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Abstract textual analysis. Research to date has concentrated

_ on two subtasks of CAA: grading essay responses,
In this work we address the task of computer-  \yhjch includes checking the style, grammaticality,
assisted stessment of shor'F student answers. and coherence of the essay (Higgins et al., 2004),
We combine several graph alignment feaures and the assessment of short student answers (Lea-
with lexical semantic similarity measures us- ent o _0 u \
ing machine learning techniques and show cock and Chodorowz 2003; Pulman an_d S_ukkarleh,
that the student answers can be more accu- 2005; Mohler and Mihalcea, 2009), which is the fo-

rately graded than if the semantic measures  cus of this work.

were used in isolation. We also present a first A ¢ tic short di t .
attempt to align the dependency graphs of the N automatic short answer grading system 1S one

student and the instructor answers in order to that automatically assigns a grade to an answer pro-
make use of a structural componentin the au-  Vvided by a student, usually by comparing it to one
tomatic grading of student answers. or more correct answers. Note that this is different
from the related tasks of paraphrase detection and
textual entailment, since a common requirement in
student answer grading is to provide a grade on a
One of the most important aspects of the learningertain scale rather than make a simple yes/no deci-
process is the assessment of the knowledge acquirsidn.
by the learner. In a typical classroom assessment . . .
. . . In this paper, we explore the possibility of im-

(e.g., an exam, assignment or quiz), an instructor or . .

. : proving upon existing bag-of-words (BOW) ap-
a grader provides students with feedback on the rroaches t0 short answer arading by utilizing ma
answers to questions related to the subject mattéy. 9 g by 9

) . . cpine learning techniques. Furthermore, in an at-
However, in certain scenarios, such as a number ¢

. . N - tempt to mirror the ability of humans to understand
sites worldwide with limited teacher availability, on- , .
. . . o structural (e.g. syntactic) differences between sen-
line learning environments, and individual or group .
) ; . tences, we employ a rudimentary dependency-graph
study sessions done outside of class, an mstructor. e
. . . alignment module, similar to those more commonly
may not be readily available. In these instances, stu-* . . .
. . used in the textual entailment community.
dents still need some assessment of their knowledgé
of the subject, and so, we must turn to computer- Specifically, we seek answers to the following
assisted assessment (CAA). guestions.First, to what extent can machine learn-
While some forms of CAA do not require sophis-ing be leveraged to improve upon existing ap-
ticated text understanding (e.g., multiple choice oproaches to short answer gradirgcond, does the
true/false questions can be easily graded by a systetapendency parse structure of a text provide clues
if the correct solution is available), there are also stuthat can be exploited to improve upon existing BOW
dent answers made up of free text that may requimaethodologies?
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2 Related Work grades.

_ In the dependency-based classification compo-
Several state-of-the-art short answer grading Syfent of the Intelligent Tutoring System (Nielsen et
tems (Sukkarieh et al., 2004; Mitchell et al., 2002)y 2009), instructor answers are parsed, enhanced,
require manually crafted patterns which, if matched,nq manually converted into a set of content-bearing
indicate that a question h.as begn answered Correc%pendency triples or facets. For each facet of the
If an annotated corpus is available, these patterfiSsirycior answer each student's answer is labelled
can be supplemented by learning additional pag, jngicate whether it has addressed that facet and

terns semi-automatically. The Oxford-UCLES SySynether or not the answer was contradictory. The

tem (Sukkarieh et al., 2004) bootstraps patterns Ry siem uses a decision tree trained on part-of-speech
starting with a set of keywords and synonyms a”fiags, dependency types, word count, and other fea-

searching through windows of a text for new patyres to attempt to learn how best to classify an an-
terns. A later implementation of the Oxford-UCLESq\ o /tacet pair.

system (Pulman and Sukkarieh, 2005) compares Closely related to the task of short answer grading

seve_ral ma_chme Iearnmg techn_lq_ues, '”C'Ud'“g Ns the task of textual entailment (Dagan et al., 2005),
ductive logic programming, decision tree IearnlngWhich targets the identification of a directional in-

gnd Bayesian Ie_arnmg, to th_e earlier pattern matc'f‘érential relation between texts. Given a pair of two
ing approach, with encouraging results. texts as input, typically referred to asxt and hy-

C-Rater (Leacock and Chodorow, 2003) matchegyhesis a textual entailment system automatically
the _syntact!cal features of a student response (i-§nds if the hypothesis is entailed by the text.
subject, object, and verb) to that of a set of correct In particular, the entailment-related works that are

responses. This method specifically disregards thgqt similar to our own are the graph matching tech-
BOW aperoach_ to take '!nto a}‘ccount_ the d'ﬁ?rencﬁiques proposed by Haghighi et al. (2005) and Rus
between “dog bites man” and *man bites dog” whiley 5 (2007). Both input texts are converted into a
still trylng to detect changes in voice (i.e., “the ma'braph by using the dependency relations obtained
was bitten by the dog”). from a parser. Next, a matching score is calculated,
Another short answer grading system, AutoTutop, combining separate vertex- and edge-matching
(Wiemer-Hastings et al., 1999), has been deSign%‘{ores. The vertex matching functions use word-
as an immersive tutoring environment with a grapheye| |exical and semantic features to determine the
ical “talking head” and speech recognition to im'quality of the match while the the edge matching
prove the overall experience for students. AutoTUtofnctions take into account the types of relations and
eschews the pattern-based approach entirely in favigfa gifference in lengths between the aligned paths.
of a BOW LSA approach (Landauer and Dumais, pq|iqwing the same line of work in the textual en-
1997). Later work on AutoTutor(Wiemer-HastingSaiiment world are (Raina et al., 2005), (MacCartney
et al., 2005; Malatesta et al., 2002) seeks to exparéq al., 2006), (de Marneffe et al., 2007), and (Cham-
upon their BOW approach which becomes less Usgig et al., 2007), which experiment variously with

ful as causality (and thus word order) becomes morgs; g diverse knowledge sources, using a perceptron

important.. o _ to learn alignment decisions, and exploiting natural
A text similarity approach was taken in (Mohler|ogic_

and Mihalcea, 2009), where a grade is assigned

based on a measure of relatedness between the fu- Answer Grading System

dent and the instructor answer. Several measures are

compared, including knowledge-based and corpudVe use a set of syntax-aware graph alignment fea-
based measures, with the best results being obtainkules in a three-stage pipelined approach to short an-
with a corpus-based measure using Wikipedia conswer grading, as outlined in Figure 1.

bined with a “relevance feedback” approach that it- In the first stage (Section 3.1), the system is pro-

eratively augments the instructor answer by intevided with the dependency graphs for each pair of

grating the student answers that receive the highdsistructor (4;) and student 4,) answers. For each
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Figure 1: Pipeline model for scoring short-answer pairs.

node in the instructor's dependency graph, we congovernor and dependent are both tokens described

pute a similarity score for each node in the studentby the tuple (sentencelD:token:POS:wordPosition).

dependency graph based upon a set of lexical, seer example: (nsubj, 1:.provide:VBZ:4, 1:.pro-

mantic, and syntactic features applied to both thgram:NN:3) indicates that the noun “program” is a

pair of nodes and their corresponding subgraphsubject in sentence 1 whose associated verb is “pro-

The scoring function is trained on a small set of marwide.”

ually aligned graphs using the averaged perceptron If we consider the dependency graphs output by

algorithm. the Stanford parser as directed (minimally cyclic)
In the second stage (Section 3.2), the node simixraphst we can define for each nodea set of nodes

larity scores calculated in the previous stage are uséd, that are reachable from using a subset of the

to weight the edges in a bipartite graph representinglations (i.e., edge types) We variously define

the nodes in4; on one side and the nodesin on  “reachable” in four ways to create four subgraphs

the other. We then apply the Hungarian algorithnadefined for each node. These are as follows:

to find both an optimal matching and the score asso-

ciated with such a matching. In this stage, we also ® N : All edge types may be followed

introduce question demoting in an attempt to reduce 1. All edge types except for subject types

the advantage of parroting back words provided in ° Ny
the question. ADVCL, PURPCL, APPOS, PARATAXIS,

In the final stage (Section 3.4), we produce an ABBREV, TMOD, and CONJ
overall grade based upon the alignment scores found g nr2 - o edge types except for those M plus

in the previous stage as well as the results of several object/complement types, PREP, and RCMOD
semantic BOW similarity measures (Section 3.3).

Using each of these as features, we use Support Vec-e N3 : No edge types may be followed (This set
tor Machines (SVM) to produce a combined real- s the single starting node)

number grade. Finally, we build an Isotonic Regres-

sion (IR) model to transform our output scores onto Subgraph similarity (as opposed to simple node

the original [0,5] scale for ease of comparison.  Similarity) is a means to escape the rigidity involved
in aligning parse trees while making use of as much
3.1 Nodeto Node Matching of the sentence structure as possible. Humans intu-

Dependency graphs for both the student and idtively make use of modifiers, predicates, and subor-

structor answers are generated using the Stanfofdj'at€ clauses in determining that two sentence en-
Dependency Parser (de Marneffe et al., 2006) ifities arci similar. For mstanpe, Ehe entlty-descrlb!ng
collapse/propagate mode. The graphs are furth?t1rase men who put out flre”s ma}c_hes W?” with
post-processed to propagate dependencies across fHgMeN,” but the words “men” and “firemen” have
“APPOS” (apposition) relation, to explicitly encodeithe standard output of the Stanford Parser produces rooted
negation, part-of-speech, and sentence ID withinrees. However, the process of collapsing and propagagng d
each node, and to add an overarching ROOT nodeendences violates the tree structure which results inea tre
governing the main verb or predicate of each sent/" 2 few cross-inks between distinct branches. .
For more information on the relations used in this experi-

tence of an answer. The final representation iS @ent, consult the Stanford Typed Dependencies Manual at
list of (relation,governor,dependent) triples, wherehttp://nip.stanford.edu/software/dependencignual.pdf
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less inherent similarity. It remains to be determined) 0.set w — 0, W < 0,n — 0
how much of a node’s subgraph will positively en- | 1-repeat for I epochs:
rich its semantics. In addition to the compled | 2+ foreach (A A.):

. . 3 foreach (x;,zs) € A; x At
1 2 _ iy s i s
su_bgraph, we chose to includeé, andNt,L, as tight |4 if sqn(wlo(z:,z4)) £ sgn(Als, 2.)):
ening the scope of the subtree by first removing g st w — w+ Az, 25)d(i, x5
more abstract relations, then sightly more concrete g ewW—w+w,n—n+1
relations. 7.return w/n.

We define a total of 68 features to be used to train
our machine learning system to compute node-node
(more specifically, subgraph-subgraph) matches. Of
these, 36 are based upon the semantic similari

Y2 Graph to Graph Alignment
of four subgraphs defined bW;LO"?’]. All eight & & J

WordNet-based similarity measures listed in Sec(-)nce a score has been computed for each node-node

tion 3.3 plus the LSA model are used to producgair across all student/instructor answer pairs, we at-

these features. The remaining 32 features are IexicE?—r_npt to find gn o.ptlmal .allgr'1ment for the answer
We begin with a bipartite graph where each

syntactic featurésdefined only forN3 and are de- Pa" _
scribed in more detail in Table 2 node in the student answer is represented by a node

We useg(z:, =) to denote the feature vector as-On the left side of the bipartite graph and each node

sociated with a pair of nodes;, z,), wherez; is in the instructor answer is represented by a node
19 S/ 1
a node from the instructor answek; and z, IS a

on the right side. The score associated with each
node from the student answet. A matching score edge is the score computed for each node-node pair
can then be computed for any péir,, z,) € A; x in the previous stage. The bipartite graph is then
As through a linear scoring functioffi(x;, zs) =

augmented by adding dummy nodes to both sides
wl'é(z:,2,). In order to learn the parameter vec.-which are allowed to match any node with a score of
tor w, we use the averaged version of the perce

F;_ero. An optimal alignment between the two graphs
tron algorithm (Freund and Schapire, 1999; CoIIinsi,S then computed efficiently using the Hungarian al-
2002) gorithm. Note that this results in an optimal match-

As training data, we randomly select a subset dn9: not da mﬁpp'“g' S0 that ag |n_d|vt|1dualhnode IS as-
the student answers in such a way that our set wagc¢'ated with at most one node in the other answer.

roughly balanced between good scores, mediocreAt this stage we also compute several alignment-

scores, and poor scores. We then manually annotaﬁ@sgd scores by applying various t.ransform.ations to
each node paifz;, ) as matching, i.eA(z;, ;) — the m_put graphs, thg node matching function, and
+1, or not matching, i.eA(z;, z,) = —1. Overall, the alignment score itself. o

32 student answers in response to 21 questions withThe first and simplest transformation involves the

a total of 7303 node pairs (656 matches, 6647 nOH_ormalization of the alignment score. While there

matches) are manually annotated. The pseudocoREE Several possible ways to normalize a matching
for the learning algorithm is shown in Table 1. Af-Such that longer answers do not unjustly receive
ter training the perceptron, these 32 student answefigner scores, Wg o;;ted to E'mplif d'\c/j'de _thehtot_al

are removed from the dataset, not used as trainir?%Ignment score by the number of nodes in the in-

Y

further along in the pipeline, and are not included i ructor answer. ]
the final results. After training for 50 epochshe The second transformation scales the node match-

matching scoref (z;, ) is calculated (and cached) ing score by multiplying it with thedf> of the in-

for each node-node pair across all student answejtUctor answer node, i.e., replaggz;, ;) with

for all assignments. wdf (i) * f (@i, 25). _ _ .
The third transformation relies upon a certain

*Note that synonyms include negated antonyms (and viogeal-world intuition associated with grading student
versa). Hypernymy and hyponymy are restricted to at most

two steps). SInverse document frequency, as computed from the British Na
“This value was chosen arbitrarily and was not tuned in anywaytional Corpus (BNC)
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Name Type # features Description

RootMatch | binary 5 Is a ROOT node matched to: ROOT, N, V, JJ, or Other
Lexical binary 3 Exact match, Stemmed match, close Levenshteirtmatc
POSMatch | binary 2 Exact POS match, Coarse POS match

POSPairs binary 8 Specific X-Y POS matches found

Ontological | binary 4 WordNet relationships: synonymy, antonymy, hyyery, hyponymy
RoleBased | binary 3 Has as a child - subject, object, verb

VerbsSubject binary 3 Both are verbs and neither, one, or both have a sutijéd
VerbsObject | binary 3 Both are verbs and neither, one, or both have an tiijéd
Semantic real 36 Nine semantic measures across four subgraphs each
Bias constant 1 A value of 1 for all vectors

Total 68

Table 2: Subtree matching features used to train the peosept

answers — repeating words in the question is easi¢ Analysis [ESA] (Gabrilovich and Markovitch,
and is not necessarily an indication of student unde2007).
standing. With this in mind, we remove any words Briefly, for the knowledge-based measures, we
in the question from both the instructor answer andse the maximum semantic similarity — for each
the student answer. open-class word — that can be obtained by pairing
In all, the application of the three transforma-it up with individual open-class words in the sec-
tions leads to eight different transform combinaond input text. We base our implementation on
tions, and therefore eight different alignment scoreshe WordNet::Similarity package provided by Ped-
For a given answer pair4;, As), we assemble the ersen et al. (2004). For the corpus-based measures,
eight graph alignment scores into a feature vectove create a vector for each answer by summing

Ya (A, As). the vectors associated with each word in the an-
swer — ignoring stopwords. We produce a score in
3.3 Lexical Semantic Similarity the range [0..1] based upon the cosine similarity be-

Haghighi et al. (2005), working on the entailmenlrween the student and instructor answer vectors. The

detection problem, point out that finding a good->A Model used in these experiments was built by
alignment is not sufficient to determine that thd"@nINg Infoma§ on a subset of Wikipedia articles

aligned texts are in fact entailing. For instance, twd1at contain one or more common computer science

identical sentences in which an adjective from one i€™MS- Since ESA uses Wikipedia article associa-

replaced by its antonym will have very similar struc-t'o_n_s as vector features, it was trained using a full
tures (which indicates a good alignment). HowevelVikipedia dump.
the sentences will have opposite meanings. Furthgr4
information is necessary to arrive at an appropriate
score. We combine the alignment scoresg; (A4;, As) with

In order to address this, we combine the grapH® Scoresyp(4;, A;) from the lexical seman-
alignment scores, which encode syntactic knowlliC similarity measures into a single feature vector

edge, with the scores obtained from semantic sinf2(4is 4s) = [ (4i, A5)|¥p(Ai, A5)]. The fea-
ilarity measures. ture vector); (A;, As) contains the eight alignment

Following Mihalcea et al. (2006) and Mohler SCOres found b)_/ applying the three transformations
and Mihalcea (2009), we use eight knowledge'—n the graph alignment stage. The feature vector

based measures of semantic similarity: shortest paql.zfﬁ(A,i’ A;) consists of eleven semantic features —
[PATH], Leacock & Chodorow (1998) [LCH], Lesk the eight knowled_ge_—based featu_res plgs LSA, ESA
(1986), Wu & Palmer(1994) [WUP], Resnik (1995)ar_1d a vectqr conS|st|ngl only of tf*!df weights — both
[RES], Lin (1998), Jiang & Conrath (1997) [JCN],V_V'th and without question demotl_ng. Thus, the en-
Hirst & St. Onge (1998) [HSO], and two corpus-t're feature vectory(A;, As) contains a total of 30
based measures: Latent Semantic Analysis [LSA{ atures.
(Landauer and Dumais, 1997) and Explicit Semarthttp://Infomap-nip.sourceforge.net/
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An input pair (4;, A) is then associated with a tures course at the University of North Texas. For
gradeg(4;, As) = ul'y(A;, A;) computed as a lin- each assignment, the student answers were collected
ear combination of features. The weight veatois  via an online learning environment.
trained to optimize performance in two scenarios:  The students submitted answers to 80 questions
Regression: An SVM model for regression (SVR) spread across ten assignments and two examina-
is trained using as target function the grades asions® Table 3 shows two question-answer pairs
signed by the instructors. We use the libSVNm-  with three sample student answers each. Thirty-one
plementation of SVR, with tuned parameters. students were enrolled in the class and submitted an-
Ranking: An SVM model for ranking (SVMRank) swers to these assignments. The data set we work
is trained using as ranking pairs all pairs of stuwith consists of a total of 2273 student answers. This
dent answerg A, A;) such thatgrade(A;, A;) > is less than the expectedd x 80 = 2480 as some
grade(A;, Ay), where A; is the corresponding in- students did not submit answers for a few assign-
structor answer. We use the SVMLighimplemen- ments. In addition, the student answers used to train
tation of SVMRank with tuned parameters. the perceptron are removed from the pipeline after

In both cases, the parameters are tuned usingtlze perceptron training stage.
grid-search. At each grid point, the training data is The answers were independently graded by two
partitioned into 5 folds which are used to train atemhuman judges, using an integer scale from O (com-
porary SVM model with the given parameters. Thepletely incorrect) to 5 (perfect answer). Both human
regression passage selects the grid point with thedges were graduate students in the computer sci-
minimal mean square error (MSE), and the SVMence department; one (graderl) was the teaching as-
Rank package tries to minimize the number of dissistant assigned to the Data Structures class, while
cordant pairs. The parameters found are then usedtte other (grader2) is one of the authors of this pa-
score the test set — a set not used in the grid traininger. We treat the average grade of the two annotators

_ _ as the gold standard against which we compare our
3.5 Isotonic Regression system output.

Since the end result of any grading system is to give

a student feedback on their answers, we need to en- | _Difference | Examples| % of examples
e fi 0 1294 57.7%
sure that the system’s final score has some mean- 1 514 22.9%
ing. With this in mind, we use isotonic regression 2 231 10:3%
(Zadrozny and Elkan, 2002) to convert the system 3 123 5.5%
scores onto the same [0..5] scale used by the an- 4 70 3.1%
notators. This has the added benefit of making the 5 9 0.4%

system output more directly related to the annotated
grade, which makes it possible to report root mean
square error in addition to correlation. We train the
isotonic regression model on each type of system
output (i.e., alignment scores, SVM output, BO
scores).

Table 4: Annotator Analysis

The annotators were given no explicit instructions
n how to assign grades other than the [0..5] scale.
Both annotators gave the same grade 57.7% of the
time and gave a grade only 1 point apart 22.9% of
4 Data Set the time. _T_he full breakdqwn can be seen in Table

4. In addition, an analysis of the grading patterns
To evaluate our method for short answer gradingndicate that the two graders operated off of differ-
we created a data set of questions from introductomnt grading policies where one grader (graderl) was
computer science assignments with answers prmore generous than the other. In fact, when the two
vided by a class of undergraduate students. The adiffered, graderl gave the higher grade 76.6% of the

signments were administered as part of a Data Struime. The average grade given by graderl is 4.43,

"http:/iwww.csie.ntu.edu.tw/cjlin/libsvm/ ®Note that this is an expanded version of the dataset used by
8http://svmlight.joachims.org/ Mohler and Mihalcea (2009)
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\ Sample questions, correct answers, and student answers | Grades

Question: What is the role of a prototype program in problem solving?

Correct answer: To simulate the behavior of portions of the desired softvpaosluct.

Student answer 1: | A prototype program is used in problem solving to collecedat the problem. 1,2

Student answer 2: | It simulates the behavior of portions of the desired sofeyaoduct. 55

Student answer 3: | To find problem and errors in a program before it is finalized. 2,2

Question: What are the main advantages associated with object-edgmbgramming?

Correct answer: Abstraction and reusability.

Student answer 1: | They make it easier to reuse and adapt previously writtee eod they separate comple
programs into smaller, easier to understand classes. 54

Student answer 2: | Object oriented programming allows programmers to use @tblvith classes that can he
changed and manipulated while not affecting the entireatlaieonce. 1,1

Student answer 3: | Reusable components, Extensibility, Maintainabilityeitluces large problems into smaller
more manageable problems. r4, 4

Table 3: A sample question with short answers provided byesits and the grades assigned by the two human judges

while the average grade given by grader2 is 3.94cores a non-match. The threshold weight learned
The dataset is biased towards correct answers. \WWem the bias feature strongly influences the point
believe all of these issues correctly mirror real-worldat which real scores change from non-matches to

issues associated with the task of grading. matches, and given the threshold weight learned by
the algorithm, we find an F-measure of 0.72, with
5 Results precision(P) = 0.85 and recall(R) = 0.62. However,

We independently test two components of our oveS the perceptron is designed to minimize error rate,
all grading system: the node alignment detectio_H“S may not reflect an optimal objective Whe_n seek-
scores found by training the perceptron, and thi9 © detect matches. By manually varying the
overall grades produced in the final stage. For thiréshold, we find a maximum F-measure of 0.76,
alignment detection, we report the precision, recalfVith P=0.79 and R=0.74. Figure 2 shows the full
and F-measure associated with correctly detect"ﬂeusmn—recall curve with the F-measure overlaid.

matches. For the grading stage, we report a single -+ = F—r P—

. T . .'0 . eCISIon =======
Pearson’s correlation coefficient tracking the anno- 3 Mot pHASULE
tator grades (average of the two annotators) and the os} et 1

output score of each system. In addition, we re-
port the Root Mean Square Error (RMSE) for the o6
full dataset as well as the median RMSE across eacri;
individual question. This is to give an indication of 04
the performance of the system for grading a single
question in isolatior? 02}

5.1 Perceptron Alignment

0 L L L L
0 0.2 0.4 0.6 0.8 1

Recall

For the purpose of this experiment, the scores as-
sociated with a given node-node matching are con-

verted into a simple yes/no matching decision Wherlélgure 2: Precision, recall, and F-measure on node-level

o . match detection
positive scores are considered a match and negative

1%e initially intended to report an aggregate of questiarelle ; :
Pearson correlation results, but discovered that the eiatasS'z Question DemOtmg
contained one question for which each student received fuDne surprise while building this system was the con-

points — leaving the correlation undefined. We believe thaéistency with which the novel technique qifiestion

this casts some doubt on the applicability of Pearson’s (O&emotingimproved scores for the BOW similarity
Spearman’s) correlation coefficient for the short answadgr

ing task. We have retained its use here alongside RMSE féneasures. With this relatively minor change the av-
ease of comparison. erage correlation between the BOW methods’ sim-
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ilarity scores and the student grades improved byP Sz)azgi“d ‘(’)V/2'7D7F owzing Wg QZ';I'DF
. . ¢ Pearson’y . . . .

up to 0.046 with an average improvement of 0.019 RMSE 1018 1078 1046 1076

across all eleven semantic features. Table 5 sShoW$edian RMSE| 0910 0970 0919 0.992

the results of applying question demoting to our

semantic features. When comparing scores usif@ble 6: Alignment Feature/Grade Correlations using

RMSE, the difference is less consistent, yielding ah€2rson'y- Results are also reported when inverse doc-
average improvement of 0.002. However, for Onument frequency weighting (IDF) and question demoting

. ) ) ) ?QD) are used.
measure (tf*idf), the improvement is 0.063 which

brings its RMSE score close to the lowest of all
BOW metrics. The reasons for this are not entireljng system. For each fold, one additional fold is

clear. As a baseline, we include here the results %ld out for later use in the deve|opment of an iso-
assigning the average grade (as determined on thic regression model (see Figure 3). The param-
training data) for each question. The average gradgers (for costC' and tube widthe) were found us-

was chosen as it minimizes the RMSE on the traifing a grid search. At each point on the grid, the data
ing data. from the ten training folds was partitioned into 5 sets
which were scored according to the current param-

P w/QD | RMSE w/QD | Med. RMSE w/ QD ..
Lesk 0450 0462 | 1.034 1.050| 0930 ogio | eters. SVMRank and SVR sought to minimize the
JCN 0.443 0461} 1022 1026 | 0954 0923 nymber of discordant pairs and the mean absolute
HSO 0.441 0.456| 1.036 1.034 0.966 0.935 .
PATH 0.436  0.457| 1.029 1.030 0.940 0918 | error, respectively.
RES 0.409 0.431| 1.045 1.035 0.996 0.941 . . .
Lin 0382 0407| 1069 1056 0981 0949 Both SVM models are trained using a linear ker-
LCH 0367 0.387| 1.068 1069 0986 0958 nelll Results from both the SVR and the SVMRank
WUP 0.325 0.343| 1.090 1.086 1.027 0977, . . . .
ESA 0395 0401 1031 1086 0990 0955 Implementations are reported in Table 7 along with
LSA 0.328 0335| 1.065 1.061|  0.951 1.000| a selection of other measures. Note that the RMSE
tf*idf 0.281 0.327| 1.085 1.022 0.991 0.918 . . . .
Avg.grade 1097 1097 0973 09731 Score is computed after performing isotonic regres-

_ _ _ sion on the SVMRank results, but that it was unnec-
Table 5: BOW Features with Question Demoting (QD)essary to perform an isotonic regression on the SVR

Pearson's correlation, root mean square error (RMSB)aqit5 as the system was trained to produce a score
and median RMSE for all individual questions.
on the correct scale.

We report the results of running the systems on
5.3 Alignment Score Grading three subsets of featureg 4;, A;): BOW features

Before applying any machine learning technique<?s (4i, 4s) only, alignment featuresg (A;, As)

we first test the quality of the eight graph alignmenfnly: or the full feature vector (labeled “Hybrid").
features)i(A4;, A, ) independently. Results indicate Finally, three subset; of the alignment features_ are
that the basic alignment score performs comparabljSed: only unnormalized features, only normalized
to most BOW approaches. The introductioniaf eatures, or the full alignment feature set.

weighting seems to degrade performance somewhat,
while introducing question demoting causes the cor-
relation with the grader to increase while increasing Feaured___ A-Tenfolds _ )(5 )
RMSE somewhat. The four normalized components SYMModel [ A-TenFolds  J(B )

of 1 (A;, As) are reported in Table 6. IRModel [ A-TenFolds )

5.4 SVM Score Gradin . . .

9 Figure 3: Dependencies of the SVM/IR training stages.
The SVM components of the system are run on the
full dataset using a 12-fold cross validation. Each of
the 10 aSSIg_nmentS a_nd 2 examlnatlo_ns (for a tOtﬂWe also ran the SVR system using quadratic and radial-basis
of 12 folds) is scored independently with ten of the fnction (RBF) kernels, but the results did not show signifi-
remaining eleven used to train the machine learn-cantimprovement over the simpler linear kernel.
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Unnormalized Normalized Both
IAA | Avg. grade tf*idf Lesk || BOW | Align Hybrid | Align Hybrid | Align Hybrid
SVMRank
Pearson's 0.586 0.327 0.450|| 0.480| 0.266 0.451| 0.447 0518 | 0.424 0.493
RMSE 0.659 1.097 1.022 1.05Q 1.042| 1.093 1.038| 1.015 0.998 | 1.029 1.021
Median RMSE| 0.605 0.973 0.918 0.919 0.943| 0.974 0.903| 0.865 0.873 | 0.904 0.901
SVR
Pearson'y 0.586 0.327 0.450|| 0.431| 0.167 0.437| 0.433 0.459| 0.434 0.464
RMSE 0.659 1.097 1.022 1.050 0.999| 1.133 0.995| 1.001 0.982| 1.003 0.978
Median RMSE| 0.605 0.973 0.918 0.919| 0.910| 0.987 0.893| 0.894 0.877| 0.886 0.862

Table 7: The results of the SVM models trained on the fullesoit BOW measures, the alignment scores, and the
hybrid model. The terms “normalized”, “unnormalized”, dibbth” indicate which subset of the 8 alignment features
were used to train the SVM model. For ease of comparison, alade in both sections the scores for the IAA, the
“Average grade” baseline, and two of the top performing BOtnas — both with question demoting.

6 Discussion and Conclusions from .462 to .480. Likewise, using the BOW-only
SVM model for SVR reduces the RMSE by .022

There are three things that we can learn from thesgerall compared to the best BOW feature.
experiments. First, we can see from the results thatThird the rudimentary alignment features we

several .systems appear better when eyaluating Oh&ve introduced here are not sufficient to act as a

correlation measure like Pearsons while others standalone grading system. However, even with a

;pptla(ar be;tter when aga;lyzm? er;or raﬁ' TgssVMiery primitive attempt at alignment detection, we
ank system seemed fo outperiorm the SY¥how that it is possible to improve upon grade learn-

tem when measuring correlation, however the SVi g systems that only consider BOW features. The

system clearly had a minimal RMSE. This is Iikelycorrelations associated with the hybrid systems (esp.

due to the different objective function in the COrré+ ose using normalized alignment data) frequently

sponding optimization formulations: while the rank-show an improvement over the BOW-only SVM sys-

ing model attempts to ensure a correct ordering b?éms. This is true for both SVM systems when con-
tween the grades, the regression model seeks to mg}aering either evaluation metric

imize an error objective that is closer to the RMSE.

It is difficult to claim that either system is superior. _ . o
c*uahty of the answer alignments by training a model

_leeW|se_, perhaps the most unexpected rgsult % directly output graph-to-graph alignments. This
this work is the differing analyses of the SlmpleIearning approach will allow the use of more com-

tf*idf measure — originally included only as a base- ;

i . , . . lex alignment features, for example features that

line. Evaluating with a correlative measure yield ; . .

. . are defined on pairs of aligned edges or on larger

predictably poor results, but evaluating the error rate . . :

oo o subtrees in the two input graphs. Furthermore, given

indicates that it is comparable to (or better than) the : i
. . . . an alignment, we can define several phrase-level

more intelligent BOW metrics. One explanation for

) . . rammatical features such as negation, modalit
this result is that the skewed nature of this "naturalg 9 o Y
tense, person, number, or gender, which make bet-
dataset favors systems that tend towards scorestlnr use of the alignment itself
the 4 to 4.5 range. In fact, 46% of the scores outpu? g '
by the tf*idf measure (after IR) were within the 4 to

4.5 range and only 6% were below 3.5. Testing oAcknowledgments

a more balanced da.taset, this tendency to fit to thﬁus work was parua"y Supported by a National Sci-
average would be less advantageous. ence Foundation CAREER award #0747340. Any

Second, the supervised learning techniques agginions, findings, and conclusions or recommenda-
clearly able to leverage multiple BOW measures t@ions expressed in this material are those of the au-
yield improvements over individual BOW metrics.thors and do not necessarily reflect the views of the
The correlation for the BOW-only SVM model for National Science Foundation.
SVMRank improved upon the best BOW feature
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