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Figure 1: Our probabilistic model: a question x is

dard semantic parsing benchmarks (GEO and
JOBS), our system obtains the highest pub-
lished accuracies, despite requiring no anno-
tated logical forms.

1 Introduction

What is the total population of the ten largest cap-
itals in the US? Answering these types of complex
questions compositionally involves first mapping the
questions into logical forms (semantic parsing). Su-
pervised semantic parsers (Zelle and Mooney, 1996;
Tang and Mooney, 2001; Ge and Mooney, 2005;
Zettlemoyer and Collins, 2005; Kate and Mooney,
2007; Zettlemoyer and Collins, 2007; Wong and
Mooney, 2007; Kwiatkowski et al., 2010) rely on
manual annotation of logical forms, which is expen-
sive. On the other hand, existing unsupervised se-
mantic parsers (Poon and Domingos, 2009) do not
handle deeper linguistic phenomena such as quan-
tification, negation, and superlatives.

As in Clarke et al. (2010), we obviate the need
for annotated logical forms by considering the end-
to-end problem of mapping questions to answers.
However, we still model the logical form (now as a
latent variable) to capture the complexities of lan-
guage. Figure 1 shows our probabilistic model:
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mapped to a latent logical form z, which is then evaluated
with respect to a world w (database of facts), producing
an answer y. We represent logical forms z as labeled
trees, induced automatically from (x, y) pairs.

We want to induce latent logical forms z (and pa-
rameters ) given only question-answer pairs (X, ),
which is much cheaper to obtain than (x, z) pairs.

The core problem that arises in this setting is pro-
gram induction: finding a logical form z (over an
exponentially large space of possibilities) that pro-
duces the target answer y. Unlike standard semantic
parsing, our end goal is only to generate the correct
Y, so we are free to choose the representation for z.
Which one should we use?

The dominant paradigm in compositional se-
mantics is Montague semantics, which constructs
lambda calculus forms in a bottom-up manner. CCG
is one instantiation (Steedman, 2000), which is used
by many semantic parsers, e.g., Zettlemoyer and
Collins (2005). However, the logical forms there
can become quite complex, and in the context of
program induction, this would lead to an unwieldy
search space. At the same time, representations such
as FunQL (Kate et al., 2005), which was used in
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Clarke et al. (2010), are simpler but lack the full ex-
pressive power of lambda calculus.

The main technical contribution of this work is
a new semantic representation, dependency-based
compositional semantics (DCS), which is both sim-
ple and expressive (Section 2). The logical forms in
this framework are trees, which is desirable for two
reasons: (i) they parallel syntactic dependency trees,
which facilitates parsing and learning; and (ii) eval-
uating them to obtain the answer is computationally
efficient.

We trained our model using an EM-like algorithm
(Section 3) on two benchmarks, GEO and JOBS
(Section 4). Our system outperforms all existing
systems despite using no annotated logical forms.

2 Semantic Representation

We first present a basic version (Section 2.1) of
dependency-based compositional semantics (DCS),
which captures the core idea of using trees to rep-
resent formal semantics. We then introduce the full
version (Section 2.2), which handles linguistic phe-
nomena such as quantification, where syntactic and
semantic scope diverge.

We start with some definitions, using US geogra-
phy as an example domain. Let )V be the set of all
values, which includes primitives (e.g., 3,CA € V)
as well as sets and tuples formed from other values
(e.g., 3,{3,4,7},(ca,{5}) € V). Let P be a set
of predicates (e.g., state, count € P), which are
just symbols.

A world w is mapping from each predicate p €
P to a set of tuples; for example, w(state) =
{(cn), (OR),...}. Conceptually, a world is a rela-
tional database where each predicate is a relation
(possibly infinite). Define a special predicate ¢ with
w(g) = V. We represent functions by a set of input-
output pairs, e.g., w(count) = {(S,n) : n = |5]}.
As another example, w(average) = {(5,%)

T = |S1]7" Y g, S(x)}, where a set of pairs S
is treated as a set-valued function S(z) = {y :
(z,y) € S} with domain S = {z : (z,y) € S}.

The logical forms in DCS are called DCS trees,
where nodes are labeled with predicates, and edges
are labeled with relations. Formally:

Definition 1 (DCS trees) Let Z be the set of DCS
trees, where each z € Z consists of (i) a predicate
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Relations R

]j, (join) E (extract)
> (aggregate) Q (quantify)
X; (execute) C (compare)

Table 1: Possible relations appearing on the edges of a
DCS tree. Here, j, 7’ € {1,2,... }andi€ {1,2,... }*

z.p € P and (ii) a sequence of edges z.e1, . .., z.en,
each edge e consisting of a relation e.r € R (see
Table 1) and a child tree e.c € Z.

We write a DCS tree z as (p;71 : €15+ ;Tm : Cm)-
Figure 2(a) shows an example of a DCS tree. Al-
though a DCS tree is a logical form, note that it looks
like a syntactic dependency tree with predicates in
place of words. It is this transparency between syn-
tax and semantics provided by DCS which leads to
a simple and streamlined compositional semantics
suitable for program induction.

2.1 Basic Version

The basic version of DCS restricts ‘R to join and ag-
gregate relations (see Table 1). Let us start by con-
sidering a DCS tree z with only join relations. Such
a z defines a constraint satisfaction problem (CSP)
with nodes as variables. The CSP has two types of
constraints: (i) z € w(p) for each node x labeled
with predicate p € P; and (ii) x; = y;s (the j-th
component of 2 must equal the j'-th component of
y) for each edge (z, y) labeled with ]7, €eR.

A solution to the CSP is an assignment of nodes
to values that satisfies all the constraints. We say a
value v is consistent for a node z if there exists a
solution that assigns v to . The denotation [z],, (=
evaluated on w) is the set of consistent values of the
root node (see Figure 2 for an example).

Computation We can compute the denotation
[z],, of a DCS tree z by exploiting dynamic pro-
gramming on trees (Dechter, 2003). The recurrence
is as follows:

I B Ldm
[[<p7ji'cla"' 7j7’n'cm>ﬂw (1)

=w(p)N m{v v, =ty t € leil,, 3
=1

At each node, we compute the set of tuples v consis-
tent with the predicate at that node (v € w(p)), and



Example: major city in California

z = <city; %: <major> ; %: <loc;%: <CA>>>
AN Ac3Im I 3s.
A ! city(c) A major(m)A
loc(£) A CA(S)A
i 01:m1A01:€1A€2:31
(a) DCS tree

(b) Lambda calculus formula

(c) Denotation: [z],, = {SF,L4,...}

n

Figure 2: (a) An example of a DCS tree (written in both
the mathematical and graphical notation). Each node is
labeled with a predicate, and each edge is labeled with a
relation. (b) A DCS tree z with only join relations en-
codes a constraint satisfaction problem. (c) The denota-
tion of z is the set of consistent values for the root node.

for each child i, the j;-th component of v must equal
the j/-th component of some ¢ in the child’s deno-
tation (¢ € [¢;],). This algorithm is linear in the
number of nodes times the size of the denotations. !

Now the dual importance of trees in DCS is clear:
We have seen that trees parallel syntactic depen-
dency structure, which will facilitate parsing. In
addition, trees enable efficient computation, thereby
establishing a new connection between dependency
syntax and efficient semantic evaluation.

Aggregate relation DCS trees that only use join
relations can represent arbitrarily complex compo-
sitional structures, but they cannot capture higher-
order phenomena in language. For example, con-
sider the phrase number of major cities, and suppose
that number corresponds to the count predicate.
It is impossible to represent the semantics of this
phrase with just a CSP, so we introduce a new ag-
gregate relation, notated X.. Consider a tree (X:c¢),
whose root is connected to a child c via 2. If the de-
notation of c is a set of values s, the parent’s denota-
tion is then a singleton set containing s. Formally:

[(Z:al, = {ll.}- 2

Figure 3(a) shows the DCS tree for our running
example. The denotation of the middle node is {s},

'Infinite denotations (such as [<],,) are represented as im-
plicit sets on which we can perform membership queries. The
intersection of two sets can be performed as long as at least one
of the sets is finite.
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Figure 3: Examples of DCS trees that use the aggregate
relation (20) to (a) compute the cardinality of a set and (b)
take the average over a set.

where s is all major cities. Having instantiated s as
a value, everything above this node is an ordinary
CSP: s constrains the count node, which in turns
constrains the root node to |s|.

A DCS tree that contains only join and aggre-
gate relations can be viewed as a collection of tree-
structured CSPs connected via aggregate relations.
The tree structure still enables us to compute deno-
tations efficiently based on (1) and (2).

2.2 Full Version

The basic version of DCS described thus far han-
dles a core subset of language. But consider Fig-
ure 4: (a) is headed by borders, but states needs
to be extracted; in (b), the quantifier no is syntacti-
cally dominated by the head verb borders but needs
to take wider scope. We now present the full ver-
sion of DCS which handles this type of divergence
between syntactic and semantic scope.

The key idea that allows us to give semantically-
scoped denotations to syntactically-scoped trees is
as follows: We mark a node low in the tree with a
mark relation (one of E, Q, or C). Then higher up in
the tree, we invoke it with an execute relation X; to
create the desired semantic scope.?

This mark-execute construct acts non-locally, so
to maintain compositionality, we must augment the

2Our mark-execute construct is analogous to Montague’s
quantifying in, Cooper storage, and Carpenter’s scoping con-
structor (Carpenter, 1998).



Alaska borders no states.
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Figure 4: Example DCS trees for utterances in which syntactic and semantic scope diverge. These trees reflect the
syntactic structure, which facilitates parsing, but importantly, these trees also precisely encode the correct semantic
scope. The main mechanism is using a mark relation (E, Q, or C) low in the tree paired with an execute relation (X;)

higher up at the desired semantic point.

denotation d = [z],, to include any information
about the marked nodes in z that can be accessed
by an execute relation later on. In the basic ver-
sion, d was simply the consistent assignments to the
root. Now d contains the consistent joint assign-
ments to the active nodes (which include the root
and all marked nodes), as well as information stored
about each marked node. Think of d as consisting
of n columns, one for each active node according to
a pre-order traversal of z. Column 1 always corre-
sponds to the root node. Formally, a denotation is
defined as follows (see Figure 5 for an example):

Definition 2 (Denotations) Let D be the set of de-
notations, where each d € D consists of

e a set of arrays d.A, where each array a =
[a1,...,a,] € d.A is a sequence of n tuples
(a; € V*); and

e a list of n stores d.a = (d.ay,...,d.ay),
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where each store o contains a mark relation
a.r € {E,Q,C,0}, a base denotation a.b €
DU{¢}, and a child denotation o.c € DU{p}.

We write d as ((A; (11,b1,¢1); ... 5 (Tn, by cn))). We
use d{r; = x} to mean d with d.r; = d.oyj.r = x
(similar definitions apply for d{«; = z}, d{b; = =},
and d{c; = x}).

The denotation of a DCS tree can now be defined
recursively:

[P, = {[V] :vewlp)}io), 3

ﬂ<p; e e I = Ilpsely, vy I, 4)
[[<p§ (SH E:C>]]w = [[p§ e]]w Dl by ([[C]]w) s (5)
[(p;e; xi:0)],, = [psel,, ><ux Xi([c],), (6)
[{p;e;E: )], = M([p; €], E, c), @)

[(p;e;c:c)],, = M([p;e],,. C,c), ®)

[(p:Q:c;e)], = M([p: €], Q,c). )



column 1 column 2

| (0K) (TX,2.7€5)
(M) (TX,2.7e5)

‘. NV CA,1.6e5
—[l—| " (16D
r: ) ¢

¢ b: 0 [(size)],,
¢ 0 [(argmax)],
DCS tree Denotation

Figure 5: Example of the denotation for a DCS tree with
a compare relation C. This denotation has two columns,
one for each active node—the root node state and the
marked node size.

The base case is defined in (3): if z is a sin-
gle node with predicate p, then the denotation of z
has one column with the tuples w(p) and an empty
store. The other six cases handle different edge re-
lations. These definitions depend on several opera-
tions (> 5/, 23, X, M) which we will define shortly,
but let us first get some intuition.

Let z be a DCS tree. If the last child ¢ of z’s
root is a join (jJ,), aggregate (3), or execute (Xj) re-
lation ((4)—(6)), then we simply recurse on z with ¢
removed and join it with some transformation (iden-
tity, X, or X;) of ¢’s denotation. If the last (or first)
child is connected via a mark relation E, C (or Q),
then we strip off that child and put the appropriate
information in the store by invoking M.

We now define the operations <j i, 3, X, M.
Some helpful notation: For a sequence v =
(v1,...,v,) and indices i = (iy,...,0), let vi =
(viy, .., v;,) be the projection of v onto i; we write
v_j to mean vj; _,\;. Extending this notation to
denotations, let (A; a))[i] = ({a; : a € A}; ay)).
Let d[—@¢] = d[—i], where i are the columns with
empty stores. For example, for d in Figure 5, d[1]
keeps column 1, d[—g] keeps column 2, and d[2, —2]
swaps the two columns.

Join The join of two denotations d and d’ with re-
spect to components j and j’ (* means all compo-
nents) is formed by concatenating all arrays a of d
with all compatible arrays a’ of d’, where compat-
ibility means a;5 = aj;. The stores are also con-
catenated (o + ). Non-initial columns with empty
stores are projected away by applying -[1,—¢]. The
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full definition of join is as follows:
(A; a)) oy (A5 @) = (A" o+ a[1,—9],
A"={a+a :acAa € A aj5=ayy}. (10)
Aggregate The aggregate operation takes a deno-

tation and forms a set out of the tuples in the first
column for each setting of the rest of the columns:

S ({4 a)) = (AU A" ) (11
A'={[S(a),as,...,a,) :a € A}
S(a) = {ad} : [a},as,...,a,] € A}

A = {[@7a2, e ,an] : —Jdai,a € A,
V2 <i<m,la] € d.b;[1].A}.
2.2.1

Now we turn to the mark (M) and execute (X;)
operations, which handles the divergence between
syntactic and semantic scope. In some sense, this is
the technical core of DCS. Marking is simple: When
anode (e.g., size in Figure 5) is marked (e.g., with
relation C), we simply put the relation r, current de-
notation d and child c’s denotation into the store of
column 1:

M(d,r,c) =d{ri =70 =d,c1 =[], }. (12)

Mark and Execute

The execute operation X;(d) processes columns
i in reverse order. It suffices to define X;(d) for a
single column 7. There are three cases:

Extraction (d.r; = E) In the basic version, the
denotation of a tree was always the set of con-
sistent values of the root node. Extraction al-
lows us to return the set of consistent values of a
marked non-root node. Formally, extraction sim-
ply moves the i-th column to the front: X;(d) =
dfi, —(i,6)][{a1 = @}. For example, in Figure 4(a),
before execution, the denotation of the DCS tree
is (({l(ca,0r), (OR)], ... }; 0; (E, [(state)],,0));
after applying X1, we have (({[(OR)], ... }; 8).

Generalized Quantification (d.r; = Q) Gener-
alized quantifiers are predicates on two sets, a re-
strictor A and a nuclear scope B. For example,
w(no) = {(A,B) : AN B = ()} and w(most) =
{(A,B): |An B| > }|A|}.

In a DCS tree, the quantifier appears as the
child of a Q relation, and the restrictor is the par-
ent (see Figure 4(b) for an example). This in-
formation is retrieved from the store when the



quantifier in column ¢ is executed. In particu-
lar, the restrictor is A = X (d.b;) and the nu-
clear scope is B = X(d[i,—(i,8)]). We then
apply d.c; to these two sets (technically, denota-
tions) and project away the first column: X;(d) =
((dcl 1,1 A) 2.1 B) [—1]

For the example in Figure 4(b), the de-
notation of the DCS tree before execution is
(0;0; (Q, [(state)],,, [(no)],)). The restrictor
set (A) is the set of all states, and the nuclear scope
(B) is the empty set. Since (A, B) exists in no, the
final denotation, which projects away the actual pair,
is ({[]})) (our representation of true).

Figure 4(c) shows an example with two interact-
ing quantifiers. The quantifier scope ambiguity is
resolved by the choice of execute relation; X192 gives
the narrow reading and Xo; gives the wide reading.
Figure 4(d) shows how extraction and quantification
work together.

Comparatives and Superlatives (d.r; = C) To
compare entities, we use a set S of (z,y) pairs,
where x is an entity and y is a number. For su-
perlatives, the argmax predicate denotes pairs of
sets and the set’s largest element(s): w(argmax) =
{(S,2*) : " € argmax, g, max S(z)}. For com-
paratives, w(more) contains triples (S, x,y), where
x is “more than” y as measured by S; formally:
w(more) = {(S,z,y) : max S(z) > max S(y)}.

In a superlative/comparative construction, the
root = of the DCS tree is the entity to be compared,
the child c of a C relation is the comparative or su-
perlative, and its parent p contains the information
used for comparison (see Figure 4(e) for an exam-
ple). If d is the denotation of the root, its ¢-th column
contains this information. There are two cases: (i) if
the ¢-th column of d contains pairs (e.g., size in
Figure 5), then let &’ = [(#)],, >1,2 d[i, —i], which
reads out the second components of these pairs; (ii)
otherwise (e.g., state in Figure 4(e)), let d' =
[(8)],, ™12 [(count)], > X (d[i,—i]), which
counts the number of things (e.g., states) that occur
with each value of the root z. Given d’, we construct
a denotation .S by concatenating (+;) the second and
first columns of d' (S = X (42,1 (d'{a2 = 6})))
and apply the superlative/comparative: X;(d) =
([{2)],y D12 (doci b1y S)){ar = d.an}.

Figure 4(f) shows that comparatives are handled
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using the exact same machinery as superlatives. Fig-
ure 4(g) shows that we can naturally account for
superlative ambiguity based on where the scope-
determining execute relation is placed.

3 Semantic Parsing

We now turn to the task of mapping natural language
utterances to DCS trees. Our first question is: given
an utterance X, what trees z € Z are permissible? To
define the search space, we first assume a fixed set
of lexical triggers L. Each trigger is a pair (x,p),
where x is a sequence of words (usually one) and p
is a predicate (e.g., x = California and p = CB).
We use L(x) to denote the set of predicates p trig-
gered by x ((x,p) € L). Let L(e) be the set of
trace predicates, which can be introduced without
an overt lexical trigger.

Given an utterance x = (1, ...,%,), we define
Z1(x) C Z, the set of permissible DCS trees for
x. The basic approach is reminiscent of projective
labeled dependency parsing: For each span i..7, we
build a set of trees C; ; and set Z1,(x) = Cp,,. Each
set C; ; is constructed recursively by combining the
trees of its subspans C; ;. and C} ; for each pair of
split points k, k' (words between k and %’ are ig-
nored). These combinations are then augmented via
a function A and filtered via a function F, to be spec-
ified later. Formally, C; ; is defined recursively as
follows:

Ci,j = F(A(L(XZ+1]) U U Tl(a, b))))
bECy

13)

In (13), L(x;41. ;) is the set of predicates triggered
by the phrase under span ¢..j (the base case), and
Tu(a,b) = Ty(a,b) U T4(b,a), which returns all
ways of combining trees a and b where b is a de-
scendant of a (fd) or vice-versa (i’d). The former is
defined recursively as follows: Ty(a,b) = ), and

Tiy(a,b) = U {{a;7:b)} UTy_1(a, (p;r:b)).
rerR
PEL(e)
The latter (Tk) is defined similarly. Essentially,
Ti(a,b) allows us to insert up to d trace predi-
cates between the roots of a and b. This is use-
ful for modeling relations in noun compounds (e.g.,



California cities), and it also allows us to underspec-
ify L. In particular, our L will not include verbs or
prepositions; rather, we rely on the predicates corre-
sponding to those words to be triggered by traces.

The augmentation function A takes a set of trees
and optionally attaches E and X; relations to the
root (e.g., A((city)) = {(city),(city;E:@)}).
The filtering function F' rules out improperly-typed
trees such as (city;Q:(state)). To further reduce
the search space, F' imposes a few additional con-
straints, e.g., limiting the number of marked nodes
to 2 and only allowing trace predicates between ar-
ity 1 predicates.

Model We now present our discriminative se-
mantic parsing model, which places a log-linear
distribution over z € Zr(x) given an utter-
ance x. Formally, pg(z | x) e$x2) 0,
where 6 and ¢(x, z) are parameter and feature vec-
tors, respectively. As a running example, con-
sider x = city that is in California and z =
(city;1:(loc;2:(cn))), where city triggers city
and California triggers CA.

To define the features, we technically need to
augment each tree z € Zr(x) with alignment
information—namely, for each predicate in z, the
span in x (if any) that triggered it. This extra infor-
mation is already generated from the recursive defi-
nition in (13).

The feature vector ¢(x, z) is defined by sums of
five simple indicator feature templates: (F;) a word
triggers a predicate (e.g., [city, city]); (F2) a word
is under a relation (e.g., [that, }]); (F3) a word is un-
der a trace predicate (e.g., [in, 1oc]); (F4) two pred-
icates are linked via a relation in the left or right
direction (e.g., [city,}, loc,RIGHT]); and (F5) a
predicate has a child relation (e.g., [city, 1]).

Learning Given a training dataset D con-
taining (x,y) pairs, we define the regu-
larized  marginal  log-likelihood  objective
O(0) Yxyeplogpe(lz], = v | %2 €

Z1,(x)) — A||#]|3, which sums over all DCS trees z
that evaluate to the target answer y.

Our model is arc-factored, so we can sum over all
DCS trees in Z(x) using dynamic programming.
However, in order to learn, we need to sum over
{z € Z1(x) : [2],, = y}, and unfortunately, the
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additional constraint [2],, = y does not factorize.
We therefore resort to beam search. Specifically, we
truncate each C; ; to a maximum of K candidates
sorted by decreasing score based on parameters 6.
Let 27, (x) be this approximation of Z7(x).

Our learning algorithm alternates between (i) us-
ing the current parameters 6 to generate the K -best
set éng(x) for each training example x, and (ii)
optimizing the parameters to put probability mass
on the correct trees in these sets; sets contain-
ing no correct answers are skipped. Formally, let
O(6, #') be the objective function O(6) with Z; (x)
replaced with 21 ¢/(x). We optimize O(0,6') by
setting () = 0 and iteratively solving 90+ =
argmax, O(0, 0")) using L-BFGS until t = T". In all
experiments, we set A = 0.01,7 = 5, and K = 100.
After training, given a new utterance X, our system
outputs the most likely y, summing out the latent
logical form 2: argmax,, py(r) (y | X, 2 € Z~L79(T)).

4 Experiments

We tested our system on two standard datasets, GEO
and JOBS. In each dataset, each sentence x is an-
notated with a Prolog logical form, which we use
only to evaluate and get an answer y. This evalua-
tion is done with respect to a world w. Recall that
a world w maps each predicate p € P to a set of
tuples w(p). There are three types of predicates in
‘P: generic (e.g., argmax), data (e.g., city), and
value (e.g., CA). GEO has 48 non-value predicates
and JOBS has 26. For GEO, w is the standard US
geography database that comes with the dataset. For
JOBS, if we use the standard Jobs database, close to
half the y’s are empty, which makes it uninteresting.
We therefore generated a random Jobs database in-
stead as follows: we created 100 job IDs. For each
data predicate p (e.g., Language), we add each pos-
sible tuple (e.g., (job37,Java)) to w(p) indepen-
dently with probability 0.8.

We used the same training-test splits as Zettle-
moyer and Collins (2005) (600+280 for GEO and
500+140 for JoBS). During development, we fur-
ther held out a random 30% of the training sets for
validation.

Our lexical triggers L include the following: (i)
predicates for a small set of ~ 20 function words
(e.g., (most,argmax)), (ii) (z,x) for each value



System Accuracy
Clarke et al. (2010) w/answers 73.2
Clarke et al. (2010) w/logical forms 80.4
Our system (DCS with L) 78.9
Our system (DCS with L) 87.2

Table 2: Results on GEO with 250 training and 250
test examples. Our results are averaged over 10 random
2504250 splits taken from our 600 training examples. Of
the three systems that do not use logical forms, our two
systems yield significant improvements. Our better sys-
tem even outperforms the system that uses logical forms.

predicate x in w (e.g., (Boston,Boston)), and
(iii) predicates for each POS tag in {JJ, NN, NNS}
(e.g., (11,size), (I1,area), etc.)> Predicates
corresponding to verbs and prepositions (e.g.,
traverse) are not included as overt lexical trig-
gers, but rather in the trace predicates L(e).

We also define an augmented lexicon L™ which
includes a prototype word z for each predicate ap-
pearing in (iii) above (e.g., (large, size)), which
cancels the predicates triggered by x’s POS tag. For
GEO, there are 22 prototype words; for JOBS, there
are 5. Specifying these triggers requires minimal
domain-specific supervision.

Results We first compare our system with Clarke
et al. (2010) (henceforth, SEMRESP), which also
learns a semantic parser from question-answer pairs.
Table 2 shows that our system using lexical triggers
L (henceforth, DCS) outperforms SEMRESP (78.9%
over 73.2%). In fact, although neither DCS nor
SEMRESP uses logical forms, DCS uses even less su-
pervision than SEMRESP. SEMRESP requires a lex-
icon of 1.42 words per non-value predicate, Word-
Net features, and syntactic parse trees; DCS requires
only words for the domain-independent predicates
(overall, around 0.5 words per non-value predicate),
POS tags, and very simple indicator features. In
fact, DCS performs comparably to even the version
of SEMRESP trained using logical forms. If we add
prototype triggers (use L™), the resulting system
(pcs™) outperforms both versions of SEMRESP by
a significant margin (87.2% over 73.2% and 80.4%).

3We used the Berkeley Parser (Petrov et al., 2006) to per-
form POS tagging. The triggers L(z) for a word z thus include
L(t) where ¢ is the POS tag of .

597

System GEO JoBS
Tang and Mooney (2001) 794 798
Wong and Mooney (2007) 86.6 -
Zettlemoyer and Collins (2005) | 79.3  79.3
Zettlemoyer and Collins (2007) | 81.6 -
Kwiatkowski et al. (2010) 88.2 -
Kwiatkowski et al. (2010) 88.9 -
Our system (DCS with L) 88.6 914
Our system (DCS with L) 91.1 95.0

Table 3: Accuracy (recall) of systems on the two bench-
marks. The systems are divided into three groups. Group
1 uses 10-fold cross-validation; groups 2 and 3 use the in-
dependent test set. Groups 1 and 2 measure accuracy of
logical form; group 3 measures accuracy of the answer;
but there is very small difference between the two as seen
from the Kwiatkowski et al. (2010) numbers. Our best
system improves substantially over past work, despite us-
ing no logical forms as training data.

Next, we compared our systems (DCS and DCS™)
with the state-of-the-art semantic parsers on the full
dataset for both GEO and JOBS (see Table 3). All
other systems require logical forms as training data,
whereas ours does not. Table 3 shows that even DCS,
which does not use prototypes, is comparable to the
best previous system (Kwiatkowski et al., 2010), and
by adding a few prototypes, DCS™ offers a decisive
edge (91.1% over 88.9% on GEO). Rather than us-
ing lexical triggers, several of the other systems use
IBM word alignment models to produce an initial
word-predicate mapping. This option is not avail-
able to us since we do not have annotated logical
forms, so we must instead rely on lexical triggers
to define the search space. Note that having lexical
triggers is a much weaker requirement than having
a CCQG lexicon, and far easier to obtain than logical
forms.

Intuitions How is our system learning? Initially,
the weights are zero, so the beam search is essen-
tially unguided. We find that only for a small frac-
tion of training examples do the K -best sets contain
any trees yielding the correct answer (29% for DCS
on GEO). However, training on just these exam-
ples is enough to improve the parameters, and this
29% increases to 66% and then to 95% over the next
few iterations. This bootstrapping behavior occurs
naturally: The “easy” examples are processed first,
where easy is defined by the ability of the current



model to generate the correct answer using any tree.

Our system learns lexical associations between
words and predicates. For example, area (by virtue
of being a noun) triggers many predicates: city,
state, area, etc. Inspecting the final parameters
(DCS on GEO), we find that the feature [area, areal
has a much higher weight than [area, city]. Trace
predicates can be inserted anywhere, but the fea-
tures favor some insertions depending on the words
present (for example, [in, 1oc] has high weight).

The errors that the system makes stem from mul-
tiple sources, including errors in the POS tags (e.g.,
states is sometimes tagged as a verb, which triggers
no predicates), confusion of Washington state with
Washington D.C., learning the wrong lexical asso-
ciations due to data sparsity, and having an insuffi-
ciently large K.

5 Discussion

A major focus of this work is on our semantic rep-
resentation, DCS, which offers a new perspective
on compositional semantics. To contrast, consider
CCG (Steedman, 2000), in which semantic pars-
ing is driven from the lexicon. The lexicon en-
codes information about how each word can used in
context; for example, the lexical entry for borders
is S\NP/NP : A\y.Az.border(z,y), which means
borders looks right for the first argument and left
for the second. These rules are often too stringent,
and for complex utterances, especially in free word-
order languages, either disharmonic combinators are
employed (Zettlemoyer and Collins, 2007) or words
are given multiple lexical entries (Kwiatkowski et
al., 2010).

In DCS, we start with lexical triggers, which are
more basic than CCG lexical entries. A trigger for
borders specifies only that border can be used, but
not how. The combination rules are encoded in the
features as soft preferences. This yields a more
factorized and flexible representation that is easier
to search through and parametrize using features.
It also allows us to easily add new lexical triggers
without becoming mired in the semantic formalism.

Quantifiers and superlatives significantly compli-
cate scoping in lambda calculus, and often type rais-
ing needs to be employed. In DCS, the mark-execute
construct provides a flexible framework for dealing
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with scope variation. Think of DCS as a higher-level
programming language tailored to natural language,
which results in programs (DCS trees) which are
much simpler than the logically-equivalent lambda
calculus formulae.

The idea of using CSPs to represent semantics is
inspired by Discourse Representation Theory (DRT)
(Kamp and Reyle, 1993; Kamp et al., 2005), where
variables are discourse referents. The restriction to
trees is similar to economical DRT (Bos, 2009).

The other major focus of this work is program
induction—inferring logical forms from their deno-
tations. There has been a fair amount of past work on
this topic: Liang et al. (2010) induces combinatory
logic programs in a non-linguistic setting. Eisen-
stein et al. (2009) induces conjunctive formulae and
uses them as features in another learning problem.
Piantadosi et al. (2008) induces first-order formu-
lae using CCG in a small domain assuming observed
lexical semantics. The closest work to ours is Clarke
et al. (2010), which we discussed earlier.

The integration of natural language with denota-
tions computed against a world (grounding) is be-
coming increasingly popular. Feedback from the
world has been used to guide both syntactic parsing
(Schuler, 2003) and semantic parsing (Popescu et
al., 2003; Clarke et al., 2010). Past work has also fo-
cused on aligning text to a world (Liang et al., 2009),
using text in reinforcement learning (Branavan et al.,
2009; Branavan et al., 2010), and many others. Our
work pushes the grounded language agenda towards
deeper representations of language—think grounded
compositional semantics.

6 Conclusion

We built a system that interprets natural language
utterances much more accurately than existing sys-
tems, despite using no annotated logical forms. Our
system is based on a new semantic representation,
DCS, which offers a simple and expressive alter-
native to lambda calculus. Free from the burden
of annotating logical forms, we hope to use our
techniques in developing even more accurate and
broader-coverage language understanding systems.
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