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Abstract

We develop a general dynamic programming
technique for the tabulation of transition-based
dependency parsers, and apply it to obtain
novel, polynomial-time algorithms for parsing
with the arc-standard and arc-eager models. We
also show how to reverse our technique to ob-
tain new transition-based dependency parsers
from existing tabular methods. Additionally,
we provide a detailed discussion of the con-
ditions under which the feature models com-
monly used in transition-based parsing can be
integrated into our algorithms.

1 Introduction

Dynamic programming algorithms, also known as
tabular or chart-based algorithms, are at the core of
many applications in natural language processing.
When applied to formalisms such as context-free
grammar, they provide polynomial-time parsing al-
gorithms and polynomial-space representations of
the resulting parse forests, even in cases where the
size of the search space is exponential in the length
of the input string. In combination with appropri-
ate semirings, these packed representations can be
exploited to compute many values of interest for ma-
chine learning, such as best parses and feature expec-
tations (Goodman, 1999; Li and Eisner, 2009).

In this paper, we follow the line of investigation
started by Huang and Sagae (2010) and apply dy-
namic programming to (projective) transition-based
dependency parsing (Nivre, 2008). The basic idea,
originally developed in the context of push-down
automata (Lang, 1974; Tomita, 1986; Billot and
Lang, 1989), is that while the number of computa-
tions of a transition-based parser may be exponential
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in the length of the input string, several portions of
these computations, when appropriately represented,
can be shared. This can be effectively implemented
through dynamic programming, resulting in a packed
representation of the set of all computations.

The contributions of this paper can be summarized
as follows. We provide (declarative specifications of)
novel, polynomial-time algorithms for two widely-
used transition-based parsing models: arc-standard
(Nivre, 2004; Huang and Sagae, 2010) and arc-eager
(Nivre, 2003; Zhang and Clark, 2008). Our algorithm
for the arc-eager model is the first tabular algorithm
for this model that runs in polynomial time. Both
algorithms are derived using the same general tech-
nique; in fact, we show that this technique is applica-
ble to all transition-parsing models whose transitions
can be classified into “shift” and “reduce” transitions.
We also show how to reverse the tabulation to de-
rive a new transition system from an existing tabular
algorithm for dependency parsing, originally devel-
oped by Goémez-Rodriguez et al. (2008). Finally, we
discuss in detail the role of feature information in
our algorithms, and in particular the conditions under
which the feature models traditionally used in transi-
tion-based dependency parsing can be integrated into
our framework.

While our general approach is the same as the one
of Huang and Sagae (2010), we depart from their
framework by not representing the computations of
a parser as a graph-structured stack in the sense of
Tomita (1986). We instead simulate computations
as in Lang (1974), which results in simpler algo-
rithm specifications, and also reveals deep similari-
ties between transition-based systems for dependency
parsing and existing tabular methods for lexicalized
context-free grammars.
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2 Transition-Based Dependency Parsing

We start by briefly introducing the framework of
transition-based dependency parsing; for details, we
refer to Nivre (2008).

2.1 Dependency Graphs

Let w = wyp---wy—; be a string over some fixed
alphabet, where n > 1 and wy is the special token
ROOT. A dependency graph for w is a directed graph
G = (Vy, A), where Vy, = {0,...,n — 1} is the set
of nodes, and A C V,, x Vy, is the set of arcs. Each
node in V3, encodes the position of a token in w, and
each arc in A encodes a dependency relation between
two tokens. To denote an arc (i, j) € A, we write
i — j;here, the node i is the head, and the node j is
the dependent. A sample dependency graph is given
in the left part of Figure 2.

2.2 Transition Systems

A transition system is a structure S = (C, T, I, Cy),
where C is a set of configurations, T is a finite set
of transitions, which are partial functions t: C — C,
I is a total initialization function mapping each input
string to a unique initial configuration, and C; € C
is a set of terminal configurations.

The transition systems that we investigate in this
paper differ from each other only with respect to
their sets of transitions, and are identical in all other
aspects. In each of them, a configuration is de-
fined relative to a string w as above, and is a triple
¢ = (0,8, A), where ¢ and B are disjoint lists of
nodes from Vy,, called stack and buffer, respectively,
and A C V, x Vy, is a set of arcs. We denote the
stack, buffer and arc set associated with ¢ by o (c),
B(c), and A(c), respectively. We follow a standard
convention and write the stack with its topmost ele-
ment to the right, and the buffer with its first element
to the left; furthermore, we indicate concatenation
in the stack and in the buffer by a vertical bar. The
initialization function maps each string w to the ini-
tial configuration ([], [0, ..., |w| — 1], @). The set of
terminal configurations contains all configurations of
the form ([0], [], A), where A is some set of arcs.

Given an input string w, a parser based on S pro-
cesses w from left to right, starting in the initial con-
figuration /(w). At each point, it applies one of
the transitions, until at the end it reaches a terminal
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(0.i]B. 4) F (oli, B, 4) (sh)
(@lilj.B.A) = (alj. . AU{j —i})  (la)
(@lilj.B.A) = (oli.B.AU{i —j})  (ra)

Figure 1: Transitions in the arc-standard model.

configuration; the dependency graph defined by the
arc set associated with that configuration is then re-
turned as the analysis for w. Formally, a computation
of S on w is a sequence y = cg,...,Cm, m > 0, of
configurations (defined relative to w) in which each
configuration is obtained as the value of the preced-
ing one under some transition. It is called complete
whenever co = I(w), and ¢, € C;. We note that a
computation can be uniquely specified by its initial
configuration cg and the sequence of its transitions,
understood as a string over 7'. Complete computa-
tions, where cg is fixed, can be specified by their
transition sequences alone.

3 Arc-Standard Model

To introduce the core concepts of the paper, we first
look at a particularly simple model for transition-
based dependency parsing, known as the arc-stan-
dard model. This model has been used, in slightly
different variants, by a number of parsers (Nivre,
2004; Attardi, 2006; Huang and Sagae, 2010).

3.1 Transition System

The arc-standard model uses three types of transi-
tions: SHIFT (sh) removes the first node in the buffer
and pushes it to the stack. LEFT-ARc (la) creates a
new arc with the topmost node on the stack as the
head and the second-topmost node as the dependent,
and removes the second-topmost node from the stack.
RIGHT-ARC (ra) is symmetric to LEFT-ARC in that it
creates an arc with the second-topmost node as the
head and the topmost node as the dependent, and
removes the topmost node.

The three transitions can be formally specified as
in Figure 1. The right half of Figure 2 shows a com-
plete computation of the arc-standard transition sys-
tem, specified by its transition sequence. The picture
also shows the contents of the stack over the course of
the computation; more specifically, column i shows
the stack o(c;) associated with the configuration c;.
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Figure 2: A dependency tree (left) and a computation generating this tree in the arc-standard system (right).

3.2 Push Computations

The key to the tabulation of transition-based depen-
dency parsers is to find a way to decompose com-
putations into smaller, shareable parts. For the arc-
standard model, as well as for the other transition
systems that we consider in this paper, we base our
decomposition on the concept of push computations.
By this, we mean computations

Y = Co,...

on some input string w with the following properties:

(P1) The initial stack o (cg) is not modified during
the computation, and is not even exposed after the
first transition: For every 1 < i < m, there exists a
non-empty stack o; such that o(c;) = o(co)|o;.

(P2) The overall effect of the computation is to
push a single node to the stack: The stack o (¢, ) can
be written as o (¢;,) = 0 (co)|h, for some h € V.

We can verify that the computation in Figure 2 is
a push computation. We can also see that it contains
shorter computations that are push computations; one
example is the computation Y9 = ¢, ..., C16, Whose
overall effect is to push the node 3. In Figure 2, this
computation is marked by the zig-zag path traced
in bold. The dashed line delineates the stack o (c1),
which is not modified during yg.

Every computation that consists of a single sh tran-
sition is a push computation. Starting from these
atoms, we can build larger push computations by
means of two (partial) binary operations fj, and fa,
defined as follows. Let y; = ci10,...,C1m, and
Y2 = C20,...,C2m, be push computations on the
same input string w such that c¢1,z, = c20. Then

fra(v1,72) = cio. ..

-’C1m1,6217---702m2scv
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where ¢ is obtained from ¢, by applying the ra
transition. (The operation f, is defined analogously.)
We can verify that f.(y1, y2) is another push com-
putation. For instance, with respect to Figure 2,
Jfra(¥1,¥2) = vyo. Conversely, we say that the push
computation Y can be decomposed into the subcom-
putations y; and Y5, and the operation f,,.

3.3 Deduction System

Building on the compositional structure of push com-
putations, we now construct a deduction system (in
the sense of Shieber et al. (1995)) that tabulates the
computations of the arc-standard model for a given
input string w = wg - wy—1. For 0 < i < n, we
shall write §; to denote the buffer [i, ...,n—1]. Thus,
Bo denotes the full buffer, associated with the initial
configuration /(w), and B, denotes the empty buffer,
associated with a terminal configuration ¢ € Cy.

Item form. The items of our deduction system
take the form [i, i, j], where 0 <i < h < j < n.
The intended interpretation of an item [i, &, j] is:
For every configuration co with S(cg) = i, there
exists a push computation y = ¢y, ..., ¢y such that
B(cm) = Bj, and o (cm) = a(co)|h.

Goal. The only goal item is [0, 0, n], asserting
that there exists a complete computation for w.

Axioms. For every stack o, position i < n and
arc set A, by a single sh transition we obtain the
push computation (o, 8;, A), (oi, Bi+1, A). There-
fore we can take the set of all items of the form
[i,i,i + 1] as the axioms of our system.

Inference rules. The inference rules parallel the
composition operations fj; and f,,. Suppose that
we have deduced the items [i, h1, k] and [k, k2, f],
where 0 < i < h; <k < hy < j < n. The
item [i, h1, k] asserts that for every configuration cjg



Item form: [i,/,j],0<i <h<j <|w| Goal: [0,0,|w|]] Axioms: [i,i,i + 1]
i hy, k) [k, ha, J i hi, k] [k, ha,
Inference rules: li-In .] [ - 2.J] (la; hy — hy) li-In .] [ - 2.J] (ra;hy — hy)
[lvh25]] [lvhlvj]

Figure 3: Deduction system for the arc-standard model.

with B(c10) = PBi, there exists a push computation
Y1 = €10,--.,C1m, such that B(c1m,) = Pk, and
o(cim,) = o(c1o0)|h1. Using the item [k, ha, j],
we deduce the existence of a second push compu-
tation y» = c29,...,C2m, such that cao = cim,,
B(cam,) = Bj, and o (c2m,) = o(c10)|h1|h2. By
means of f;,, we can then compose y; and y; into a
new push computation

Jra(V1,72) = €10+ Clm;+C21s -+ -+ C2my- C .

Here, B(c) = B, and o(c) = o (c10)|h1. Therefore,
we may generate the item [i, i1, j]. The inference
rule for la can be derived analogously.

Figure 3 shows the complete deduction system.

3.4 Completeness and Non-Ambiguity

We have informally argued that our deduction sys-
tem is sound. To show completeness, we prove the
following lemma: Forall0 <i <h < j < |w| and
every push computation y = ¢y, ..., ¢, on w with
B(co) = Bi. Blem) = Bj and 6 (cm) = 0 (co)lh, the
item [i, h, j] is generated. The proof is by induction
on m, and there are two cases:

m = 1. In this case, y consists of a single sh transi-
tion,h =i, j =i + 1, and we need to show that the
item [7, 1,7 4 1] is generated. This holds because this
item is an axiom.

m > 2. In this case, y ends with either a la or a ra
transition. Let ¢ be the rightmost configuration in y
that is different from c,, and whose stack size is one
larger than the size of o (cg). The computations

y1 =c¢o,...,¢c and y» =c,...,Cm—1

are both push computations with strictly fewer tran-
sitions than y. Suppose that the last transition in y
is ra. In this case, B(c) = By forsomei < k < j,
o(c) = o(co)|lh with h < k, B(cm—1) = Bj, and
o(cm—1) = o(co)|h|h’ for some k < h' < j. By
induction, we may assume that we have generated
items [i, h, k] and [k, i’, j]. Applying the inference
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rule for ra, we deduce the item [i, /, j]. An analo-
gous argument can be made for f,.

Apart from being sound and complete, our deduc-
tion system also has the property that it assigns at
most one derivation to a given item. To see this,
note that in the proof of the lemma, the choice of ¢
is uniquely determined: If we take any other con-
figuration ¢’ that meets the selection criteria, then
the computation y, = ¢’,...,c;—1 is not a push
computation, as it contains ¢ as an intermediate con-
figuration, and thereby violates property P1.

3.5 Discussion

Let us briefly take stock of what we have achieved
so far. We have provided a deduction system capable
of tabulating the set of all computations of an arc-
standard parser on a given input string, and proved
the correctness of this system relative to an interpre-
tation based on push computations. Inspecting the
system, we can see that its generic implementation
takes space in O(Jw|?) and time in O(|w|?).

Our deduction system is essentially the same as the
one for the CKY algorithm for bilexicalized context-
free grammar (Collins, 1996; Gémez-Rodriguez et
al., 2008). This equivalence reveals a deep correspon-
dence between the arc-standard model and bilexical-
ized context-free grammar, and, via results by Eisner
and Satta (1999), to head automata. In particular,
Eisner’s and Satta’s “hook trick” can be applied to
our tabulation to reduce its runtime to O(|w|*).

4 Adding Features

The main goal with the tabulation of transition-based
dependency parsers is to obtain a representation
based on which semiring values such as the high-
est-scoring computation for a given input (and with
it, a dependency tree) can be calculated. Such com-
putations involve the use of feature information. In
this section, we discuss how our tabulation of the arc-
standard system can be extended for this purpose.



[i,h1,k; (x2,x1), (x1,X3)] : vy

[k, ha, ji{x1,x3), (x3,x4)] - 02

[i Ay, ji(x2, x1), (X1, x3)] © 01 4+ v2 + (X3, X4) - Cra

(ra)

[i,h, ji{x2, x1), {x1,x3)] v

— (sh)

U, J.J + L {x1,x3), (x3,w;)] : {x1,X3) - lsh

Figure 4: Extended inference rules under the feature model @ = (s;.w, so.w). The annotations indicate how to calculate
a candidate for an update of the Viterbi score of the conclusion using the Viterbi scores of the premises.

4.1 Scoring Computations

For the sake of concreteness, suppose that we want
to score computations based on the following model,
taken from Zhang and Clark (2008). The score of a
computation y is broken down into a sum of scores
score(t, c) for combinations of a transition ¢ in the
transition sequence associated with y and the config-
uration ¢; in which ¢ was taken:

score(y) = Z score(t, ct)

tey

ey

The score score(t, c;) is defined as the dot product of
the feature representation of ¢; relative to a feature
model ® and a transition-specific weight vector a;:

score(t,c;) = P(cy) -y

The feature model @ is a vector (¢q,...,¢d,) of
elementary feature functions, and the feature rep-
resentation @(c) of a configuration ¢ is a vector
X = {(¢1(c),...,Pn(c)) of atomic values. Two ex-
amples of feature functions are the word form associ-
ated with the topmost and second-topmost node on
the stack; adopting the notation of Huang and Sagae
(2010), we will write these functions as sg.w and
s1.w, respectively. Feature functions like these have
been used in several parsers (Nivre, 2006; Zhang and
Clark, 2008; Huang et al., 2009).

4.2 Integration of Feature Models

To integrate feature models into our tabulation of
the arc-standard system, we can use extended items
of the form [i, h, j; X1, Xg] with the same intended
interpretation as the old items [i, &, j], except that
the initial configuration of the asserted computations
y = co, ..., Cm nOW is required to have the feature
representation Xy, and the final configuration is re-
quired to have the representation Xg:

®(co) =X and P(c) = XR
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We shall refer to the vectors Xz and Xg as the left-
context vector and the right-context vector of the
computation y, respectively.

We now need to change the deduction rules so that
they become faithful to the extended interpretation.
Intuitively speaking, we must ensure that the feature
values can be computed along the inference rules.
As a concrete example, consider the feature model
® = (s1.w,sg.w). In order to integrate this model
into our tabulation, we change the rule for ra as in
Figure 4, where x1, ..., x4 range over possible word
forms. The shared variable occurrences in this rule
capture the constraints that hold between the feature
values of the subcomputations y; and y, asserted
by the premises, and the computations fra(y1,¥2)
asserted by the conclusion. To illustrate this, suppose
that y; and y;, are as in Figure 2. Then the three
occurrences of x3 for instance encode that

[S().W](C6) = [Sl.W](Cls) = [S().W](C]G) = ws3.

We also need to extend the axioms, which cor-
respond to computations consisting of a single sh
transition. The most conservative way to do this is
to use a generate-and-test technique: Extend the ex-
isting axioms by all valid choices of left-context and
right-context vectors, that is, by all pairs X7, Xg such
that there exists a configuration ¢ with ®(¢) = X,
and ®@(sh(c)) = Xg. The task of filtering out use-
less guesses can then be delegated to the deduction
system.

A more efficient way is to only have one axiom, for
the case where ¢ = I(w), and to add to the deduction
system a new, unary inference rule for sh as in Fig-
ure 4. This rule only creates items whose left-context
vector is the right-context vector of some other item,
which prevents the generation of useless items. In
the following, we take this second approach, which
is also the approach of Huang and Sagae (2010).



[i. . j; (x2,x1), {x1, x3)] < (p,v)

(sh), where o = {x1, x3) - &sp

[]3]7] + 1;(X1,X3),<X3,wj'>] : (p +U,O)

[i,h1 ks (x2, x1), (x1,x3)] = (p1,v1) [k, o, s (x1,x3), (x3, xa)] : (p2,v2)

(ra), where p = (x3, x4) - Ora

[i,hy, js{x2,x1), (x1,x3)] : (p1 +v2 4+ p,v1 +v2 + p)

Figure 5: Extended inference rules under the feature model @ = (sg.w, s;.w). The annotations indicate how to calculate
a candidate for an update of the prefix score and Viterbi score of the conclusion.

4.3 Computing Viterbi Scores

Once we have extended our deduction system with
feature information, many values of interest can be
computed. One simple example is the Viterbi score
for an input w, defined as

(@)

arg max score(y) ,
yel'(w)

where I (w) denotes the set of all complete compu-
tations for w. The score of a complex computation
f1(¥1, y2) is the sum of the scores of its subcomputa-
tions y1, ¥2, plus the transition-specific dot product.
Since this dot product only depends on the feature
representation of the final configuration of y;, the
Viterbi score can be computed on top of the infer-
ence rules using standard techniques. The crucial
calculation is indicated in Figure 4.

4.4 Computing Prefix Scores

Another interesting value is the prefix score of an
item, which, apart from the Viterbi score, also in-
cludes the cost of the best search path leading to
the item. Huang and Sagae (2010) use this quan-
tity to order the items in a beam search on top of
their dynamic programming method. In our frame-
work, prefix scores can be computed as indicated in
Figure 5. Alternatively, we can also use the more
involved calculation employed by Huang and Sagae
(2010), which allows them to get rid of the left-con-
text vector from their items. !

4.5 Compatibility

So far we have restricted our attention to a concrete
and extremely simplistic feature model. The fea-
ture models that are used in practical systems are
considerably more complex, and not all of them are

I'The essential idea in the calculation by Huang and Sagae

(2010) is to delegate (in the computation of the Viterbi score)
the scoring of sh transitions to the inference rules for la/ra.
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compatible with our framework in the sense that they
can be integrated into our deduction system in the
way described in Section 4.2.

For a simple example of a feature model that is
incompatible with our tabulation, consider the model
@’ = (sg.rc.w), whose single feature function ex-
tracts the word form of the right child (rc) of the
topmost node on the stack. Even if we know the val-
ues of this feature for two computations yp, y», we
have no way to compute its value for the composed
computation f,(y1, y2): This value coincides with
the word form of the topmost node on the stack asso-
ciated with y,, but in order to have access to it in the
context of the ra rule, our feature model would need
to also include the feature function sg.w.

The example just given raises the question whether
there is a general criterion based on which we can de-
cide if a given feature model is compatible with our
tabulation. An attempt to provide such a criterion has
been made by Huang and Sagae (2010), who define
a constraint on feature models called “monotonicity”
and claim that this constraint guarantees that feature
values can be computed using their dynamic program-
ming approach. Unfortunately, this claim is wrong.
In particular, the feature model @’ given above is
“monotonic”’, but cannot be tabulated, neither in our
nor in their framework. In general, it seems clear
that the question of compatibility is a question about
the relation between the tabulation and the feature
model, and not about the feature model alone. To find
practically useful characterizations of compatibility
is an interesting avenue for future research.

5 Arc-Eager Model

Up to now, we have only discussed the arc-standard
model. In this section, we show that the framework
of push computations also provides a tabulation of
another widely-used model for dependency parsing,
the arc-eager model (Nivre, 2003).



(0.1|B,4) & (oli,B. A)
(oli,j1B.A) = (0.j|B,AU{j —i})
only if i does not have an incoming arc
(oli, jI1B.A) = (olilj,B.AULi — j})
(oli, . A) = (0,B.A4)

only if 7 has an incoming arc

(sh)
(lae)

(rac)
(re)

Figure 6: Transitions in the arc-eager model.

5.1 Transition System

The arc-eager model has three types of transitions,
shown in Figure 6: SHIFT (sh) works just like in arc-
standard, moving the first node in the buffer to the
stack. LEFT-ARCc (la.) creates a new arc with the first
node in the buffer as the head and the topmost node
on the stack as the dependent, and pops the stack.
It can only be applied if the topmost node on the
stack has not already been assigned a head, so as to
preserve the single-head constraint. RIGHT-ARC (rae)
creates an arc in the opposite direction as LEFT-ARC,
and moves the first node in the buffer to the stack.
Finally, REDUCE (re) simply pops the stack; it can
only be applied if the topmost node on the stack has
already been assigned a head.

Note that, unlike in the case of arc-standard, the
parsing process in the arc-eager model is not bottom-
up: the right dependents of a node are attached before
they have been assigned their own right dependents.

5.2 Shift-Reduce Parsing

If we look at the specification of the transitions of the
arc-standard and the arc-eager model and restrict our
attention to the effect that they have on the stack and
the buffer, then we can see that all seven transitions
fall into one of three types:

(0,i|B) + (ali, B) sh, rae (T1)
(olilj,B) F (olj,B) la (T2)
(cli,B) F (o0,B) ra,lac,re  (T3)

We refer to transitions of type T1 as shift and to
transitions of type T2 and T3 as reduce transitions.
The crucial observation now is that the concept of
push computations and the approach to their tabula-
tion that we have taken for the arc-standard system
can easily be generalized to other transition systems
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whose transitions are of the type shift or reduce. In
particular, the proof of the correctness of our de-
duction system that we gave in Section 3 still goes
through if instead of sh we write “shift” and instead
of la and ra we write “reduce”.

5.3 Deduction System

Generalizing our construction for the arc-standard
model along these lines, we obtain a tabulation of
the arc-eager model. Just like in the case of arc-
standard, each single shift transition in that model
(be it sh or rae) constitutes a push computation, while
the reduce transitions induce operations fj,_ and fre.
The only difference is that the preconditions of lae
and re must be met. Therefore, fi,_(y1,y2) is only
defined if the topmost node on the stack in the final
configuration of ¥, has not yet been assigned a head,
and fr(y1, y2) is only defined in the opposite case.

Item form. In our deduction system for the arc-ea-
ger model we use items of the form [i, h?, j], where
0<i<h<j<|w,andb € {0,1}. An item
[i,h®, j] has the same meaning as the corresponding
item in our deduction system for arc-standard, but
also keeps record of whether the node 4 has been
assigned a head (b = 1) or not (b = 0).

Goal. The only goal item is [0, 0°, |w|]. (The item
[0,0!, |[w|] asserts that the node 0 has a head, which
never happens in a complete computation.)

Axioms. Reasoning as in arc-standard, the axioms
of the deduction system for the arc-eager model are
the items of the form [i,i%,i 4+ 1] and [/, j!, j + 1],
where j > 0: the former correspond to the push
computations obtained from a single sh, the latter to
those obtained from a single ra, which apart from
shifting a node also assigns it a head.

Inference rules. Also analogously to arc-standard,
if we know that there exists a push computation y
of the form asserted by the item [, 42, k], and a push
computation y of the form asserted by [k, g°, j],
where j < |w|, then we can build the push compu-
tation fi,_ (y1.y2) of the form asserted by the item
[i,h?, j]. Similarly, if y, is of the form asserted by
[k, g, j], then we can build fe(y1, y2), which again
is of the form by asserted [i, h?, j]. Thus:

[i,i% k] [k.Kk°, j] [i.i% k] [k.k'. /]

li.i% j] li.i%, j]

(lae), (re).
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[i”.J] "k KOG . [i”.J] N N )
o ) G (lae;j = k), j <|w| = (raei > ) 5 (re)
7.7 +1] [i®, /] 7 +1] [i®, /]

Figure 7: Deduction system for the arc-eager model.

As mentioned above, the correctness and non-am-
biguity of the system can be proved as in Section 3.
Features can be added in the same way as discussed
in Section 4.

5.4 Computational Complexity

Looking at the inference rules, it is clear that an im-
plementation of the deduction system for arc-eager
takes space in O(|w|?) and time in O(|w|?), just like
in the case of arc-standard. However, a closer inspec-
tion reveals that we can give even tighter bounds.

In all derivable items [i, h?, j], it holds that i = h.
This can easily be shown by induction: The property
holds for the axioms, and the first two indexes of a
consequent of a deduction rule coincide with the first
two indexes of the left antecedent. Thus, if we use
the notation [i?, k] as a shorthand for [i, i?, k], then
we can rewrite the inference rules for the arc-eager
system as in Figure 7, where, additionally, we have
added unary rules for sh and ra and restricted the
set of axioms along the lines set out in Section 4.2.
With this formulation, it is apparent that the space
complexity of the generic implementation of the de-
duction system is in fact even in O(|lw|?), and its
time complexity is in O(Jw|?).

6 Hybrid Model

We now reverse the approach that we have taken in
the previous sections: Instead of tabulating a transi-
tion system in order to get a dynamic-programming
parser that simulates its computations, we start with
a tabular parser and derive a transition system from
it. In the new model, dependency trees are built bot-
tom-up as in the arc-standard model, but the set of all
computations in the system can be tabulated in space
O(|w|?) and time O(|w|3), as in arc-eager.

6.1 Deduction System

Goémez-Rodriguez et al. (2008) present a deductive
version of the dependency parser of Yamada and Mat-
sumoto (2003); their deduction system is given in Fig-
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ure 8. The generic implementation of the deduction
system takes space O(|w|?) and time O(|w|?).

In the original interpretation of the deduction
system, an item [i, j] asserts the existence of a
pair of (projective) dependency trees: the first tree
rooted at token w;, having all nodes in the substring
wj -+ wr_1 as descendants, wherei < k < j; and
the second tree rooted at token w;, having all nodes
in the substring wy - - - w; as descendants. (Note that
we use fencepost indexes, while Gémez-Rodriguez
et al. (2008) indexes positions.)

6.2 Transition System

In the context of our tabulation framework, we adopt
a new interpretation of items: An item [Z, j| has the
same meaning as an item [i, i, j] in the tabulation
of the arc-standard model; for every configuration ¢
with B(c) = B;, it asserts the existence of a push
computation that starts with ¢ and ends with a config-
uration ¢’ for which f(c¢’) = B; and o(c’) = o (c)|i.

If we interpret the inference rules of the system in
terms of composition operations on push computa-
tions as usual, and also take the intended direction of
the dependency arcs into account, then this induces a
transition system with three transitions:

(0.i|p. A) & (ali.B. 4) (sh)
(@li.j1B.A) = (0.j|B. AU{j —i}) (lan)
(alilj.B. A) F (oli.p. AU — j}) (ra)

We call this transition system the hybrid model, as sh
and ra are just like in arc-standard, while lay, is like
the LEFT-ARC transition in the arc-eager model (la),
except that it does not have the precondition. Like
the arc-standard but unlike the arc-eager model, the
hybrid model builds dependencies bottom-up.

7 Conclusion

In this paper, we have provided a general technique
for the tabulation of transition-based dependency
parsers, and applied it to obtain dynamic program-
ming algorithms for two widely-used parsing models,
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[i. j] [i.k] [k. /]
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Inference rules:

[i, /]

- (lap; j = k), j < |w|

Goal: [0, |w|] Axioms: [0, 1]

[i.k] [k, /]
[i. /]

(ra;i — k)

Figure 8: Deduction system for the hybrid model.

arc-standard and (for the first time) arc-eager. The
basic idea behind our technique is the same as the
one implemented by Huang and Sagae (2010) for
the special case of the arc-standard model, but in-
stead of their graph-structured stack representation
we use a tabulation akin to Lang’s approach to the
simulation of pushdown automata (Lang, 1974). This
considerably simplifies both the presentation and the
implementation of parsing algorithms. It has also
enabled us to give simple proofs of correctness and
establish relations between transition-based parsers
and existing parsers based on dynamic programming.
While this paper has focused on the theoretical
aspects and the analysis of dynamic programming
versions of transition-based parsers, an obvious av-
enue for future work is the evaluation of the empiri-
cal performance and efficiency of these algorithms in
connection with specific feature models. The feature
models used in transition-based dependency parsing
are typically very expressive, and exhaustive search
with them quickly becomes impractical even for our
cubic-time algorithms of the arc-eager and hybrid
model. However, Huang and Sagae (2010) have pro-
vided evidence that the use of dynamic programming
on top of a transition-based dependency parser can
improve accuracy even without exhaustive search.
The tradeoff between expressivity of the feature mod-
els on the one hand and the efficiency of the search
on the other is a topic that we find worth investigat-
ing. Another interesting observation is that dynamic
programming makes it possible to use predictive fea-
tures, which cannot easily be integrated into a non-
tabular transition-based parser. This could lead to the
development of parsing models that cross the border
between transition-based and tabular parsing.
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