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Abstract

CCGs are directly compatible with binary-
branching bottom-up parsing algorithms, in
particular CKY and shift-reduce algorithms.
While the chart-based approach has been the
dominant approach forCCG, the shift-reduce
method has been little explored. In this paper,
we develop a shift-reduceCCG parser using
a discriminative model and beam search, and
compare its strengths and weaknesses with the
chart-based C&C parser. We study different
errors made by the two parsers, and show that
the shift-reduce parser gives competitive accu-
racies compared to C&C. Considering our use
of a small beam, and given the high ambigu-
ity levels in an automatically-extracted gram-
mar and the amount of information in theCCG

lexical categories which form the shift actions,
this is a surprising result.

1 Introduction

Combinatory Categorial Grammar (CCG; Steedman
(2000)) is a lexicalised theory of grammar which has
been successfully applied to a range of problems in
NLP, including treebank creation (Hockenmaier and
Steedman, 2007), syntactic parsing (Hockenmaier,
2003; Clark and Curran, 2007), logical form con-
struction (Bos et al., 2004) and surface realization
(White and Rajkumar, 2009). From a parsing per-
spective, the C&C parser (Clark and Curran, 2007)
has been shown to be competitive with state-of-the-
art statistical parsers on a variety of test suites, in-
cluding those consisting of grammatical relations
(Clark and Curran, 2007), Penn Treebank phrase-

structure trees (Clark and Curran, 2009), and un-
bounded dependencies (Rimell et al., 2009).

The binary branching nature ofCCG means that
it is naturally compatible with bottom-up parsing al-
gorithms such as shift-reduce andCKY (Ades and
Steedman, 1982; Steedman, 2000). However, the
parsing work by Clark and Curran (2007), and also
Hockenmaier (2003) and Fowler and Penn (2010),
has only considered chart-parsing. In this paper we
fill a gap in theCCG literature by developing a shift-
reduce parser forCCG.

Shift-reduce parsers have become popular for de-
pendency parsing, building on the initial work of Ya-
mada and Matsumoto (2003) and Nivre and Scholz
(2004). One advantage of shift-reduce parsers is that
the scoring model can be defined over actions, al-
lowing highly efficient parsing by using a greedy
algorithm in which the highest scoring action (or a
small number of possible actions) is taken at each
step. In addition, high accuracy can be maintained
by using a model which utilises a rich set of features
for making each local decision (Nivre et al., 2006).

Following recent work applying global discrim-
inative models to large-scale structured prediction
problems (Collins and Roark, 2004; Miyao and
Tsujii, 2005; Clark and Curran, 2007; Finkel et
al., 2008), we build our shift-reduce parser using a
global linear model, and compare it with the chart-
based C&C parser. Using standard development
and test sets from CCGbank, our shift-reduce parser
gives a labeled F-measure of 85.53%, which is com-
petitive with the 85.45% F-measure of the C&C
parser on recovery of predicate-argument dependen-
cies from CCGbank. Hence our work shows that
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transition-based parsing can be successfully applied
to CCG, improving on earlier attempts such as Has-
san et al. (2008). Detailed analysis shows that our
shift-reduce parser yields a higher precision, lower
recall and higher F-score on most of the common
CCG dependency types compared to C&C.

One advantage of the shift-reduce parser is that
it easily handles sentences for which it is difficult
to find a spanning analysis, which can happen with
CCG because the lexical categories at the leaves of a
derivation place strong contraints on the set of possi-
ble derivations, and the supertagger which provides
the lexical categories sometimes makes mistakes.
Unlike the C&C parser, the shift-reduce parser nat-
urally produces fragmentary analyses when appro-
priate (Nivre et al., 2006), and can produce sensible
local structures even when a full spanning analysis
cannot be found.1

Finally, considering this work in the wider pars-
ing context, it provides an interesting comparison
between heuristic beam search using a rich set of
features, and optimal dynamic programming search
where the feature range is restricted. We are able to
perform this comparison because the use of theCCG

supertagger means that the C&C parser is able to
build the complete chart, from which it can find the
optimal derivation, with no pruning whatsoever at
the parsing stage. In contrast, the shift-reduce parser
uses a simple beam search with a relatively small
beam. Perhaps surprisingly, given the ambiguity lev-
els in an automatically-extracted grammar, and the
amount of information in theCCG lexical categories
which form the shift actions, the shift-reduce parser
using heuristic beam search is able to outperform the
chart-based parser.

2 CCG Parsing

CCG, and the application ofCCG to wide-coverage
parsing, is described in detail elsewhere (Steedman,
2000; Hockenmaier, 2003; Clark and Curran, 2007).
Here we provide only a short description.

During CCGparsing, adjacent categories are com-
bined usingCCG’s combinatory rules. For example,
a verb phrase in English (S\NP ) can combine with

1See e.g. Riezler et al. (2002) and Zhang et al. (2007) for chart-
based parsers which can produce fragmentary analyses.

anNP to its left using function application:

NP S\NP ⇒ S

Categories can also combine using function
composition, allowing the combination of “may”
((S\NP)/(S\NP)) and “like” ((S\NP)/NP) in
coordination examples such as “John may like but
may detest Mary”:

(S\NP)/(S\NP) (S\NP)/NP ⇒ (S\NP)/NP

In addition to binary rules, such as function appli-
cation and composition, there are also unary rules
which operate on a single category in order to
change its type. For example, forward type-raising
can change a subjectNP into a complex category
looking to the right for a verb phrase:

NP ⇒ S/(S\NP)

An exampleCCG derivation is given in Section 3.
The resource used for building wide-coverage

CCG parsers of English is CCGbank (Hockenmaier
and Steedman, 2007), a version of the Penn Tree-
bank in which each phrase-structure tree has been
transformed into a normal-formCCG derivation.
There are two ways to extract a grammar from this
resource. One approach is to extract a lexicon,
i.e. a mapping from words to sets of lexical cat-
egories, and then manually define the combinatory
rule schemas, such as functional application and
composition, which combine the categories together.
The derivations in the treebank are then used to pro-
vide training data for the statistical disambiguation
model. This is the method used in the C&C parser.2

The second approach is to read the complete
grammar from the derivations, by extracting combi-
natory ruleinstancesfrom the local trees consisting
of a parent category and one or two child categories,
and applying only those instances during parsing.
(These rule instances also include rules to deal with
punctuation and unary type-changing rules, in addi-
tion to instances of the combinatory rule schemas.)
This is the method used by Hockenmaier (2003) and
is the method we adopt in this paper.

Fowler and Penn (2010) demonstrate that the sec-
ond extraction method results in a context-free ap-
proximation to the grammar resulting from the first
2Although the C&C default mode applies a restriction for effi-
ciency reasons in which only rule instances seen in CCGbank
can be applied, making the grammar of the second type.
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method, which has the potential to produce a mildly-
context sensitive grammar (given the existence of
certain combinatory rules) (Weir, 1988). However,
it is important to note that the advantages ofCCG, in
particular the tight relationship between syntax and
semantic interpretation, are still maintained with the
second approach, as Fowler and Penn (2010) argue.

3 The Shift-reduce CCG Parser

Given an input sentence, our parser uses a stack of
partial derivations, a queue of incoming words, and
a series of actions—derived from the rule instances
in CCGbank—to build a derivation tree. Following
Clark and Curran (2007), we assume that each input
word has been assigned aPOS-tag (from the Penn
Treebank tagset) and a set ofCCG lexical categories.
We use the same maximum entropyPOS-tagger and
supertagger as the C&C parser. The derivation tree
can be transformed intoCCG dependencies or gram-
matical relations by a post-processing step, which
essentially runs the C&C parser deterministically
over the derivation, interpreting the derivation and
generating the required output.

The configuration of the parser, at each step of
the parsing process, is shown in part (a) of Figure 1,
where the stack holds the partial derivation trees that
have been built, and the queue contains the incoming
words that have not been processed. In the figure,
S(H) represents a categoryS on the stack with head
wordH, while Qi represents a word in the incoming
queue.

The set of action types used by the parser is as
follows: {SHIFT, COMBINE, UNARY, FINISH}.
Each action type represents a set of possible actions
available to the parser at each step in the process.

The SHIFT-X action pushes the next incoming
word onto the stack, and assigns the lexical category
X to the word (Figure 1(b)). The labelX can be any
lexical category from the set assigned to the word
being shifted by the supertagger. Hence the shift ac-
tion performs lexical category disambiguation. This
is in contrast to a shift-reduce dependency parser in
which a shift action typically just pushes a word onto
the stack.

TheCOMBINE-X action pops the top two nodes
off the stack, and combines them into a new node,
which is pushed back on the stack. The category of

Figure 1: The parser configuration and set of actions.

the new node isX. A COMBINE action corresponds
to a combinatory rule in theCCGgrammar (or one of
the additional punctuation or type-changing rules),
which is applied to the categories of the top two
nodes on the stack.

The UNARY-X action pops the top of the stack,
transforms it into a new node with categoryX, and
pushes the new node onto the stack. AUNARY ac-
tion corresponds to a unary type-changing or type-
raising rule in theCCG grammar, which is applied to
the category on top of the stack.

The FINISH action terminates the parsing pro-
cess; it can be applied when all input words have
been shifted onto the stack. Note that theFINISH
action can be applied when the stack contains more
than one node, in which case the parser produces
a set of partial derivation trees, each corresponding
to a node on the stack. This sometimes happens
when a full derivation tree cannot be built due to su-
pertagging errors, and provides a graceful solution
to the problem of producing high-quality fragmen-
tary parses when necessary.
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Figure 2: An example parsing process.

Figure 2 shows the shift-reduce parsing process
for the example sentence “IBM bought Lotus”. First
the word “IBM” is shifted onto the stack as an NP;
then “bought” is shifted as a transitive verb look-
ing for its object NP on the right and subject NP on
the left ((S[dcl]\NP)/NP); and then “Lotus” is shifted
as an NP. Then “bought” is combined with its ob-
ject “Lotus” resulting in a verb phrase looking for its
subject on the left (S[dcl]\NP). Finally, the resulting
verb phrase is combined with its subject, resulting in
a declarative sentence (S[dcl]).

A key difference with previous work on shift-
reduce dependency (Nivre et al., 2006) andCFG

(Sagae and Lavie, 2006b) parsing is that, forCCG,
there are many more shift actions – a shift action for
each word-lexical category pair. Given the amount
of syntactic information in the lexical categories, the
choice of correct category, from those supplied by
the supertagger, is often a difficult one, and often
a choice best left to the parsing model. The C&C
parser solves this problem by building the complete
packed chart consistent with the lexical categories
supplied by the supertagger, leaving the selection of
the lexical categories to the Viterbi algorithm. For
the shift-reduce parser the choice is also left to the
parsing model, but in contrast to C&C the correct
lexical category could be lost at any point in the
heuristic search process. Hence it is perhaps sur-
prising that we are able to achieve a high parsing ac-
curacy of 85.5%, given a relatively small beam size.

4 Decoding

Greedy local search (Yamada and Matsumoto, 2003;
Sagae and Lavie, 2005; Nivre and Scholz, 2004)
has typically been used for decoding in shift-reduce
parsers, while beam-search has recently been ap-
plied as an alternative to reduce error-propagation
(Johansson and Nugues, 2007; Zhang and Clark,
2008; Zhang and Clark, 2009; Huang et al., 2009).
Both greedy local search and beam-search have lin-
ear time complexity. We use beam-search in our
CCG parser.

To formulate the decoding algorithm, we define a
candidate itemas a tuple〈S,Q,F 〉, whereS repre-
sents the stack with partial derivations that have been
built, Q represents the queue of incoming words that
have not been processed, andF is a boolean value
that represents whether the candidate item has been
finished. A candidate item isfinishedif and only if
the FINISH action has been applied to it, and no
more actions can be applied to a candidate item af-
ter it reaches the finished status. Given an input sen-
tence, we define thestart itemas the unfinished item
with an empty stack and the whole input sentence as
the incoming words. A derivation is built from the
start item by repeated applications of actions until
the item is finished.

To apply beam-search, an agenda is used to hold
the N -best partial (unfinished) candidate items at
each parsing step. A separatecandidate outputis
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function DECODE(input, agenda, list, N ,
grammar, candidateoutput):

agenda.clear()
agenda.insert(GETSTARTITEM(input))
candidateoutput= NONE

while not agenda.empty():
list.clear()
for item in agenda:

for action in grammar.getActions(item):
item′ = item.apply(action)
if item′.F == TRUE:

if candidateoutput== NONE or
item′.score> candidateoutput.score:
candidateoutput= item′

else:
list.append(item′)

agenda.clear()
agenda.insert(list.best(N ))

Figure 3: The decoding algorithm;N is the agenda size

used to record the current best finished item that has
been found, since candidate items can be finished at
different steps. Initially the agenda contains only the
start item, and thecandidate outputis set to none. At
each step during parsing, each candidate item from
the agenda is extended in all possible ways by apply-
ing one action according to the grammar, and a num-
ber of new candidate items are generated. If a newly
generated candidate is finished, it is compared with
the currentcandidate output. If the candidate output
is none or the score of the newly generated candi-
date is higher than the score of the candidate output,
the candidate output is replaced with the newly gen-
erated item; otherwise the newly generated item is
discarded. If the newly generated candidate is un-
finished, it is appended to alist of newly generated
partial candidates. After all candidate items from the
agenda have been processed, the agenda is cleared
and theN -best items from the list are put on the
agenda. Then the list is cleared and the parser moves
on to the next step. This process repeats until the
agenda is empty (which means that no new items
have been generated in the previous step), and the
candidate output is the final derivation. Pseudocode
for the algorithm is shown in Figure 3.

feature templates

1 S0wp, S0c, S0pc, S0wc,
S1wp, S1c, S1pc, S1wc,
S2pc, S2wc,
S3pc, S3wc,

2 Q0wp, Q1wp, Q2wp, Q3wp,
3 S0Lpc, S0Lwc, S0Rpc, S0Rwc,

S0Upc, S0Uwc,
S1Lpc, S1Lwc, S1Rpc, S1Rwc,
S1Upc, S1Uwc,

4 S0wcS1wc, S0cS1w, S0wS1c, S0cS1c,
S0wcQ0wp, S0cQ0wp, S0wcQ0p, S0cQ0p,
S1wcQ0wp, S1cQ0wp, S1wcQ0p, S1cQ0p,

5 S0wcS1cQ0p, S0cS1wcQ0p, S0cS1cQ0wp,
S0cS1cQ0p, S0pS1pQ0p,
S0wcQ0pQ1p, S0cQ0wpQ1p, S0cQ0pQ1wp,
S0cQ0pQ1p, S0pQ0pQ1p,
S0wcS1cS2c, S0cS1wcS2c, S0cS1cS2wc,
S0cS1cS2c, S0pS1pS2p,

6 S0cS0HcS0Lc, S0cS0HcS0Rc,
S1cS1HcS1Rc,
S0cS0RcQ0p, S0cS0RcQ0w,
S0cS0LcS1c, S0cS0LcS1w,
S0cS1cS1Rc, S0wS1cS1Rc.

Table 1: Feature templates.

5 Model and Training

We use a global linear model to score candidate
items, trained discriminatively with the averaged
perceptron (Collins, 2002). Features for a (finished
or partial) candidate are extracted from each ac-
tion that have been applied to build the candidate.
Following Collins and Roark (2004), we apply the
“early update” strategy to perceptron training: at any
step during decoding, if neither the candidate out-
put nor any item in the agenda is correct, decoding
is stopped and the parameters are updated using the
current highest scored item in the agenda or the can-
didate output, whichever has the higher score.

Table 1 shows the feature templates used by the
parser. The symbols S0, S1, S2 and S3 in the ta-
ble represent the top four nodes on the stack (if ex-
istent), and Q0, Q1, Q2 and Q3 represent the front
four words in the incoming queue (if existent). S0H
and S1H represent the subnodes of S0 and S1 that
have the lexical head of S0 and S1, respectively. S0L
represents the left subnode of S0, when the lexical
head is from the right subnode. S0R and S1R rep-
resent the right subnode of S0 and S1, respectively,
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when the lexical head is from the left subnode. If S0

is built by aUNARY action, S0U represents the only
subnode of S0. The symbols w, p and c represent the
word, thePOS, and theCCG category, respectively.

These rich feature templates produce a large num-
ber of features: 36 million after the first training it-
eration, compared to around 0.5 million in the C&C
parser.

6 Experiments

Our experiments were performed using CCGBank
(Hockenmaier and Steedman, 2007), which was
split into three subsets for training (Sections 02–21),
development testing (Section 00) and the final test
(Section 23). Extracted from the training data, the
CCG grammar used by our parser consists of 3070
binary rule instances and 191 unary rule instances.

We compute F-scores over labeledCCG depen-
dencies and also lexical category accuracy.CCG de-
pendencies are defined in terms of lexical categories,
by numbering each argument slot in a complex cat-
egory. For example, the first NP in a transitive verb
category is aCCG dependency relation, correspond-
ing to the subject of the verb. Clark and Curran
(2007) gives a more precise definition. We use the
generate script from the C&C tools3 to transform
derivations intoCCG dependencies.

There is a mismatch between the grammar that
generate uses, which is the same grammar as the
C&C parser, and the grammar we extract from CCG-
bank, which contains more rule instances. Hence
generate is unable to produce dependencies for
some of the derivations our shift-reduce parser pro-
duces. In order to allowgenerate to process all
derivations from the shift-reduce parser, we repeat-
edly removed rules that thegenerate script can-
not handle from our grammar, until all derivations
in the development data could be dealt with. In
fact, this procedure potentially reduces the accuracy
of the shift-reduce parser, but the effect is compar-
atively small because only about4% of the devel-
opment and test sentences contain rules that are not
handled by thegenerate script.

All experiments were performed using automati-

3Available at http://svn.ask.it.usyd.edu.au/trac/candc/wiki; we
used thegenerate andevaluate scripts, as well as the
C&C parser, for evaluation and comparison.

cally assignedPOS-tags, with 10-fold cross valida-
tion used to assignPOS-tags and lexical categories
to the training data. At the supertagging stage, mul-
tiple lexical categories are assigned to each word in
the input. For each word, the supertagger assigns all
lexical categories whose forward-backward proba-
bility is aboveβ · max, wheremax is the highest
lexical category probability for the word, andβ is a
threshold parameter. To give the parser a reasonable
freedom in lexical category disambiguation, we used
a smallβ value of 0.0001, which results in 3.6 lexi-
cal categories being assigned to each word on aver-
age in the training data. For training, but not testing,
we also added the correct lexical category to the list
of lexical categories for a word in cases when it was
not provided by the supertagger.

Increasing the size of the beam in the parser beam
search leads to higher accuracies but slower running
time. In our development experiments, the accu-
racy improvement became small when the beam size
reached 16, and so we set the size of the beam to16
for the remainder of the experiments.

6.1 Development test accuracies

Table 2 shows the labeled precision (lp), recall (lr),
F-score (lf), sentence-level accuracy (lsent) and lex-
ical category accuracy (cats) of our parser and the
C&C parser on the development data. We ran the
C&C parser using the normal-form model (we re-
produced the numbers reported in Clark and Cur-
ran (2007)), and copied the results of the hybrid
model from Clark and Curran (2007), since the hy-
brid model is not part of the public release.

The accuracy of our parser is much better when
evaluated on all sentences, partly because C&C
failed on 0.94% of the data due to the failure to pro-
duce a spanning analysis. Our shift-reduce parser
does not suffer from this problem because it pro-
duces fragmentary analyses for those cases. When
evaluated on only those sentences that C&C could
analyze, our parser gave 0.29% higher F-score. Our
shift-reduce parser also gave higher accuracies on
lexical category assignment. The sentence accuracy
of our shift-reduce parser is also higher than C&C,
which confirms that our shift-reduce parser produces
reasonable sentence-level analyses, despite the pos-
sibility for fragmentary analysis.
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lp. lr. lf. lsent. cats. evaluated on

shift-reduce 87.15% 82.95% 85.00% 33.82% 92.77% all sentences
C&C (normal-form) 85.22% 82.52% 83.85% 31.63% 92.40% all sentences

shift-reduce 87.55% 83.63% 85.54% 34.14% 93.11% 99.06% (C&C coverage)
C&C (hybrid) – – 85.25% – – 99.06% (C&C coverage)
C&C (normal-form) 85.22% 84.29% 84.76% 31.93% 92.83% 99.06% (C&C coverage)

Table 2: Accuracies on the development test data.
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Figure 4: P & R scores relative to dependency length.

6.2 Error comparison with C&C parser

Our shift-reduce parser and the chart-based C&C
parser offer two different solutions to theCCG pars-
ing problem. The comparison reported in this sec-
tion is similar to the comparison between the chart-
based MSTParser (McDonald et al., 2005) and shift-
reduce MaltParser (Nivre et al., 2006) for depen-
dency parsing. We follow McDonald and Nivre
(2007) and characterize the errors of the two parsers
by sentence and dependency length and dependency
type.

We measured precision, recall and F-score rel-
ative to different sentence lengths. Both parsers
performed better on shorter sentences, as expected.
Our shift-reduce parser performed consistently bet-
ter than C&C on all sentence lengths, and there
was no significant difference in the rate of perfor-
mance degradation between the parsers as the sen-
tence length increased.

Figure 4 shows the comparison of labeled preci-
sion and recall relative to the dependency length (i.e.
the number of words between the head and depen-
dent), in bins of size 5 (e.g. the point atx=5 shows

the precision or recall for dependency lengths 1 – 5).
This experiment was performed using the normal-
form version of the C&C parser, and the evaluation
was on the sentences for which C&C gave an anal-
ysis. The number of dependencies drops when the
dependency length increases; there are 141, 180 and
124 dependencies from the gold-standard, C&C out-
put and our shift-reduce parser output, respectively,
when the dependency length is between 21 and 25,
inclusive. The numbers drop to 47, 56 and 36 when
the dependency length is between 26 and 30. The
recall of our parser drops more quickly as the de-
pendency length grows beyond 15. A likely reason
is that the recovery of longer-range dependencies re-
quires more processing steps, increasing the chance
of the correct structure being thrown off the beam.
In contrast, the precision did not drop more quickly
than C&C, and in fact is consistently higher than
C&C across all dependency lengths, which reflects
the fact that the long range dependencies our parser
managed to recover are comparatively reliable.

Table 3 shows the comparison of labeled precision
(lp), recall (lr) and F-score (lf) for the most common
CCG dependency types. The numbers for C&C are
for the hybrid model, copied from Clark and Curran
(2007). While our shift-reduce parser gave higher
precision for almost all categories, it gave higher re-
call on only half of them, but higher F-scores for all
but one dependency type.

6.3 Final results

Table 4 shows the accuracies on the test data. The
numbers for the normal-form model are evaluated
by running the publicly available parser, while those
for the hybrid dependency model are from Clark
and Curran (2007). Evaluated on all sentences, the
accuracies of our parser are much higher than the
C&C parser, since the C&C parser failed to produce
any output for 10 sentences. When evaluating both
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category arg lp. (o) lp. (C) lr. (o) lr. (C) lf. (o) lf. (C) freq.

N/N 1 95.77% 95.28% 95.79% 95.62% 95.78% 95.45% 7288
NP/N 1 96.70% 96.57% 96.59% 96.03% 96.65% 96.30% 4101
(NP\NP)/NP 2 83.19% 82.17% 89.24% 88.90% 86.11% 85.40% 2379
(NP\NP)/NP 1 82.53% 81.58% 87.99% 85.74% 85.17% 83.61% 2174
((S\NP)\(S\NP))/NP 3 77.60% 71.94% 71.58% 73.32% 74.47% 72.63% 1147
((S\NP)\(S\NP))/NP 2 76.30% 70.92% 70.60% 71.93% 73.34% 71.42% 1058
((S[dcl]\NP)/NP 2 85.60% 81.57% 84.30% 86.37% 84.95% 83.90% 917
PP/NP 1 73.76% 75.06% 72.83% 70.09% 73.29% 72.49% 876
((S[dcl]\NP)/NP 1 85.32% 81.62% 82.00% 85.55% 83.63% 83.54% 872
((S\NP)\(S\NP)) 2 84.44% 86.85% 86.60% 86.73% 85.51% 86.79% 746

Table 3: Accuracy comparison on the most commonCCG dependency types. (o) – our parser; (C) – C&C (hybrid)

lp. lr. lf. lsent. cats. evaluated

shift-reduce 87.43% 83.61% 85.48% 35.19% 93.12% all sentences
C&C (normal-form) 85.58% 82.85% 84.20% 32.90% 92.84% all sentences

shift-reduce 87.43% 83.71% 85.53% 35.34% 93.15% 99.58% (C&C coverage)
C&C (hybrid) 86.17% 84.74% 85.45% 32.92% 92.98% 99.58% (C&C coverage)
C&C (normal-form) 85.48% 84.60% 85.04% 33.08% 92.86% 99.58% (C&C coverage)

F&P (Petrov I-5)* 86.29% 85.73% 86.01% – – –(F&P∩ C&C coverage; 96.65% on dev. test)

C&C hybrid* 86.46% 85.11% 85.78% – – –(F&P∩ C&C coverage; 96.65% on dev. test)

Table 4: Comparison with C&C; final test. * – not directly comparable.

parsers on the sentences for which C&C produces an
analysis, our parser still gave the highest accuracies.
The shift-reduce parser gave higher precision, and
lower recall, than C&C; it also gave higher sentence-
level and lexical category accuracy.

The last two rows in the table show the accuracies
of Fowler and Penn (2010) (F&P), who applied the
CFG parser of Petrov and Klein (2007) toCCG, and
the corresponding accuracies for the C&C parser on
the same test sentences. F&P can be treated as an-
other chart-based parser; their evaluation is based
on the sentences for which both their parser and
C&C produced dependencies (or more specifically
those sentences for whichgenerate could pro-
duce dependencies), and is not directly comparable
with ours, especially considering that their test set is
smaller and potentially slightly easier.

The final comparison is parser speed. The shift-
reduce parser is linear-time (in both sentence length
and beam size), and can analyse over 10 sentences
per second on a 2GHz CPU, with a beam of 16,
which compares very well with other constituency
parsers. However, this is no faster than the chart-

based C&C parser, although speed comparisons
are difficult because of implementation differences
(C&C uses heavily engineered C++ with a focus on
efficiency).

7 Related Work

Sagae and Lavie (2006a) describes a shift-reduce
parser for the Penn Treebank parsing task which
uses best-first search to allow some ambiguity into
the parsing process. Differences with our approach
are that we use a beam, rather than best-first, search;
we use a global model rather than local models
chained together; and finally, our results surpass
the best published results on theCCG parsing task,
whereas Sagae and Lavie (2006a) matched the best
PTB results only by using a parser combination.

Matsuzaki et al. (2007) describes similar work
to ours but using an automatically-extractedHPSG,
rather thanCCG, grammar. They also use the gen-
eralised perceptron to train a disambiguation model.
One difference is that Matsuzaki et al. (2007) use an
approximatingCFG, in addition to the supertagger,
to improve the efficiency of the parser.
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Ninomiya et al. (2009) (and Ninomiya et al.
(2010)) describe a greedy shift-reduce parser for
HPSG, in which a single action is chosen at each
parsing step, allowing the possibility of highly ef-
ficient parsing. Since theHPSG grammar has rela-
tively tight constraints, similar toCCG, the possibil-
ity arises that a spanning analysis cannot be found
for some sentences. Our approach to this problem
was to allow the parser to return a fragmentary anal-
ysis; Ninomiya et al. (2009) adopt a different ap-
proach based on default unification.

Finally, our work is similar to the comparison of
the chart-based MSTParser (McDonald et al., 2005)
and shift-reduce MaltParser (Nivre et al., 2006) for
dependency parsing. MSTParser can perform ex-
haustive search, given certain feature restrictions,
because the complexity of the parsing task is lower
than for constituent parsing. C&C can perform ex-
haustive search because the supertagger has already
reduced the search space. We also found that ap-
proximate heuristic search for shift-reduce parsing,
utilising a rich feature space, can match the perfor-
mance of the optimal chart-based parser, as well as
similar error profiles for the twoCCG parsers com-
pared to the two dependency parsers.

8 Conclusion

This is the first work to present competitive results
for CCG using a transition-based parser, filling a gap
in the CCG parsing literature. Considered in terms
of the wider parsing problem, we have shown that
state-of-the-art parsing results can be obtained using
a global discriminative model, one of the few pa-
pers to do so without using a generative baseline as a
feature. The comparison with C&C also allowed us
to compare a shift-reduce parser based on heuristic
beam search utilising a rich feature set with an opti-
mal chart-based parser whose features are restricted
by dynamic programming, with favourable results
for the shift-reduce parser.

The complementary errors made by the chart-
based and shift-reduce parsers opens the possibil-
ity of effective parser combination, following sim-
ilar work for dependency parsing.

The parser code can be downloaded at
http://www.sourceforge.net/projects/zpar,
version 0.5.
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