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Abstract structure trees (Clark and Curran, 2009), and un-

bounded dependencies (Rimell et al., 2009).

ccGs are directly compatible with binary-
branching bottom-up parsing algorithms, in
particular cky and shift-reduce algorithms.
While the chart-based approach has been the
dominant approach forcg, the shift-reduce
method has been little explored. In this paper,
we develop a shift-reducecc parser using

a discriminative model and beam search, and
compare its strengths and weaknesses with the
chart-based C&C parser. We study different
errors made by the two parsers, and show that
the shift-reduce parser gives competitive accu-
racies compared to C&C. Considering our use
of a small beam, and given the high ambigu-
ity levels in an automatically-extracted gram-

The binary branching nature afcG means that
it is naturally compatible with bottom-up parsing al-
gorithms such as shift-reduce andy (Ades and
Steedman, 1982; Steedman, 2000). However, the
parsing work by Clark and Curran (2007), and also
Hockenmaier (2003) and Fowler and Penn (2010),
has only considered chart-parsing. In this paper we
fill a gap in theccaliterature by developing a shift-
reduce parser forcac.

Shift-reduce parsers have become popular for de-
pendency parsing, building on the initial work of Ya-
mada and Matsumoto (2003) and Nivre and Scholz
(2004). One advantage of shift-reduce parsers is that

mar and the amount of information in thec
lexical categories which form the shift actions,
this is a surprising result.

the scoring model can be defined over actions, al-
lowing highly efficient parsing by using a greedy
algorithm in which the highest scoring action (or a
small number of possible actions) is taken at each
step. In addition, high accuracy can be maintained
by using a model which utilises a rich set of features

Combinatory Categorial Grammat ¢, Steedman for making each local decision (Nivre et al., 2006).
(2000)) is a lexicalised theory of grammar which has Following recent work applying global discrim-
been successfully applied to a range of problems inative models to large-scale structured prediction
NLP, including treebank creation (Hockenmaier angbroblems (Collins and Roark, 2004; Miyao and
Steedman, 2007), syntactic parsing (HockenmaieFsuijii, 2005; Clark and Curran, 2007; Finkel et
2003; Clark and Curran, 2007), logical form con-al., 2008), we build our shift-reduce parser using a
struction (Bos et al., 2004) and surface realizatioglobal linear model, and compare it with the chart-
(White and Rajkumar, 2009). From a parsing perbased C&C parser. Using standard development
spective, the C&C parser (Clark and Curran, 2007and test sets from CCGbank, our shift-reduce parser
has been shown to be competitive with state-of-thagives a labeled F-measure of 85.53%, which is com-
art statistical parsers on a variety of test suites, irpetitive with the 85.45% F-measure of the C&C
cluding those consisting of grammatical relationgarser on recovery of predicate-argument dependen-
(Clark and Curran, 2007), Penn Treebank phraseies from CCGbank. Hence our work shows that
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transition-based parsing can be successfully applieth NP to its left using function application:

to CcCG, improving on earlier attempts such as Has- NP S\NP = §

san et al. (2008). Detailed analysis shows that our

shift-reduce parser yields a higher precision, lower Categories can also combine using function
recall and higher F-score on most of the commoROMposition, allowing the combination of “may”
cca dependency types compared to C&C. ((S\NP)/(S\NP)) and “like” ((S\NP)/NP) in

One advantage of the shift-reduce parser is thiPerdination examples such as “John may like but
it easily handles sentences for which it is difficult™ay detest Mary™:
to find a spanning analysis, which can happen withS\NP)/(S\NP) (S\NP)/NP = (S\NP)/NP
ccaG because the lexical Categories at the leaves of a|n addition to binary ru|es7 such as function app“_
derivation place strong contraints on the set of poss¢ation and composition, there are also unary rules
ble derivations, and the supertagger which provideghich operate on a single category in order to
the lexical categories sometimes makes mistakeghange its type. For example, forward type-raising
Unlike the C&C parser, the shift-reduce parser nat'an Change a Subjewp into a Comp|ex Category
urally produces fragmentary analyses when appr@goking to the right for a verb phrase:

priate (Nivre et al., 2006), and can produce sensible NP = $/(S\NP)
local structures even when a full spanning analysis
cannot be found. An exampleccG derivation is given in Section 3.

Finally, considering this work in the wider pars- The resource used for building wide-coverage
ing context, it provides an interesting comparisor¥ CG parsers of English is CCGbank (Hockenmaier
between heuristic beam search using a rich set 8nd Steedman, 2007), a version of the Penn Tree-
features, and optimal dynamic programming seardp@nk in which each phrase-structure tree has been
where the feature range is restricted. We are able t@nsformed into a normal-fornccG derivation.
perform this comparison because the use ofthe  There are two ways to extract a grammar from this
supertagger means that the C&C parser is able fgsource. One approach is to extract a lexicon,
build the complete chart, from which it can find thel-. @ mapping from words to sets of lexical cat-
optimal derivation, with no pruning whatsoever aggdories, and then manually define the combinatory
the parsing stage. In contrast, the shift-reduce parséfe schemas, such as functional application and
uses a simple beam search with a relatively smatomposition, which combine the categories together.
beam. Perhaps Surprising|y, given the amb|gu|ty |evThe derivations in the treebank are then used to pro-
els in an automatically-extracted grammar, and th@-de training data for the statistical disambiguation
amount of information in thecg lexical categories Model. This is the method used in the C&C parser.
which form the shift actions, the shift-reduce parser The second approach is to read the complete
using heuristic beam search is able to outperform tH@gammar from the derivations, by extracting combi-

chart-based parser. natory ruleinstancedrom the local trees consisting
of a parent category and one or two child categories,
2 CCG Parsing and applying only those instances during parsing.

(These rule instances also include rules to deal with
cca, and the application ofcG to wide-coverage Ppunctuation and unary type-changing rules, in addi-
parsing, is described in detail elsewhere (Steedmalion to instances of the combinatory rule schemas.)
2000; Hockenmaier, 2003; Clark and Curran, 2007 his is the method used by Hockenmaier (2003) and
Here we provide only a short description. is the method we adopt in this paper.

During cCG parsing, adjacent categories are com- Fowler and Penn (2010) demonstrate that the sec-
bined usingccG's combinatory rules. For example, ©nd extraction method results in a context-free ap-
a verb phrase in Englist§{ NP) can combine with Proximation to the grammar resulting from the first

2Although the C&C default mode applies a restriction for effi-

1See e.g. Riezler et al. (2002) and Zhang et al. (2007) fott-char ciency reasons in which only rule instances seen in CCGbank
based parsers which can produce fragmentary analyses. can be applied, making the grammar of the second type.
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method, which has the potential to produce a mildly-
context sensitive grammar (given the existence of
certain combinatory rules) (Weir, 1988). However,

it is important to note that the advantagesafG, in (a) the parser configuration
particular the tight relationship between syntax and
semantic interpretation, are still maintained with the

. S,w) Sw) Q,Q,
The stack The queue

. S ) S m) X
second approach, as Fowler and Penn (2010) argue. MSmXQ - Q,

The stack The queue
3 The Shift-reduce CCG Parser (b) after a SHIFT action
Given an input sentence, our parser uses a stack of
partial derivations, a queue of incoming words, and e Xow) Q,Q,
a series of actions—derived from the rule instances sk 5 O oy, The queuve
in CCGbank—to build a derivation tree. Following PANYAN

Clark and Curran (2007), we assume that each input
word has been assignedrastag (from the Penn
Treebank tagset) and a setax G lexical categories.
We use the same maximum entrapgstagger and

(c) after a COMBINE action

S,w) X, Q,Q,

supertagger as the C&C parser. The derivation tree T |
. . The stack ‘ The queue
can be transformed intoc G dependencies or gram- S, m)
matical relations by a post-processing step, which ZAN
essentially runs the C&C parser deterministically (d) after a UNARY action

over the derivation, interpreting the derivation and
generating the required output.

The configuration of the parser, at each step of
the parsing process, is shown in part (a) of Figure 1,
where the stack holds the partial derivation trees thgie new node iX. A COVBI NE action corresponds
have been built, and the queue contains the incoming a combinatory rule in thecc grammar (or one of
words that have not been processed. In the figurghe additional punctuation or type-changing rules),
S( H) represents a categoBpon the stack with head which is applied to the categories of the top two
word H, while Q; represents a word in the incomingnodes on the stack.
queue. The UNARY-X action pops the top of the stack,

The set of action types used by the parser is asnsforms it into a new node with categofy and
follows: {SHI FT, COVBI NE, UNARY, FI NI SH}.  pushes the new node onto the stacklUWARY ac-
Each action type represents a set of possible actiotisn corresponds to a unary type-changing or type-
available to the parser at each step in the process. raising rule in theccc grammar, which is applied to

The SHI FT-X action pushes the next incomingthe category on top of the stack.
word onto the stack, and assigns the lexical category The FI NI SH action terminates the parsing pro-
X'to the word (Figure 1(b)). The labXlcan be any cess; it can be applied when all input words have
lexical category from the set assigned to the worleen shifted onto the stack. Note that BleNl SH
being shifted by the supertagger. Hence the shift agction can be applied when the stack contains more
tion performs lexical category disambiguation. Thishan one node, in which case the parser produces
is in contrast to a shift-reduce dependency parser iset of partial derivation trees, each corresponding
which a shift action typically just pushes a word ontdo a node on the stack. This sometimes happens
the stack. when a full derivation tree cannot be built due to su-

The COVBI NE-X action pops the top two nodespertagging errors, and provides a graceful solution
off the stack, and combines them into a new nodeo the problem of producing high-quality fragmen-
which is pushed back on the stack. The category ¢fry parses when necessary.
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IBM bought Lotus

Action: SHIFT-NP
NP, bought Lotus
Action: SHIFT-(S[dcl]\NP)/NP
NP, ((S[dcIWNP)/N P)bough( Lotus

Action: SHIFT-NP

NP ((S[C\NP)/NP) NP

1BM bought Lotus

g

(Sagae and Lavie, 2006b) parsing is that, darG,
there are many more shift actions — a shift action for
each word-lexical category pair. Given the amount
of syntactic information in the lexical categories, the
choice of correct category, from those supplied by
the supertagger, is often a difficult one, and often
a choice best left to the parsing model. The C&C
parser solves this problem by building the complete
packed chart consistent with the lexical categories
supplied by the supertagger, leaving the selection of
the lexical categories to the Viterbi algorithm. For
the shift-reduce parser the choice is also left to the
parsing model, but in contrast to C&C the correct
lexical category could be lost at any point in the
heuristic search process. Hence it is perhaps sur-
prising that we are able to achieve a high parsing ac-
curacy of 85.5%, given a relatively small beam size.

Action: COMBINE-S[dcI]\NP (= forward application)

4 Decoding

NP (S[dcl\NP)

1BM bought

Greedy local search (Yamada and Matsumoto, 2003;
Sagae and Lavie, 2005; Nivre and Scholz, 2004)
1 has typically been used for decoding in shift-reduce
parsers, while beam-search has recently been ap-
plied as an alternative to reduce error-propagation
(Johansson and Nugues, 2007; Zhang and Clark,
NP, (SIdCI\P),__ 2008; Zhang and Clark, 2009; Huang et al., 2009).

TN Both greedy local search and beam-search have lin-
ear time complexity. We use beam-search in our
CCG parser.

To formulate the decoding algorithm, we define a
candidate itemas a tuple(S, Q, F'), whereS repre-
sents the stack with partial derivations that have been
built, Q represents the queue of incoming words that
_ _ . have not been processed, aRds a boolean value

Figure 2 shows the shift-reduce parsing procesgat represents whether the candidate item has been
for the example sentence “IBM bought Lotus”. Firstinished. A candidate item inishedif and only if
the word “IBM” is shifted onto the stack as an NP;ihe F| NI SH action has been applied to it, and no
then “bought” is shifted as a transitive verb 100k-mgre actions can be applied to a candidate item af-
ing for its object NP on the right and subject NP oRgy jt reaches the finished status. Given an input sen-
the left (S[dc]\NP)/NP); and then “Lotus” is shifted tence, we define thetart itemas the unfinished item
as an NP. Then “bought” is combined with its obyjth an empty stack and the whole input sentence as
ject “Lotus” resulting in a verb phrase looking for itSthe jncoming words. A derivation is built from the

subject on the left§[dcl)\NP). Finally, the resulting  start jtem by repeated applications of actions until
verb phrase is combined with its subject, resulting ifhe item is finished.

a declarative sentencs[cl]).

((SIACI\NPYNP), . NP

Action: COMBINE-S[dcl] (= backward application)

S[del]

((SIACI\NPYNP), o NP

bought

g

Action: FINISH

Figure 2: An example parsing process.

To apply beam-search, an agenda is used to hold
A key difference with previous work on shift- the N-best partial (unfinished) candidate items at

reduce dependency (Nivre et al., 2006) atEc each parsing step. A separatandidate outpuis
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function DECODHinput, agendalist, NV, | feature templates

grammar candidateoutpu): 1| Swp, Sic, Spc, we,
agendaclear() Swp, Sic, Sipc, Swe,
agendainsert(GTSTARTITEM(input)) S:pc, Swe,
candidateoutput= NONE Sspc, Swe,
while not agendaempty(): 2 | Qowp, Qwp, Qwp, Qswp,
. 3 | Slbpc, SLwe, SRpe, SRwe,
list.clear() S,Upc, SUwe
for |tem|r_1 agenda o SiLpc, S Lwe, S;Rpc, SRwe,
for actionin grammargetActionsitem): S,Upe, S Uwe,
itenT = item.apply@ction) 4 | SyweS,we, SeSw, SWS;c, Sesic,
if item.[' == TRUE: SowcQowp, SCQwp, SWcQop, SHCQop,
if candidateoutput== NONE or SiweQwp, S;cQwp, SWEQyp, ScQup,
itemf.score> candidateoutputscore: 5 | SIWCS,CQuP, HCSWCQP, $CScQwWp,
candidateoutput= itent S0€S1CQP, SHPSPQP,
elser SoweQopQip, SCQWPQ:1P, SCQPQWP,
iy SocQpQip, SPQPQLP,
list.appendi¢ent) SweS;cS;c, §eSweS;c, § S cS;we,
agenda_clear()_ SHCSICSC, HPSIPS:P,
agendainsert(ist.best(V)) 6 | S;cHCSLe, S;cSHCSRC,
S¢S HeS R,
Figure 3: The decoding algorithn is the agenda size %ggfggcp’gccs)ﬁ;?\jvw’
1L y
S¢S cS Re, WS, cS Re.

Table 1: Feature templates.
used to record the current best finished item that has
been found, since candidate items can be finished gt
different steps. Initially the agenda contains only the
start item, and theandidate outpuits setto none. At We use a global linear model to score candidate
each step during parsing, each candidate item froitems, trained discriminatively with the averaged
the agenda is extended in all possible ways by applperceptron (Collins, 2002). Features for a (finished
ing one action according to the grammar, and a nunor partial) candidate are extracted from each ac-
ber of new candidate items are generated. If a newtjon that have been applied to build the candidate.
generated candidate is finished, it is compared withollowing Collins and Roark (2004), we apply the
the currentandidate outputlf the candidate output “early update” strategy to perceptron training: at any
is none or the score of the newly generated candstep during decoding, if neither the candidate out-
date is higher than the score of the candidate outputdut nor any item in the agenda is correct, decoding
the candidate output is replaced with the newly geris stopped and the parameters are updated using the
erated item; otherwise the newly generated item isurrent highest scored item in the agenda or the can-
discarded. If the newly generated candidate is umidate output, whichever has the higher score.
finished, it is appended tolst of newly generated  Table 1 shows the feature templates used by the
partial candidates. After all candidate items from th@arser. The symbolsySS;, S, and S in the ta-
agenda have been processed, the agenda is cledoeirepresent the top four nodes on the stack (if ex-
and theN-best items from the list are put on theistent), and @, Q;, Q> and @ represent the front
agenda. Then the listis cleared and the parser moviesir words in the incoming queue (if existent), 6
on to the next step. This process repeats until trend SH represent the subnodes of &nd § that
agenda is empty (which means that no new itentsave the lexical head ofy&nd S, respectively. g
have been generated in the previous step), and threpresents the left subnode af, Svhen the lexical
candidate output is the final derivation. Pseudocod®ead is from the right subnode., and SR rep-
for the algorithm is shown in Figure 3. resent the right subnode of &nd S, respectively,
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when the lexical head is from the left subnode. ¢f Scally assignedostags, with 10-fold cross valida-

is built by aUNARY action, U represents the only tion used to assigrostags and lexical categories

subnode of & The symbols w, p and c represent thdo the training data. At the supertagging stage, mul-

word, thepog and theccG category, respectively. tiple lexical categories are assigned to each word in
These rich feature templates produce a large nurthe input. For each word, the supertagger assigns alll

ber of features: 36 million after the first training it- lexical categories whose forward-backward proba-

eration, compared to around 0.5 million in the C&Chility is above - maz, wheremax is the highest

parser. lexical category probability for the word, arttlis a
threshold parameter. To give the parser a reasonable
6 Experiments freedom in lexical category disambiguation, we used

a smallg value of 0.0001, which results in 3.6 lexi-

Our experiments were performed using C(_:GBanEal categories being assigned to each word on aver-
(Hockenmaier and Steedman, 2007), which wag,e iy the training data. For training, but not testing,
spiit into three subsets for training (Sections 02-21 e also added the correct lexical category to the list

development testing (Section 00) and the final teg |ayica| categories for a word in cases when it was
(Section 23). Extracted from the training data, th?]ot provided by the supertagger

ccG grammar used by our parser consists of 3070 . . .
: . . Increasing the size of the beam in the parser beam
binary rule instances and 191 unary rule instances.

search leads to higher accuracies but slower runnin
We compute F-scores over labeledG depen- g g

. : time. In our development experiments, the accu-
dencies and also lexical category accuranyc de- . .
racy improvement became small when the beam size

pendencies are defined in terms of lexical Categonerséached 16, and so we set the size of the bealfs to

by numbering each argument slot in a complex caF . .

. : o or the remainder of the experiments.
egory. For example, the first NP in a transitive verb
category is accG dependency relation, correspond-

ing to the subject of the verb. Clark and Currar{il Development test accuracies

(2007) gives a more precise definition. We use thgaple 2 shows the labeled precision (Ip), recall (Ir),
gener at e script from the C&C tool$to transform  F.score (If), sentence-level accuracy (Isent) and lex-
derivations intocCG dependencies. ical category accuracy (cats) of our parser and the

There is a mismatch between the grammar th@g&C parser on the development data. We ran the
gener at e uses, which is the same grammar as the&C parser using the normal-form model (we re-
C&C parser, and the grammar we extract from CCGproduced the numbers reported in Clark and Cur-
bank, which contains more rule instances. Hencgin (2007)), and copied the results of the hybrid
gener at e is unable to produce dependencies fomodel from Clark and Curran (2007), since the hy-
some of the derivations our shift-reduce parser prayrid model is not part of the public release.

duces. In order to allogener at e to process all  The accuracy of our parser is much better when
derivations from the shift-reduce parser, we repeafsajuated on all sentences, partly because C&C
edly removed rules that thgener at e script can-  fajled on 0.94% of the data due to the failure to pro-
not handle from our grammar, until all derivationsyce a spanning analysis. Our shift-reduce parser
in the _development data _could be dealt with. I4oes not suffer from this problem because it pro-
fact, this procedure potentially reduces th_e accuragyces fragmentary analyses for those cases. When
of the shift-reduce parser, but the effect is compagya|uated on only those sentences that C&C could
atively small because only abodt; of the devel- anaiyze, our parser gave 0.29% higher F-score. Our
opment and test sentences contain rules that are R@ftt-reduce parser also gave higher accuracies on
handled by thgiener at e script. _ lexical category assignment. The sentence accuracy

All experiments were performed using automatinf our shift-reduce parser is also higher than C&C,
SAvailable at http://svn.ask.it.usyd.edu.au/trac/cawid; we which confirms that our shift-reduce parser.produces
used thegener at e andeval uat e scripts, as well as the '€asonable sentence-level analyses, despite the pos-
C&C parser, for evaluation and comparison. sibility for fragmentary analysis.
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| Ip. Ir. If. Isent. cats. evaluated on

shift-reduce 87.15% 82.95% 85.00% 33.82% 92.77% all sentences
C&C (normal-form) | 85.22% 82.52% 83.85% 31.63% 92.40% all sentences

shift-reduce 87.55% 83.63% 85.54% 34.14% 93.11% 99.06% (C&C coverage)

C&C (hybrid) - - 85.25% — - 99.06% (C&C coverage)
C&C (normal-form) | 85.22% 84.29% 84.76% 31.93% 92.83% 99.06% (C&C coverage)

Table 2: Accuracies on the development test data.

Precision comparison by dependency length the precision or recall for dependency lengths 1 —5).
| | | | This experiment was performed using the normal-
form version of the C&C parser, and the evaluation
was on the sentences for which C&C gave an anal-

precision %

i = 3 ysis. The number of dependencies drops when the
° ° " pepencency longh (3 of 5y ® * dependency length increases; there are 141, 180 and
Recallcomparison by dependency lengin 124 dependencies from the gold-standard, C&C out-
920 T T T T T . .
o A — {1 put and our shift-reduce parser output, respectively,

when the dependency length is between 21 and 25,
inclusive. The numbers drop to 47, 56 and 36 when
‘ ‘ ‘ ‘ 1 the dependency length is between 26 and 30. The
° " pencency et (s o5y ® * recall of our parser drops more quickly as the de-
pendency length grows beyond 15. A likely reason
Figure 4: P & R scores relative to dependency length. is that the recovery of longer-range dependencies re-
guires more processing steps, increasing the chance
of the correct structure being thrown off the beam.
In contrast, the precision did not drop more quickly

Our shift-reduce parser and the chart-based c&than C&C, and in fact is consistently higher than
parser offer two different solutions to tlmec pars- C&C across all dependency lengths, which reflects
ing problem. The comparison reported in this seche fact that the long range dependencies our parser
tion is similar to the comparison between the charthanaged to recover are comparatively reliable.
based MSTParser (McDonald et al., 2005) and shift- Table 3 shows the comparison of labeled precision
reduce MaltParser (Nivre et al., 2006) for depenlp), recall (Ir) and F-score (If) for the most common
dency parsing. We follow McDonald and Nivre CCG dependency types. The numbers for C&C are
(2007) and characterize the errors of the two parsef@r the hybrid model, copied from Clark and Curran
by sentence and dependency length and dependerfgp07). While our shift-reduce parser gave higher
type. precision for almost all categories, it gave higher re-
We measured precision, recall and F-score refall on only half of them, but higher F-scores for all
ative to different sentence lengths. Both parser@ut one dependency type.
performed better on shorter sentences, as expected.
Our shift-reduce parser performed consistently bef:3 Final results
ter than C&C on all sentence lengths, and thergable 4 shows the accuracies on the test data. The
was no significant difference in the rate of perfornumbers for the normal-form model are evaluated
mance degradation between the parsers as the seprunning the publicly available parser, while those
tence length increased. for the hybrid dependency model are from Clark
Figure 4 shows the comparison of labeled preciand Curran (2007). Evaluated on all sentences, the
sion and recall relative to the dependency length (i.@ccuracies of our parser are much higher than the
the number of words between the head and depe@&C parser, since the C&C parser failed to produce
dent), in bins of size 5 (e.g. the pointat5 shows any output for 10 sentences. When evaluating both
6389
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category larg|Ip. (0) Ip.(C) |Ir (o) Ir. (C) |If. (o) If. (C) | freq.
N/N 1 95.77% 95.28% | 95.79% 95.62% | 95.78% 95.45% | 7288
NP/N 1 96.70% 96.57% | 96.59% 96.03% | 96.65% 96.30% | 4101
(NP\NP)/NP 2 83.19% 82.17% | 89.24% 88.90% | 86.11% 85.40% | 2379
(NP\NP)/NP 1 8253% 81.58% | 87.99% 85.74% | 85.17% 83.61% | 2174
((S\NP)\(S\NP))/NP | 3 77.60% 71.94% | 71.58% 73.32% | 74.47% 72.63% | 1147
((S\NP)\(S\NP))/NP | 2 76.30% 70.92% | 70.60% 71.93% | 73.34% 71.42% | 1058
((S[dcI)\NP)/NP 2 85.60% 81.57% | 84.30% 86.37% | 84.95% 83.90% | 917
PP/NP 1 73.76% 75.06% | 72.83% 70.09% | 73.29% 72.49% | 876
((S[dcl]\NP)/NP 1 85.32% 81.62% | 82.00% 85.55% | 83.63% 83.54% | 872
((S\NP)\(S\NP)) 2 84.44% 86.85% | 86.60% 86.73% | 85.51% 86.79% | 746
Table 3: Accuracy comparison on the most comrmoaie dependency types. (0) — our parser; (C) — C&C (hybrid)
| Ip. Ir. If. Isent. cats. evaluated
shift-reduce 87.43% 83.61% 85.48% 35.19% 93.12% all sentences
C&C (normal-form)| 85.58% 82.85% 84.20% 32.90% 92.84% all sentences
shift-reduce 87.43% 83.71% 85.53% 35.34% 93.15% 99.58% (C&C coverage)
C&C (hybrid) 86.17% 84.74% 85.45% 32.92% 92.98% 99.58% (C&C coverage)
C&C (normal-form)| 85.48% 84.60% 85.04% 33.08% 92.86% 99.58% (C&C coverage)
F&P (Petrov |-5)* 86.29% 85.73% 86.01% - - (F&P N C&C coverage; 96.65% on dev. test)
C&C hybrid* 86.46% 85.11% 85.78% -— - (F&P N C&C coverage; 96.65% on dev. test)

Table 4: Comparison with C&C; final test. * — not directly coanpble.

parsers on the sentences for which C&C produces d#ased C&C parser, although speed comparisons
analysis, our parser still gave the highest accuracieste difficult because of implementation differences
The shift-reduce parser gave higher precision, an@€&C uses heavily engineered C++ with a focus on
lower recall, than C&C; it also gave higher sentenceefficiency).

level and lexical category accuracy.

The last two rows in the table show the accuracieé Related Work

of Fowler and Penn (2010) (F&P), who applied thegayae and Lavie (2006a) describes a shift-reduce
CFG parser of Petrov and Klein (2007) @G, and  arqer for the Penn Treebank parsing task which
the corresponding accuracies for the C&C parser Qfes pest-first search to allow some ambiguity into
the same test sentences. F&P can be treated as §{k parsing process. Differences with our approach
other chart-based parser; their evaluation is basegl that we use a beam, rather than best-first, search:
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