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Abstract

In this paper, we present an unsupervised

framework that bootstraps a complete corefer-

ence resolution (CoRe) system from word as-

sociations mined from a large unlabeled cor-

pus. We show that word associations are use-

ful for CoRe – e.g., the strong association be-

tween Obama and President is an indicator

of likely coreference. Association information

has so far not been used in CoRe because it is

sparse and difficult to learn from small labeled

corpora. Since unlabeled text is readily avail-

able, our unsupervised approach addresses the

sparseness problem. In a self-training frame-

work, we train a decision tree on a corpus that

is automatically labeled using word associa-

tions. We show that this unsupervised system

has better CoRe performance than other learn-

ing approaches that do not use manually la-

beled data.

1 Introduction

Coreference resolution (CoRe) is the process of find-

ing markables (noun phrases) referring to the same

real world entity or concept. Until recently, most ap-

proaches tried to solve the problem by binary classi-

fication, where the probability of a pair of markables

being coreferent is estimated from labeled data. Al-

ternatively, a model that determines whether a mark-

able is coreferent with a preceding cluster can be

used. For both pair-based and cluster-based models,

a well established feature model plays an important

role. Typical systems use a rich feature space based

on lexical, syntactic and semantic knowledge. Most

commonly used features are described by Soon et al.

(2001).

Most existing systems are supervised systems,

trained on human-labeled benchmark data sets for

English. These systems use linguistic features based

on number, gender, person etc. It is a challenge to

adapt these systems to new domains, genres and lan-

guages because a significant human labeling effort is

usually necessary to get good performance.

To address this challenge, we pursue an unsuper-

vised self-training approach. We train a classifier

on a corpus that is automatically labeled using asso-

ciation information. Self-training approaches usu-

ally include the use of some manually labeled data.

In contrast, our self-trained system is not trained on

any manually labeled data and is therefore a com-

pletely unsupervised system. Although training on

automatically labeled data can be viewed as a form

of supervision, we reserve the term supervised sys-

tem for systems that are trained on manually labeled

data.

The key novelty of our approach is that we boot-

strap a competitive CoRe system from association

information that is mined from an unlabeled cor-

pus in a completely unsupervised fashion. While

this method is shallow, it provides valuable informa-

tion for CoRe because it considers the actual iden-

tity of the words in question. Consider the pair of

markables (Obama, President). It is a likely coref-

erence pair, but this information is not accessible

to standard CoRe systems because they only use

string-based features (often called lexical features),

named entity features and semantic word class fea-

tures (e.g., from WordNet) that do not distinguish,
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say, Obama from Hawking.

In our approach, word association information is

used for clustering markables in unsupervised learn-

ing. Association information is calculated as asso-

ciation scores between heads of markables as de-

scribed below. We view association information as

an example of a shallow feature space which con-

trasts with the rich feature space that is generally

used in CoRe.

Our experiments are conducted using the

MCORE system (“Modular COreference REso-

lution”).1 MCORE can operate in three different

settings: unsupervised (subsystem A-INF), super-

vised (subsystem SUCRE (Kobdani and Schütze,

2010)), and self-trained (subsystem UNSEL). The

unsupervised subsystem A-INF (“Association

INFormation”) uses the association scores between

heads as the distance measure when clustering

markables. SUCRE (“SUpervised Coreference

REsolution”) is trained on a labeled corpus

(manually or automatically labeled) similar to

standard CoRe systems. Finally, the unsupervised

self-trained subsystem UNSEL (“UNsupervised

SELf-trained”) uses the unsupervised subsystem

A-INF to automatically label an unlabeled corpus

that is then used as a training set for SUCRE.

Our main contributions in this paper are as fol-

lows:

1. We demonstrate that word association informa-

tion can be used to develop an unsupervised

model for shallow coreference resolution (sub-

system A-INF).

2. We introduce an unsupervised self-trained

method (UNSEL) that takes a two-learner two-

feature-space approach. The two learners are

A-INF and SUCRE. The feature spaces are the

shallow and rich feature spaces.

3. We show that the performance of UNSEL is

better than the performance of other unsuper-

vised systems when it is self-trained on the au-

tomatically labeled corpus and uses the lever-

aging effect of a rich feature space.

4. MCORE is a flexible and modular framework

that is able to learn from data with different
1MCORE can be downloaded from ifnlp.org/

˜schuetze/mcore.

quality and domain. Not only is it able to deal

with shallow information spaces (A-INF), but

it can also deliver competitive results for rich

feature spaces (SUCRE and UNSEL).

This paper is organized as follows. Related work

is discussed in Section 2. In Section 3, we present

our system architecture. Section 4 describes the ex-

periments and Section 5 presents and discusses our

results. The final section presents our conclusions.

2 Related Work

There are three main approaches to CoRe: super-

vised, semi-supervised (or weakly supervised) and

unsupervised. We use the term semi-supervised for

approaches that use some amount of human-labeled

coreference pairs.

Müller et al. (2002) used co-training for coref-

erence resolution, a semi-supervised method. Co-

training puts features into disjoint subsets when

learning from labeled and unlabeled data and tries

to leverage this split for better performance. Ng and

Cardie (2003) use self-training in a multiple-learner

framework and report performance superior to co-

training. They argue that the multiple learner ap-

proach is a better choice for CoRe than the multi-

ple view approach of co-training. Our self-trained

model combines multiple learners (A-INF and SU-

CRE) and multiple views (shallow/rich informa-

tion). A key difference to the work by Müller et al.

(2002) and Ng and Cardie (2003) is that we do not

use any human-labeled coreference pairs.

Our basic idea of self-training without human la-

bels is similar to (Kehler et al., 2004), but we ad-

dress the general CoRe problem, not just pronoun

interpretation.

Turning to unsupervised CoRe, Haghighi and

Klein (2007) proposed a generative Bayesian model

with good performance. Poon and Domingos (2008)

introduced an unsupervised system in the framework

of Markov logic. Ng (2008) presented a generative

model that views coreference as an EM clustering

process. We will show that our system, which is

simpler than prior work, outperforms these systems.

Haghighi and Klein (2010) present an “almost un-

supervised” CoRe system. In this paper, we only

compare with completely unsupervised approaches,

784



not with approaches that make some limited use of

labeled data.

Recent work by Haghighi and Klein (2009), Klen-

ner and Ailloud (2009) and Raghunathan et al.

(2010) challenges the appropriateness of machine

learning methods for CoRe. These researchers show

that a “deterministic” system (essentially a rule-

based system) that uses a rich feature space includ-

ing lexical, syntactic and semantic features can im-

prove CoRe performance. Almost all CoRe systems,

including ours, use a limited number of rules or fil-

ters, e.g., to implement binding condition A that re-

flexives must have a close antecedent in some sense

of “close”. In our view, systems that use a few ba-

sic filters are fundamentally different from carefully

tuned systems with a large number of complex rules,

some of which use specific lexical information. A

limitation of complex rule-based systems is that they

require substantial effort to encode the large number

of deterministic constraints that guarantee good per-

formance. Moreover, these systems are not adapt-

able (since they are not machine-learned) and may

have to be rewritten for each new domain, genre

and language. Consequently, we do not compare our

performance with deterministic systems.

Ponzetto (2010) extracts metadata from

Wikipedia for supervised CoRe. Using such

additional resources in our unsupervised system

should further improve CoRe performance. Elsner

et al. (2009) present an unsupervised algorithm

for identifying clusters of entities that belong to

the same named entity (NE) class. Determining

common membership in an NE class like person is

an easier task than determining coreference of two

NEs.

3 System Architecture

Figure 1 illustrates the system architecture of our

unsupervised self-trained CoRe system (UNSEL).

Oval nodes are data, box nodes are processes. We

take a self-training approach to coreference resolu-

tion: We first label the corpus using the unsuper-

vised model A-INF and then train the supervised

model SUCRE on this automatically labeled train-

ing corpus. Even though we train on a labeled cor-

pus, the labeling of the corpus is produced in a com-

pletely automatic fashion, without recourse to hu-

Unlabeled Data

Unsupervised Model (A-INF)

Automatically Labeled Data

Supervised Model (SUCRE)

Figure 1: System Architecture of UNSEL (Unsupervised

Self-Trained Model).

man labeling. Thus, it is an unsupervised approach.

The MCORE architecture is very flexible; in par-

ticular, as will be explained presently, it can be eas-

ily adapted for supervised as well as unsupervised

settings.

The unsupervised and supervised models have an

identical top level architecture; we illustrate this in

Figure 2. In preprocessing, tokens (words), mark-

ables and their attributes are extracted from the input

text. The key difference between the unsupervised

and supervised approaches is in how pair estimation

is accomplished — see Sections 3.1 & 3.2 for de-

tails.

The main task in chain estimation is clustering.

Figure 3 presents our clustering method, which is

used for both supervised and unsupervised CoRe.

We search for the best predicted antecedent (with

coreference probability p ≥ 0.5) from right to left

starting from the end of the document. McEnery et

al. (1997) showed that in 98.68% of cases the an-

tecedent is within a 10-sentence window; hence we

use a window of 10 sentences for search. We have

found that limiting the search to a window increases

both efficiency and effectiveness.

Filtering. We use a feature definition language

to define the templates according to which the fil-

ters and features are calculated. These templates

are hard constraints that filter out all cases that are

clearly disreferent, e.g., (he, she) or (he, they). We

use the following filters: (i) the antecedent of a re-

flexive pronoun must be in the same sentence; (ii)

the antecedent of a pronoun must occur at a distance

of at most 3 sentences; (iii) a coreferent pair of a

noun and a pronoun or of two pronouns must not
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Input Text Preprocessing Markables Pair Estimation

Markable Chains Chain Estimation Markable Pairs

Figure 2: Common architecture of unsupervised (A-INF) and supervised (SUCRE) models.

Chain Estimation (M1, M2, . . . , Mn)

1. t← 1
2. For each markable Mi: Ci ← {Mi}
3. Proceed through the markables from the end

of the document. For each Mj , consider each

preceding Mi within 10 sentences:

If Pair Estimation(Mi, Mj)>=t: Ci ← Ci∪Cj

4. t← t− 0.01
5. If t >= 0.5: go to step 3

Pair Estimation (Mi, Mj):

If Filtering(Mi, Mj)==FALSE then return 0;

else return the probability p (or association

score N ) of markable pair (Mi, Mj) being

coreferent.

Filtering (Mi, Mj):

return TRUE if all filters for (Mi, Mj) are

TRUE else FALSE

Figure 3: MCORE chain estimation (clustering) algo-

rithm (test). t is the clustering threshold. Ci refers to

the cluster that Mi is a member of.

disagree in number; (iv) a coreferent pair of two pro-

nouns must not disagree in gender. These four filters

are used in supervised and unsupervised modes of

MCORE.

3.1 Unsupervised Model (A-INF)

Figure 4 (top) shows how A-INF performs pair esti-

mation. First, in the pair generation step, all possible

pairs inside 10 sentences are generated. Other steps

are separately explained for train and test as follows.

Train. In addition to the filters (i)–(iv) described

above, we use the following filter: (v) If the head

of markable M2 matches the head of the preceding

markable M1, then we ignore all other pairs for M2

in the calculation of association scores.

This additional filter is necessary because an ap-

proach without some kind of string matching con-

straint yields poor results, given the importance of

string matching for CoRe. As we will show below,

even the simple filters (i)–(v) are sufficient to learn

high-quality association scores; this means that we

do not need the complex features of “determinis-

tic” systems. However, if such complex features are

available, then we can use them to improve perfor-

mance in our self-trained setting.

To learn word association information from an

unlabeled corpus (see Section 4), we compute mu-

tual information (MI) scores between heads of mark-

ables. We defineMI as follows: (Cover and Thomas,

1991)

MI(a, b) =
∑

i∈{ā,a}

∑

j∈{b̄,b}

P (i, j) log2

P (i, j)

P (i)P (j)

E.g., P (a, b̄) is the probability of a pair whose two

elements are a and a word not equal to b.

Test. A key virtue of our approach is that in the

classification of pairs as coreferent/disreferent, the

coreference probability p estimated in supervised

learning plays exactly the same role as the associ-

ation information score N (defined below). For p, it

is important that we only consider pairs with p ≥ 0.5
as potentially coreferent (see Figure 3). To be able to

impose the same constraint on N , we normalize the

MI scores by the maximum values of the two words

and take the average:

N(a, b) =
1

2
(

MI(a, b)

argmaxxMI(a, x)
+

MI(a, b)

argmaxxMI(x, b)
)

In the above equation, the value of N indicates how

strongly two words are associated. N is normalized

to ensure 0 ≤ N ≤ 1. If a or b did not occur, then

we set N =0.
In filtering for test, we use filters (i)–(iv). We then

fetch the MI values and calculate N values. The

clustering algorithm described in Figure 3 uses these

N values in exactly the same way as p: we search for

the antecedent with the maximum association score
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N greater than 0.5 from right to left starting from

the end of the document.

As we will see below, using N scores acquired

from an unlabeled corpus as the only source of in-

formation for CoRe performs surprising well. How-

ever, the weaknesses of this approach are (i) the fail-

ure to cover pairs that do not occur in the unlabeled

corpus (negatively affecting recall) and (ii) the gen-

eration of pairs that are not plausible candidates for

coreference (negatively affecting precision). To ad-

dress these problems, we train a model on a corpus

labeled by A-INF in a self-training approach.

3.2 Supervised Model (SUCRE)

Figure 4 (bottom) presents the architecture of pair

estimation for the supervised approach (SUCRE).

In the pair generation step for train, we take each

coreferent markable pair (Mi, Mj) without inter-

vening coreferent markables and use (Mi, Mj) as a
positive training instance and (Mi, Mk), i < k < j,

as negative training instances. For test, we generate

all possible pairs within 10 sentences. After filter-

ing, we then calculate a feature vector for each gen-

erated pair that survived filters (i)–(iv).

Our basic features are similar to those described

by Soon et al. (2001): string-based features, dis-

tance features, span features, part-of-speech fea-

tures, grammatical features, semantic features, and

agreement features. These basic features are engi-

neered with the goal of creating a feature set that

will result in good performance. For this purpose

we used the relational feature engineering frame-

work which has been presented in (Kobdani et al.,

2010). It includes powerful and flexible methods for

implementing and extracting new features. It allows

systematic and fast search of the space of features

and thereby reduces the time and effort needed for

defining optimal features. We believe that the good

performance of our supervised system SUCRE (ta-

bles 1 and 2) is the result of our feature engineering

approach.2

As our classification method, we use a decision

2While this is not the focus of this paper, SUCRE has per-

formance comparable to other state-of-the-art supervised sys-

tems. E.g., B3/MUC F1 are 75.6/72.4 on ACE-2 and 69.4/70.6

on MUC-6 compared to 78.3/66.0 on ACE-2 and 70.9/68.5 on

MUC-6 for Reconcile (Stoyanov et al., 2010)

tree3 (Quinlan, 1993) that is trained on the training

set to estimate the coreference probability p for a

pair and then applied to the test set. Note that, as

is standard in CoRe, filtering and feature calculation

are exactly the same for training and test, but that

pair generation is different as described above.

4 Experimental Setup

4.1 Data Sets

For computing word association, we used a cor-

pus of about 63,000 documents from the 2009 En-

glish Wikipedia (the articles that were larger than

200 bytes). This corpus consists of more than 33.8

million tokens; the average document length is 500

tokens. The corpus was parsed using the Berkeley

parser (Petrov and Klein, 2007). We ignored all sen-

tences that had no parse output. The number of de-

tected markables (all noun phrases extracted from

parse trees) is about 9 million.

We evaluate unsupervised, supervised and self-

trained models on ACE (Phase 2) (Mitchell et al.,

2003).4 This data set is one of the most widely

used CoRe benchmarks and was used by the sys-

tems that are most comparable to our approach; in

particular, it was used in most prior work on unsu-

pervised CoRe. The corpus is composed of three

data sets from three different news sources. We give

the number of test documents for each: (i) Broadcast

News (BNEWS): 51. (ii) Newspaper (NPAPER):

17. (iii) Newswire (NWIRE): 29. We report re-

sults for true markables (markables extracted from

the answer keys) to be able to compare with other

systems that use true markables.

In addition, we use the recently published

OntoNotes benchmark (Recasens et al., 2010).

OntoNotes is an excerpt of news from the OntoNotes

Corpus Release 2.0 (Pradhan et al., 2007). The ad-

vantage of OntoNotes is that it contains two parallel

annotations: (i) a gold setting, gold standard manual

annotations of the preprocessing information and (ii)

an automatic setting, automatically predicted anno-

tations of the preprocessing information. The au-

tomatic setting reflects the situation a CoRe system

3We also tried support vector machines and maximum en-

tropy models, but they did not perform better.
4We used two variants of ACE (Phase 2): ACE-2 and

ACE2003
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Markable Pairs Filtering Association Calculation

Pair Generation Filter Templates Association Information Train/Test

Markable Pairs Filtering Feature Calculation Feature Vectors

Pair Generation Filter Templates Feature Templates Train/Test

Figure 4: Pair estimation in the unsupervised model A-INF (top) and in the supervised model SUCRE (bottom).

faces in reality; in contrast, the gold setting should

be considered less realistic.

The issue of gold vs. automatic setting is directly

related to a second important evaluation issue: the

influence of markable detection on CoRe evaluation

measures. In a real application, we do not have ac-

cess to true markables, so an evaluation on system

markables (markables automatically detected by the

system) reflects actual expected performance better.

However, reporting only CoRe numbers (even for

system markables) is not sufficient either since ac-

curacy of markable detection is necessary to inter-

pret CoRe scores. Thus, we need (i) measures of

the quality of system markables (i.e., an evaluation

of the markable detection subtask) and CoRe per-

formance on system markables as well as (ii) a mea-

sure of CoRe performance on true markables. We

use OntoNotes in this paper to perform such a, in

our view, complete and realistic evaluation of CoRe.

The two evaluations correspond to the two evalua-

tions performed at SemEval-2010 (Recasens et al.,

2010): the automatic setting with system markables

and the gold setting with true markables. Test set

size is 85 documents.

In the experiments with A-INF we use Wikipedia

to compute association information and then evalu-

ate the model on the test sets of ACE and OntoNotes.

For the experiments with UNSEL, we use its unsu-

pervised subsystem A-INF (which uses Wikipedia

association scores) to automatically label the train-

ing sets of ACE and OntoNotes. Then for each data

set, the supervised subsystem of UNSEL (i.e., SU-

CRE) is trained on its automatically labeled training

set and then evaluated on its test set. Finally, for

the supervised experiments, we use the manually la-

beled training sets and evaluate on the corresponding

test sets.

4.2 Evaluation Metrics

We report recall, precision, and F1 for MUC (Vilain

et al., 1995), B3 (Bagga and Baldwin, 1998), and

CEAF (Luo, 2005). We selected these three met-

rics because a single metric is often misleading and

because we need to use metrics that were used in

previous unsupervised work.

It is well known that MUC by itself is insuffi-

cient because it gives misleadingly high scores to the

“single-chain” system that puts all markables into

one chain (Luo et al., 2004; Finkel and Manning,

2008). However, B3 and CEAF have a different

bias: they give high scores to the “all-singletons”

system that puts each markable in a separate chain.

On OntoNotes test, we get B3 = 83.2 and CEAF

= 71.2 for all-singletons, which incorrectly sug-

gests that performance is good; but MUC F1 is 0 in

this case, demonstrating that all-singletons performs

poorly. With the goal of performing a complete eval-

uation, one that punishes all-singletons as well as

single-chain, we use one of the following two com-

binations: (i) MUC and B3 or (ii) MUC and CEAF.

Recasens et al. (2010) showed that B3 and CEAF

are highly correlated (Pearson’s r = 0.91). There-

fore, either combination (i) or combination (ii) fairly

characterizes CoRe performance.

5 Results and Discussion

Table 1 compares our unsupervised self-trained

model UNSEL and unsupervised model A-INF to
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MUC B3 CEAF

BNEWS-ACE-2 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

1 P&D 68.3 66.6 67.4 70.3 65.3 67.7 – – –

2 A-INF 60.8 61.4 61.1 55.5 69.0 61.5 52.6 52.0 52.3

3 UNSEL 72.5 65.6 68.9 72.5 66.4 69.3 56.7 64.8 60.5

4 SUCRE 86.6 60.3 71.0 87.6 64.6 74.4 56.1 81.6 66.5

NWIRE-ACE-2 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

5 P&D 67.7 67.3 67.4 74.7 68.8 71.6 – – –

6 A-INF 62.4 57.4 59.8 59.2 62.4 60.7 46.8 52.5 49.5

7 UNSEL 76.2 61.5 68.1 81.5 67.6 73.9 61.5 77.1 68.4

8 SUCRE 82.5 65.7 73.1 85.4 72.3 78.3 63.5 80.6 71.0

NPAPER-ACE-2 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

9 P&D 69.2 71.7 70.4 70.0 66.5 68.2 – – –

10 A-INF 60.6 56.0 58.2 52.4 60.3 56.0 38.9 44.0 41.3

11 UNSEL 78.6 65.7 71.6 74.0 68.0 70.9 57.6 73.2 64.5

12 SUCRE 82.5 67.0 73.9 80.7 69.5 74.6 58.8 77.1 66.7

BNEWS-ACE2003 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

13 H&K 68.3 56.8 62.0 – – – 59.9 53.9 56.7

14 Ng 71.4 56.1 62.8 – – – 60.5 53.3 56.7

15 A-INF 60.9 64.9 62.8 50.9 72.5 59.8 53.8 49.4 51.5

16 UNSEL 69.5 65.0 67.1 70.2 65.9 68.0 58.5 64.2 61.2

17 SUCRE 73.9 68.5 71.1 75.4 69.6 72.4 60.1 66.6 63.2

NWIRE-ACE2003 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

18 H&K 66.2 46.8 54.8 – – – 62.8 49.6 55.4

19 Ng 68.3 47.0 55.7 – – – 60.7 49.2 54.4

20 A-INF 62.7 60.5 61.6 54.8 66.1 59.9 47.7 50.2 49.0

21 UNSEL 64.8 68.6 66.6 61.5 73.6 67.0 59.8 55.1 57.3

22 SUCRE 77.6 69.3 73.2 78.8 75.2 76.9 65.1 74.4 69.5

Table 1: Scores for MCORE (A-INF, SUCRE and UNSEL) and three comparable systems on ACE-2 and ACE2003.

P&D (Poon and Domingos, 2008) on ACE-2; and

to Ng (Ng, 2008) and H&K5 (Haghighi and Klein,

2007) on ACE2003. To our knowledge, these three

papers are the best and most recent evaluation results

for unsupervised learning and they all report results

on ACE-2 and ACE-2003. Results on SUCRE will

be discussed later in this section.

A-INF scores are below some of the earlier unsu-

pervised work reported in the literature (lines 2, 6,

10) although they are close to competitive on two

of the datasets (lines 15 and 20: MUC scores are

equal or better, CEAF scores are worse). Given the

simplicity of A-INF, which uses nothing but asso-

5We report numbers for the better performing Pronoun-only

Salience variant of H&K proposed by Ng (2008).

ciations mined from a large unannotated corpus, its

performance is surprisingly good.

Turning to UNSEL, we see that F1 is always bet-

ter for UNSEL than for A-INF, for all three mea-

sures (lines 3 vs 2, 7 vs 6, 11 vs 10, 16 vs 15, 21

vs 20). This demonstrates that the self-training step

of UNSEL is able to correct many of the errors that

A-INF commits. Both precision and recall are im-

proved with two exceptions: recall of B3 decreases

from line 2 to 3 and from 15 to 16.

When comparing the unsupervised system UN-

SEL to previous unsupervised results, we find that

UNSEL’s F1 is higher in all runs (lines 3 vs 1, 7 vs

5, 11 vs 9, 16 vs 13&14, 21 vs 18&19). The differ-

ences are large (up to 11%) compared to H&K and
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Ng. The difference to P&D is smaller, ranging from

2.7% (B3, lines 11 vs 9) to 0.7% (MUC, lines 7 vs

5). Given that MCORE is a simpler and more ef-

ficient system than this prior work on unsupervised

CoRe, these results are promising.

In contrast to F1, there is no consistent trend for

precision and recall. For example, P&D is better

than UNSEL on MUC recall for BNEWS-ACE-2

(lines 1 vs 3) and H&K is better than UNSEL on

CEAF precision for NWIRE-ACE2003 (lines 18 vs

21). But this higher variability for precision and re-

call is to be expected since every system trades the

two measures off differently.

These results show that the application of self-

training significantly improves performance. As dis-

cussed in Section 3.1, self-training has positive ef-

fects on both recall and precision. We now present

two simplified examples that illustrate this point.

Example for recall. Consider the markable pair

(Novoselov6,he) in the test set. Its N score is 0 be-

cause our subset of 2009 Wikipedia sentences has

no occurrence of Novoselov. However, A-INF finds

many similar pairs like (Einstein,he) and (Hawk-

ing,he), pairs that have high N scores. Suppose

we represent pairs using the following five fea-

tures: <sentence distance, string match, type of

first markable, type of second markable, number

agreement>. Then (Einstein,he), (Hawking,he) and

(Novoselov,he) will all be assigned the feature vector

<1, No, Proper Noun, Personal Pronoun, Yes>. We

can now automatically label Wikipedia using A-INF

– this will label (Einstein,he) and (Hawking,he) as

coreferent – and train SUCRE on the resulting train-

ing set. SUCRE can then resolve the coreference

(Novoselov,he) correctly. We call this the better re-

call effect.

Example for precision. Using the same repre-

sentation of pairs, suppose that for the sequence of

markables Biden, Obama, President the markable

pairs (Biden,President) and (Obama,President) are

assigned the feature vectors <8, No, Proper Noun,

Proper Noun, Yes> and <1, No, Proper Noun,

Proper Noun, Yes>, respectively. Since both pairs

have N scores > 0.5, A-INF incorrectly puts the

three markables into one cluster. But as we would

expect, A-INF labels many more markable pairs

6The 2010 physics Nobel laureate.
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Figure 5: MUC learning curve for A-INF.

with the second feature vector (distance=1) as coref-

erent than with the first one (distance=8) in the en-

tire automatically labeled training set. If we now

train SUCRE on this training set, it can resolve such

cases in the test set correctly even though they are

so similar: (Biden,President) is classified as disref-

erent and (Obama,President) as coreferent. We call

this the better precision effect.

Recall that UNSEL has better recall and precision

than A-INF in almost all cases (discussion of Ta-

ble 1). This result shows that better precision and

better recall effects do indeed benefit UNSEL.

To summarize, the advantages of our self-training

approach are: (i) We cover cases that do not occur

in the unlabeled corpus (better recall effect); and (ii)

we use the leveraging effect of a rich feature space

including distance, person, number, gender etc. to

improve precision (better precision effect).

Learning curve. Figure 5 presents MUC scores

of A-INF as a function of the number of Wikipedia

articles used in unsupervised learning. We can see

that a small number of input articles (e.g., 100) re-

sults in low recall and high precision. When we in-

crease the number of input articles, recall rapidly in-

creases and precision rapidly decreases up to about

10,000 articles. Increase and decrease continue

more slowly after that. F1 increases throughout be-

cause lower precision is compensated by higher re-

call. This learning curve demonstrates the impor-

tance of the size of the corpus for A-INF.

Comparison of UNSEL with SUCRE

Table 2 compares our unsupervised self-trained

(UNSEL) and supervised (SUCRE) models with

the recently published SemEval-2010 OntoNotes re-
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Gold setting + True markables

System MD MUC B3 CEAF

Relax 100 33.7 84.5 75.6

SUCRE2010 100 60.8 82.4 74.3

SUCRE 100 64.3 87.0 80.1

UNSEL 100 63.0 86.9 79.7

Automatic setting + System markables

System MD MUC B3 CEAF

SUCRE2010 80.7 52.5 67.1 62.7

Tanl-1 73.9 24.6 61.3 57.3

SUCRE 80.9 55.7 69.7 66.6

UNSEL 80.9 55.0 69.8 66.3

Table 2: F1 scores for MCORE (SUCRE and UNSEL)

and the best comparable systems in SemEval-2010. MD:

Markable Detection F1 (Recasens et al., 2010).

sults (gold and automatic settings). We compare

with the scores of the two best systems, Relax and

SUCRE2010
7 (for the gold setting with true mark-

ables) and SUCRE2010 and Tanl-1 (for the automatic

setting with system markables, 89.9% markable de-

tection (MD) F1). It is apparent from this table that

our supervised and unsupervised self-trained mod-

els outperform Relax, SUCRE2010 and Tanl-1. We

should make clear that we did not use the test set for

development to ensure a fair comparison with the

participant systems at SemEval-2010.

Table 1 shows that the unsupervised self-trained

system (UNSEL) does a lot worse than the su-

pervised system (SUCRE) on ACE.8 In contrast,

UNSEL performs almost as well as SUCRE on

OntoNotes (Table 2), for both gold and automatic

settings: F1 differences range from +.1 (Auto-

matic, B3) to −1.3 (Gold, MUC). We suspect that

this is partly due to the much higher proportion

of singletons in OntoNotes than in ACE-2: 85.2%

(OntoNotes) vs. 60.2% (ACE-2). The low recall of

the automatic labeling by A-INF introduces a bias

for singletons when UNSEL is self-trained. Another

reason is that the OntoNotes training set is about

4 times larger than each of BNEWS, NWIRE and

7It is the first version of our supervised system that took part

in SemEval-2010. We call it SUCRE2010.
8A reviewer observes that SUCRE’s performance is better

than the supervised system of Ng (2008). This may indicate

that part of our improved unsupervised performance in Table 1

is due to better feature engineering implemented in SUCRE.

NPAPER training sets. With more training data,

UNSEL can correct more of its precision and re-

call errors. For an unsupervised approach, which

only needs unlabeled data, there is little cost to cre-

ating large training sets. Thus, this comparison of

ACE-2/Ontonotes results is evidence that in a realis-

tic scenario using association information in an un-

supervised self-trained system is almost as good as

a system trained on manually labeled data.

It is important to note that the comparison of

SUCRE to UNSEL is the most direct comparison

of supervised and unsupervised CoRe learning we

are aware of. The two systems are identical with the

single exception that they are trained on manual vs.

automatic coreference labels.

6 Conclusion

In this paper, we have demonstrated the utility of

association information for coreference resolution.

We first developed a simple unsupervised model for

shallow CoRe that only uses association information

for finding coreference chains. We then introduced

an unsupervised self-trained approach where a su-

pervised model is trained on a corpus that was auto-

matically labeled by the unsupervised model based

on the association information. The results of the ex-

periments indicate that the performance of the unsu-

pervised self-trained approach is better than the per-

formance of other unsupervised learning systems. In

addition, we showed that our system is a flexible and

modular framework that is able to learn from data

with different quality (perfect vs noisy markable de-

tection) and domain; and is able to deliver good re-

sults for shallow information spaces and competitive

results for rich feature spaces. Finally, our frame-

work is the first CoRe system that is designed to sup-

port three major modes of machine learning equally

well: supervised, self-trained and unsupervised.
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M.Antònia Martı́, Mariona Taulé, Véronique Hoste,
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