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Abstract

In this paper, we adopt an n-best rescoring
scheme using pitch-accent patterns to improve
automatic speech recognition (ASR) perfor-
mance. The pitch-accent model is decoupled
from the main ASR system, thus allowing us
to develop it independently. N-best hypothe-
ses from recognizers are rescored by addi-
tional scores that measure the correlation of
the pitch-accent patterns between the acoustic
signal and lexical cues. To test the robustness
of our algorithm, we use two different data
sets and recognition setups: the first one is En-
glish radio news data that has pitch accent la-
bels, but the recognizer is trained from a small
amount of data and has high error rate; the sec-
ond one is English broadcast news data using
a state-of-the-art SRI recognizer. Our experi-
mental results demonstrate that our approach
is able to reduce word error rate relatively by
about 3%. This gain is consistent across the
two different tests, showing promising future
directions of incorporating prosodic informa-
tion to improve speech recognition.

1 Introduction

Prosody refers to the suprasegmental features of nat-
ural speech, such as rhythm and intonation, since
it normally extends over more than one phoneme
segment. Speakers use prosody to convey paralin-
guistic information such as emphasis, intention, atti-
tude, and emotion. Humans listening to speech with
natural prosody are able to understand the content
with low cognitive load and high accuracy. How-
ever, most modern ASR systems only use an acous-

tic model and a language model. Acoustic informa-
tion in ASR is represented by spectral features that
are usually extracted over a window length of a few
tens of milliseconds. They miss useful information
contained in the prosody of the speech that may help
recognition.

Recently a lot of research has been done in au-
tomatic annotation of prosodic events (Wightman
and Ostendorf, 1994; Sridhar et al., 2008; Anan-
thakrishnan and Narayanan, 2008; Jeon and Liu,
2009). They used acoustic and lexical-syntactic
cues to annotate prosodic events with a variety of
machine learning approaches and achieved good
performance. There are also many studies us-
ing prosodic information for various spoken lan-
guage understanding tasks. However, research using
prosodic knowledge for speech recognition is still
quite limited. In this study, we investigate leverag-
ing prosodic information for recognition in an n-best
rescoring framework.

Previous studies showed that prosodic events,
such as pitch-accent, are closely related with acous-
tic prosodic cues and lexical structure of utterance.
The pitch-accent pattern given acoustic signal is
strongly correlated with lexical items, such as syl-
lable identity and canonical stress pattern. There-
fore as a first study, we focus on pitch-accent in this
paper. We develop two separate pitch-accent de-
tection models, using acoustic (observation model)
and lexical information (expectation model) respec-
tively, and propose a scoring method for the cor-
relation of pitch-accent patterns between the two
models for recognition hypotheses. The n-best list
is rescored using the pitch-accent matching scores
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combined with the other scores from the ASR sys-
tem (acoustic and language model scores). We show
that our method yields a word error rate (WER) re-
duction of about 3.64% and 2.07% relatively on two
baseline ASR systems, one being a state-of-the-art
recognizer for the broadcast news domain. The fact
that it holds across different baseline systems sug-
gests the possibility that prosody can be used to help
improve speech recognition performance.

The remainder of this paper is organized as fol-
lows. In the next section, we review previous work
briefly. Section 3 explains the models and features
for pitch-accent detection. We provide details of our
n-best rescoring approach in Section 4. Section 5
describes our corpus and baseline ASR setup. Sec-
tion 6 presents our experiments and results. The last
section gives a brief summary along with future di-
rections.

2 Previous Work

Prosody is of interest to speech researchers be-
cause it plays an important role in comprehension
of spoken language by human listeners. The use
of prosody in speech understanding applications has
been quite extensive. A variety of applications
have been explored, such as sentence and topic seg-
mentation (Shriberg et al., 2000; Rosenberg and
Hirschberg, 2006), word error detection (Litman et
al., 2000), dialog act detection (Sridhar et al., 2009),
speaker recognition (Shriberg et al., 2005), and emo-
tion recognition (Benus et al., 2007), just to name a
few.

Incorporating prosodic knowledge is expected
to improve the performance of speech recogni-
tion. However, how to effectively integrate prosody
within the traditional ASR framework is a difficult
problem, since prosodic features are not well de-
fined and they come from a longer region, which is
different from spectral features used in current ASR
systems. Various research has been conducted try-
ing to incorporate prosodic information in ASR. One
way is to directly integrate prosodic features into
the ASR framework (Vergyri et al., 2003; Ostendorf
et al., 2003; Chen and Hasegawa-Johnson, 2006).
Such efforts include prosody dependent acoustic and
pronunciation model (allophones were distinguished
according to different prosodic phenomenon), lan-

guage model (words were augmented by prosody
events), and duration modeling (different prosodic
events were modeled separately and combined with
conventional HMM). This kind of integration has
advantages in that spectral and prosodic features are
more tightly coupled and jointly modeled. Alterna-
tively, prosody was modeled independently from the
acoustic and language models of ASR and used to
rescore recognition hypotheses in the second pass.
This approach makes it possible to independently
model and optimize the prosodic knowledge and to
combine with ASR hypotheses without any modi-
fication of the conventional ASR modules. In or-
der to improve the rescoring performance, various
prosodic knowledge was studied. (Ananthakrishnan
and Narayanan, 2007) used acoustic pitch-accent
pattern and its sequential information given lexi-
cal cues to rescore n-best hypotheses. (Kalinli and
Narayanan, 2009) used acoustic prosodic cues such
as pitch and duration along with other knowledge
to choose a proper word among several candidates
in confusion networks. Prosodic boundaries based
on acoustic cues were used in (Szaszak and Vicsi,
2007).

We take a similar approach in this study as the
second approach above in that we develop prosodic
models separately and use them in a rescoring
framework. Our proposed method differs from pre-
vious work in the way that the prosody model is used
to help ASR. In our approach, we explicitly model
the symbolic prosodic events based on acoustic and
lexical information. We then capture the correla-
tion of pitch-accent patterns between the two differ-
ent cues, and use that to improve recognition perfor-
mance in an n-best rescoring paradigm.

3 Prosodic Model

Among all the prosodic events, we use only pitch-
accent pattern in this study, because previous stud-
ies have shown that acoustic pitch-accent is strongly
correlated with lexical items, such as canonical
stress pattern and syllable identity that can be eas-
ily acquired from the output of conventional ASR
and pronunciation dictionary. We treat pitch-accent
detection as a binary classification task, that is, a
classifier is used to determine whether the base unit
is prominent or not. Since pitch-accent is usually
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carried by syllables, we use syllables as our units,
and the syllable definition of each word is based
on CMU pronunciation dictionary which has lexi-
cal stress and syllable boundary marks (Bartlett et
al., 2009). We separately develop acoustic-prosodic
and lexical-prosodic models and use the correlation
between the two models for each syllable to rescore
the n-best hypotheses of baseline ASR systems.

3.1 Acoustic-prosodic Features
Similar to most previous work, the prosodic features
we use include pitch, energy, and duration. We also
add delta features of pitch and energy. Duration in-
formation for syllables is derived from the speech
waveform and phone-level forced alignment of the
transcriptions. In order to reduce the effect by both
inter-speaker and intra-speaker variation, both pitch
and energy values are normalized (z-value) with ut-
terance specific means and variances. For pitch, en-
ergy, and their delta values, we apply several cate-
gories of 12 functions to generate derived features.

• Statistics (7): minimum, maximum, range,
mean, standard deviation, skewness and kurto-
sis value. These are used widely in prosodic
event detection and emotion detection.

• Contour (5): This is approximated by taking
5 leading terms in the Legendre polynomial
expansion. The approximation of the contour
using the Legendre polynomial expansion has
been successfully applied in quantitative pho-
netics (Grabe et al., 2003) and in engineering
applications (Dehak et al., 2007). Each term
models a particular aspect of the contour, such
as the slope, and information about the curva-
ture.

We use 6 duration features, that is, raw, normal-
ized, and relative durations (ms) of the syllable and
vowel. Normalization (z-value) is performed based
on statistics for each syllable and vowel. The rela-
tive value is the difference between the normalized
current duration and the following one.

In the above description, we assumed that the
event of a syllable is only dependent on its observa-
tions, and did not consider contextual effect. To al-
leviate this restriction, we expand the features by in-
corporating information about the neighboring sylla-

bles. Based on the study in (Jeon and Liu, 2010) that
evaluated using left and right contexts, we choose to
use one previous and one following context in the
features. The total number of features used in this
study is 162.

3.2 Lexical-prosodic Features
There is a very strong correlation between pitch-
accent in an utterance and its lexical information.
Previous studies have shown that the lexical fea-
tures perform well for pitch-accent prediction. The
detailed features for training the lexical-prosodic
model are as follows.

• Syllable identity: We kept syllables that appear
more than 5 times in the training corpus. The
other syllables that occur less are collapsed into
one syllable representation.

• Vowel phone identity: We used vowel phone
identity as a feature.

• Lexical stress: This is a binary feature to rep-
resent if the syllable corresponds to a lexical
stress based on the pronunciation dictionary.

• Boundary information: This is a binary feature
to indicate if there is a word boundary before
the syllable.

For lexical features, based on the study in (Jeon
and Liu, 2010), we added two previous and two fol-
lowing contexts in the final features.

3.3 Prosodic Model Training
We choose to use a support vector machine (SVM)
classifier1 for the prosodic model based on previous
work on prosody labeling study in (Jeon and Liu,
2010). We use RBF kernel for the acoustic model,
and 3-order polynomial kernel for the lexical model.

In our experiments, we investigate two kinds
of training methods for prosodic modeling. The
first one is a supervised method where models are
trained using all the labeled data. The second is
a semi-supervised method using co-training algo-
rithm (Blum and Mitchell, 1998), described in Algo-
rithm 1. Given a set L of labeled data and a set U of
unlabeled data with two views, it then iterates in the

1LIBSVM – A Library for Support Vector Machines, loca-
tion: http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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Algorithm 1 Co-training algorithm.
Given:

- L: labeled examples; U: unlabeled examples
- there are two views V1 and V2 on an example x

Initialize:
- L1=L, samples used to train classifiers h1

- L2=L, samples used to train classifiers h2

Loop for k iterations
- create a small pool U´ choosing from U
- use V1(L1) to train classifier h1

and V2(L2) to train classifier h2

- let h1 label/select examples Dh1 from U´
- let h2 label/select examples Dh2 from U´
- add self-labeled examples Dh1 to L2

and Dh2 to L1

- remove Dh1
and Dh2

from U

following procedure. The algorithm first creates a
smaller pool U′ containing unlabeled data from U. It
uses Li (i = 1, 2) to train two distinct classifiers: the
acoustic classifier h1, and the lexical classifier h2.
We use function Vi (i = 1, 2) to represent that only
a single view is used for training h1 or h2. These two
classifiers are used to make predictions for the unla-
beled set U′, and only when they agree on the predic-
tion for a sample, their predicted class is used as the
label for this sample. Then among these self-labeled
samples, the most confident ones by one classifier
are added to the data set Li for training the other
classifier. This iteration continues until reaching the
defined number of iterations. In our experiment, the
size of the pool U´ is 5 times of the size of training
data Li, and the size of the added self-labeled ex-
ample set, Dhi

, is 5% of Li. For the newly selected
Dhi

, the distribution of the positive and negative ex-
amples is the same as that of the training data Li.

This co-training method is expected to cope with
two problems in prosodic model training. The first
problem is the different decision patterns between
the two classifiers: the acoustic model has relatively
higher precision, while the lexical model has rela-
tively higher recall. The goal of the co-training al-
gorithm is to learn from the difference of each clas-
sifier, thus it can improve the performance as well
as reduce the mismatch of two classifiers. The sec-

ond problem is the mismatch of data used for model
training and testing, which often results in system
performance degradation. Using co-training, we can
use the unlabeled data from the domain that matches
the test data, adapting the model towards test do-
main.

4 N-Best Rescoring Scheme

In order to leverage prosodic information for bet-
ter speech recognition performance, we augment the
standard ASR equation to include prosodic informa-
tion as following:

Ŵ = arg max
W

p(W |As, Ap)

= arg max
W

p(As, Ap|W )p(W ) (1)

where As and Ap represent acoustic-spectral fea-
tures and acoustic-prosodic features. We can further
assume that spectral and prosodic features are con-
ditionally independent given a word sequence W ,
therefore, Equation 1 can be rewritten as following:

Ŵ ≈ arg max
W

p(As|W )p(W )p(Ap|W ) (2)

The first two terms stand for the acoustic and lan-
guage models in the original ASR system, and the
last term means the prosody model we introduce. In-
stead of using the prosodic model in the first pass de-
coding, we use it to rescore n-best candidates from
a speech recognizer. This allows us to train the
prosody models independently and better optimize
the models.

For p(Ap|W ), the prosody score for a word se-
quence W , in this work we propose a method to es-
timate it, also represented as scoreW−prosody(W ).
The idea of scoring the prosody patterns is that there
is some expectation of pitch-accent patterns given
the lexical sequence (W ), and the acoustic pitch-
accent should match with this expectation. For in-
stance, in the case of a prominent syllable, both
acoustic and lexical evidence show pitch-accent, and
vice versa. In order to maximize the agreement be-
tween the two sources, we measure how good the
acoustic pitch-accent in speech signal matches the
given lexical cues. For each syllable Si in the n-best
list, we use acoustic-prosodic cues (ai) to estimate
the posterior probability that the syllable is promi-
nent (P), p(P |ai). Similarly, we use lexical cues (li)
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to determine the syllable’s pitch-accent probability
p(P |li). Then the prosody score for a syllable Si is
estimated by the match of the pitch-accent patterns
between acoustic and lexical information using the
difference of the posteriors from the two models:

scoreS−prosody(Si) ≈ 1− | p(P |ai) − p(P |li) | (3)

Furthermore, we take into account the effect due
to varying durations for different syllables. We no-
tice that syllables without pitch-accent have much
shorter duration than the prominent ones, and the
prosody scores for the short syllables tend to be
high. This means that if a syllable is split into two
consecutive non-prominent syllables, the agreement
score may be higher than a long prominent syllable.
Therefore, we introduce a weighting factor based on
syllable duration (dur(i)). For a candidate word se-
quence (W) consisting of n syllables, its prosodic
score is the sum of the prosodic scores for all the
syllables in it weighted by their duration (measured
using milliseconds), that is:

scoreW−prosody(W ) ≈
n∑

i=1

log(scoreS−prosody(Si)) · dur(i) (4)

We then combine this prosody score with the
original acoustic and language model likelihood
(P (As|W ) and P (W ) in Equation 2). In practice,
we need to weight them differently, therefore, the
combined score for a hypothesis W is:

Score(W ) = λ · scoreW−prosody(W )

+ scoreASR(W ) (5)

where scoreASR(W ) is generated by ASR systems
(composed of acoustic and language model scores)
and λ is optimized using held out data.

5 Data and Baseline Systems

Our experiments are carried out using two different
data sets and two different recognition systems as
well in order to test the robustness of our proposed
method.

The first data set is the Boston University Radio
News Corpus (BU) (Ostendorf et al., 1995), which
consists of broadcast news style read speech. The

BU corpus has about 3 hours of read speech from
7 speakers (3 female, 4 male). Part of the data has
been labeled with ToBI-style prosodic annotations.
In fact, the reason that we use this corpus, instead of
other corpora typically used for ASR experiments,
is because of its prosodic labels. We divided the
entire data corpus into a training set and a test set.
There was no speaker overlap between training and
test sets. The training set has 2 female speakers (f2
and f3) and 3 male ones (m2, m3, m4). The test set is
from the other two speakers (f1 and m1). We use 200
utterances for the recognition experiments. Each ut-
terance in BU corpus consists of more than one sen-
tences, so we segmented each utterance based on
pause, resulting in a total number of 713 segments
for testing. We divided the test set roughly equally
into two sets, and used one for parameter tuning and
the other for rescoring test. The recognizer used for
this data set was based on Sphinx-32. The context-
dependent triphone acoustic models with 32 Gaus-
sian mixtures were trained using the training par-
tition of the BU corpus described above, together
with the broadcast new data. A standard back-off tri-
gram language model with Kneser-Ney smoothing
was trained using the combined text from the train-
ing partition of the BU, Wall Street Journal data, and
part of Gigaword corpus. The vocabulary size was
about 10K words and the out-of-vocabulary (OOV)
rate on the test set was 2.1%.

The second data set is from broadcast news (BN)
speech used in the GALE program. The recognition
test set contains 1,001 utterances. The n-best hy-
potheses for this data set are generated by a state-of-
the-art SRI speech recognizer, developed for broad-
cast news speech (Stolcke et al., 2006; Zheng et
al., 2007). This system yields much better perfor-
mance than the first one. We also divided the test
set roughly equally into two sets for parameter tun-
ing and testing. From the data used for training the
speech recognizer, we randomly selected 5.7 hours
of speech (4,234 utterances) for the co-training al-
gorithm for the prosodic models.

For prosodic models, we used a simple binary
representation of pitch-accent in the form of pres-
ence versus absence. The reference labels are de-

2CMU Sphinx - Speech Recognition Toolkit, location:
http://www.speech.cs.cmu.edu/sphinx/tutorial.html
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rived from the ToBI annotation in the BU corpus,
and the ratio of pitch-accented syllables is about
34%. Acoustic-prosodic and lexical-prosodic mod-
els were separately developed using the features de-
scribed in Section 3. Feature extraction was per-
formed at the syllable level from force-aligned data.
For the supervised approach, we used those utter-
ances in the training data partition with ToBI labels
in the BU corpus (245 utterances, 14,767 syllables).
For co-training, the labeled data from BU corpus is
used as initial training, and the other unlabeled data
from BU and BN are used as unlabeled data.

6 Experimental Results

6.1 Pitch-accent Detection

First we evaluate the performance of our acoustic-
prosodic and lexical-prosodic models for pitch-
accent detection. For rescoring, not only the ac-
curacies of the two individual prosodic models are
important, but also the pitch-accent agreement score
between the two models (as shown in Equation 3)
is critical, therefore, we present results using these
two metrics. Table 1 shows the accuracy of each
model for pitch-accent detection, and also the av-
erage prosody score of the two models (i.e., Equa-
tion 3) for positive and negative classes (using ref-
erence labels). These results are based on the BU
labeled data in the test set. To compare our pitch ac-
cent detection performance with previous work, we
include the result of (Jeon and Liu, 2009) as a ref-
erence. Compared to previous work, the acoustic
model achieved similar performance, while the per-
formance of lexical model is a bit lower. The lower
performance of lexical model is mainly because we
do not use part-of-speech (POS) information in the
features, since we want to only use the word output
from the ASR system (without additional POS tag-
ging).

As shown in Table 1, when using the co-training
algorithm, as described in Section 3.3, the over-
all accuracies improve slightly and therefore the
prosody score is also increased. We expect this im-
proved model will be more beneficial for rescoring.

6.2 N-Best Rescoring

For the rescoring experiment, we use 100-best hy-
potheses from the two different ASR systems, as de-

Accuracy(%) Prosody score
Acoustic Lexical Pos Neg

Supervised 83.97 84.48 0.747 0.852
Co-training 84.54 84.99 0.771 0.867

Reference 83.53 87.92 - -

Table 1: Pitch accent detection results: performance of
individual acoustic and lexical models, and the agreement
between the two models (i.e., prosody score for a syllable,
Equation 3) for positive and negative classes. Also shown
is the reference result for pitch accent detection from Jeon
and Liu (2009).

scribed in Section 5. We apply the acoustic and lex-
ical prosodic models to each hypothesis to obtain its
prosody score, and combine it with ASR scores to
find the top hypothesis. The weights were optimized
using one test set and applied to the other. We report
the average result of the two testings.

Table 2 shows the rescoring results using the first
recognition system on BU data, which was trained
with a relatively small amount of data. The 1-
best baseline uses the first hypothesis that has the
best ASR score. The oracle result is from the best
hypothesis that gives the lowest WER by compar-
ing all the candidates to the reference transcript.
We used two prosodic models as described in Sec-
tion 3.3. The first one is the base prosodic model us-
ing supervised training (S-model). The second is the
prosodic model with the co-training algorithm (C-
model). For these rescoring experiments, we tuned
λ (in Equation 5) when combining the ASR acous-
tic and language model scores with the additional
prosody score. The value in parenthesis in Table 2
means the relative WER reduction when compared
to the baseline result. We show the WER results for
both the development and the test set.

As shown in Table 2, we observe performance
improvement using our rescoring method. Using
the base S-model yields reasonable improvement,
and C-model further reduces WER. Even though the
prosodic event detection performance of these two
prosodic models is similar, the improved prosody
score between the acoustic and lexical prosodic
models using co-training helps rescoring. After
rescoring using prosodic knowledge, the WER is re-
duced by 0.82% (3.64% relative). Furthermore, we
notice that the difference between development and
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WER (%)
1-best baseline 22.64

S-model
Dev 21.93 (3.11%)
Test 22.10 (2.39%)

C-model
Dev 21.76 (3.88%)
Test 21.81 (3.64%)

Oracle 15.58

Table 2: WER of the baseline system and after rescoring
using prosodic models. Results are based on the first ASR
system.

test data is smaller when using the C-model than S-
model, which means that the prosodic model with
co-training is more stable. In fact, we found that
the optimal value of λ is 94 and 57 for the two
folds using S-model, and is 99 and 110 for the C-
model. These verify again that the prosodic scores
contribute more in the combination with ASR likeli-
hood scores when using the C-model, and are more
robust across different tuning sets. Ananthakrish-
nan and Narayanan (2007) also used acoustic/lexical
prosodic models to estimate a prosody score and re-
ported 0.3% recognition error reduction on BU data
when rescoring 100-best list (their baseline WER is
22.8%). Although there is some difference in experi-
mental setup (data, classifier, features) between ours
and theirs, our S-model showed comparable perfor-
mance gain and the result of C-model is significantly
better than theirs.

Next we test our n-best rescoring approach using a
state-of-the-art SRI speech recognizer on BN data to
verify if our approach can generalize to better ASR
n-best lists. This is often the concern that improve-
ments observed on a poor ASR system do not hold
for better ASR systems. The rescoring results are
shown in Table 3. We can see that the baseline per-
formance of this recognizer is much better than that
of the first ASR system (even though the recogni-
tion task is also harder). Our rescoring approach
still yields performance gain even using this state-
of-the-art system. The WER is reduced by 0.29%
(2.07% relative). This error reduction is lower than
that in the first ASR system. There are several pos-
sible reasons. First, the baseline ASR performance
is higher, making further improvement hard; sec-
ond, and more importantly, the prosody models do
not match well to the test domain. We trained the

prosody model using the BU data. Even though co-
training is used to leverage unlabeled BN data to re-
duce data mismatch, it is still not as good as using
labeled in-domain data for model training.

WER (%)
1-best baseline 13.77

S-model
Dev 13.53 (1.78%)
Test 13.55 (1.63%)

C-model
Dev 13.48 (2.16%)
Test 13.49 (2.07%)

Oracle 9.23

Table 3: WER of the baseline system and after rescoring
using prosodic models. Results are based on the second
ASR system.

6.3 Analysis and Discussion
We also analyze what kinds of errors are reduced
using our rescoring approach. Most of the error re-
duction came from substitution and insertion errors.
Deletion error rate did not change much or some-
times even increased. For a better understanding of
the improvement using the prosody model, we ana-
lyzed the pattern of corrections (the new hypothesis
after rescoring is correct while the original 1-best is
wrong) and errors. Table 4 shows some positive and
negative examples from rescoring results using the
first ASR system. In this table, each word is asso-
ciated with some binary expressions inside a paren-
thesis, which stand for pitch-accent markers. Two
bits are used for each syllable: the first one is for
the acoustic-prosodic model and the second one is
for the lexical-prosodic model. For both bits, 1 rep-
resents pitch-accent, and 0 indicates none. These
hard decisions are obtained by setting a threshold of
0.5 for the posterior probabilities from the acoustic
or lexical models. For example, when the acoustic
classifier predicts a syllable as pitch-accented and
the lexical one as not accented, ‘10’ marker is as-
signed to the syllable. The number of such pairs of
pitch-accent markers is the same as the number of
syllables in a word. The bold words indicate correct
words and italic means errors. As shown in the pos-
itive example of Table 4, we find that our prosodic
model is effective at identifying an erroneous word
when it is split into two words, resulting in dif-
ferent pitch-accent patterns. Language models are

738



Positive example
1-best : most of the massachusetts

(11 ) (10) (00) (11 00 01 00)

rescored : most other massachusetts
(11 ) (11 00) (11 00 01 00)

Negative example
1-best : robbery and on a theft

(11 00 00) (00) (10) (00) (11)

rescored : robbery and lot of theft
(11 00 00) (00) (11) (00) (11)

Table 4: Examples of rescoring results. Binary expressions inside the parenthesis below a word represent pitch-accent
markers for the syllables in the word.

not good at correcting this kind of errors since both
word sequences are plausible. Our model also intro-
duces some errors, as shown in the negative exam-
ple, which is mainly due to the inaccurate prosody
model.

We conducted more prosody rescoring experi-
ments in order to understand the model behavior.
These analyses are based on the n-best list from the
first ASR system for the entire test set. In the first
experiment, among the 100 hypotheses in n-best list,
we gave a prosody score of 0 to the 100th hypothe-
sis, and used automatically obtained prosodic scores
for the other hypotheses. A zero prosody score
means the perfect agreement given acoustic and lex-
ical cues. The original scores from the recognizer
were combined with the prosodic scores for rescor-
ing. This was to verify that the range of the weight-
ing factor λ estimated on the development data (us-
ing the original, not the modified prosody scores for
all candidates) was reasonable to choose proper hy-
pothesis among all the candidates. We noticed that
27% of the times the last hypothesis on the list was
selected as the best hypothesis. This hypothesis has
the highest prosodic scores, but lowest ASR score.
This result showed that if the prosodic models were
accurate enough, the correct candidate could be cho-
sen using our rescoring framework.

In the second experiment, we put the reference
text together with the other candidates. We use the
same ASR scores for all candidates, and generated
prosodic scores using our prosody model. This was
to test that our model could pick up correct candi-
date using only the prosodic score. We found that
for 26% of the utterances, the reference transcript
was chosen as the best one. This was significantly
better than random selection (i.e., 1/100), suggest-

ing the benefit of the prosody model; however, this
percentage is not very high, implying the limitation
of prosodic information for ASR or the current im-
perfect prosodic models.

In the third experiment, we replaced the 100th

candidate with the reference transcript and kept its
ASR score. When using our prosody rescoring ap-
proach, we obtained a relative error rate reduction
of 6.27%. This demonstrates again that our rescor-
ing method works well – if the correct hypothesis is
on the list, even though with a low ASR score, us-
ing prosodic information can help identify the cor-
rect candidate.

Overall the performance improvement we ob-
tained from rescoring by incorporating prosodic in-
formation is very promising. Our evaluation using
two different ASR systems shows that the improve-
ment holds even when we use a state-of-the-art rec-
ognizer and the training data for the prosody model
does not come from the same corpus. We believe
the consistent improvements we observed for differ-
ent conditions show that this is a direction worthy of
further investigation.

7 Conclusion

In this paper, we attempt to integrate prosodic infor-
mation for ASR using an n-best rescoring scheme.
This approach decouples the prosodic model from
the main ASR system, thus the prosodic model can
be built independently. The prosodic scores that we
use for n-best rescoring are based on the matching
of pitch-accent patterns by acoustic and lexical fea-
tures. Our rescoring method achieved a WER reduc-
tion of 3.64% and 2.07% relatively using two differ-
ent ASR systems. The fact that the gain holds across
different baseline systems (including a state-of-the-
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art speech recognizer) suggests the possibility that
prosody can be used to improve speech recognition
performance.

As suggested by our experiments, better prosodic
models can result in more WER reduction. The per-
formance of our prosodic model was improved with
co-training, but there are still problems, such as the
imbalance of the two classifiers’ prediction, as well
as for the two events. In order to address these prob-
lems, we plan to improve the labeling and selec-
tion method in the co-training algorithm, and also
explore other training algorithms to reduce domain
mismatch. Furthermore, we are also interested in
evaluating our approach on the spontaneous speech
domain, which is quite different from the data we
used in this study.

In this study, we used n-best rather than lattice
rescoring. Since the prosodic features we use in-
clude cross-word contextual information, it is not
straightforward to apply it directly to lattices. In
our future work, we will develop models with only
within-word context, and thus allowing us to explore
lattice rescoring, which we expect will yield more
performance gain.
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