partial tree with PV and NP-SBJ;
for the span [18,23], a rule is backed off to an unlabeled rule (Hiero-alike); for the span [21,22], it is another partial tree of NPs.

Within the proposed framework, we also presented
several special cases including the translation boundaries
for nonterminals in SCFG for translation. We achieved
a high accuracy of 84.7% for predicting such bound-
aries using MaxEnt model on machine parse trees. Fu-
ture works aim at transforming such non-projectable trees
into projectable form (Eisner, 2003), driven by translation
rules from aligned data(Burkett et al., 2010), and infor-
mative features form both the source * and the target sides
(Shen et al., 2008) to enable the system to leverage more

3The BLEU score on MT08-NW has been improved to 57.55 since
the acceptance of this paper, using the proposed technique but with our
GALE PS5 data pipeline and setups.
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isomorphic trees, and avoid potential detour errors. We
are exploring the incremental decoding framework, like
(Huang and Mi, 2010), to improve pruning and speed.
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