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Abstract

Information extraction (IE) holds the promise
of generating a large-scale knowledge
base from the Web’s natural language text.
Knowledge-based weak supervision, using
structured data to heuristically label a training
corpus, works towards this goal by enabling
the automated learning of a potentially
unbounded number of relation extractors.
Recently, researchers have developed multi-
instance learning algorithms to combat the
noisy training data that can come from
heuristic labeling, but their models assume
relations are disjoint — for example they
cannot extract the pair Founded(Jobs,
Apple) and CEO-of(Jobs, Apple).

This paper presents a novel approach for
multi-instance learning with overlapping re-
lations that combines a sentence-level extrac-
tion model with a simple, corpus-level compo-
nent for aggregating the individual facts. We
apply our model to learn extractors for NY
Times text using weak supervision from Free-
base. Experiments show that the approach
runs quickly and yields surprising gains in
accuracy, at both the aggregate and sentence
level.

1 Introduction

Information-extraction (IE), the process of generat-
ing relational data from natural-language text, con-
tinues to gain attention. Many researchers dream of
creating a large repository of high-quality extracted
tuples, arguing that such a knowledge base could
benefit many important tasks such as question an-
swering and summarization. Most approaches to IE

use supervised learning of relation-specific exam-
ples, which can achieve high precision and recall.
Unfortunately, however, fully supervised methods
are limited by the availability of training data and are
unlikely to scale to the thousands of relations found
on the Web.

A more promising approach, often called “weak”
or “distant” supervision, creates its own training
data by heuristically matching the contents of a
database to corresponding text (Craven and Kum-
lien, 1999). For example, suppose that r(e1, e2) =
Founded(Jobs,Apple) is a ground tuple in the
database and s =“Steve Jobs founded Apple, Inc.”
is a sentence containing synonyms for both e1 =
Jobs and e2 = Apple, then s may be a natural
language expression of the fact that r(e1, e2) holds
and could be a useful training example.

While weak supervision works well when the tex-
tual corpus is tightly aligned to the database con-
tents (e.g., matching Wikipedia infoboxes to as-
sociated articles (Hoffmann et al., 2010)), Riedel
et al. (2010) observe that the heuristic leads to
noisy data and poor extraction performance when
the method is applied more broadly (e.g., matching
Freebase records to NY Times articles). To fix
this problem they cast weak supervision as a form of
multi-instance learning, assuming only that at least
one of the sentences containing e1 and e2 are ex-
pressing r(e1, e2), and their method yields a sub-
stantial improvement in extraction performance.

However, Riedel et al.’s model (like that of
previous systems (Mintz et al., 2009)) assumes
that relations do not overlap — there cannot
exist two facts r(e1, e2) and q(e1, e2) that are
both true for any pair of entities, e1 and e2.
Unfortunately, this assumption is often violated;
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for example both Founded(Jobs, Apple) and
CEO-of(Jobs, Apple) are clearly true. In-
deed, 18.3% of the weak supervision facts in Free-
base that match sentences in the NY Times 2007 cor-
pus have overlapping relations.

This paper presents MULTIR, a novel model of
weak supervision that makes the following contri-
butions:

• MULTIR introduces a probabilistic, graphical
model of multi-instance learning which handles
overlapping relations.

• MULTIR also produces accurate sentence-level
predictions, decoding individual sentences as
well as making corpus-level extractions.

• MULTIR is computationally tractable. Inference
reduces to weighted set cover, for which it uses
a greedy approximation with worst case running
time O(|R| · |S|) where R is the set of possi-
ble relations and S is largest set of sentences for
any entity pair. In practice, MULTIR runs very
quickly.

• We present experiments showing that MULTIR
outperforms a reimplementation of Riedel
et al. (2010)’s approach on both aggregate (cor-
pus as a whole) and sentential extractions.
Additional experiments characterize aspects of
MULTIR’s performance.

2 Weak Supervision from a Database

Given a corpus of text, we seek to extract facts about
entities, such as the company Apple or the city
Boston. A ground fact (or relation instance), is
an expression r(e) where r is a relation name, for
example Founded or CEO-of, and e = e1, . . . , en
is a list of entities.

An entity mention is a contiguous sequence of tex-
tual tokens denoting an entity. In this paper we as-
sume that there is an oracle which can identify all
entity mentions in a corpus, but the oracle doesn’t
normalize or disambiguate these mentions. We use
ei ∈ E to denote both an entity and its name (i.e.,
the tokens in its mention).

A relation mention is a sequence of text (in-
cluding one or more entity mentions) which states
that some ground fact r(e) is true. For example,
“Steve Ballmer, CEO of Microsoft, spoke recently

at CES.” contains three entity mentions as well as a
relation mention for CEO-of(Steve Ballmer,
Microsoft). In this paper we restrict our atten-
tion to binary relations. Furthermore, we assume
that both entity mentions appear as noun phrases in
a single sentence.

The task of aggregate extraction takes two inputs,
Σ, a set of sentences comprising the corpus, and an
extraction model; as output it should produce a set
of ground facts, I , such that each fact r(e) ∈ I is
expressed somewhere in the corpus.

Sentential extraction takes the same input and
likewise produces I , but in addition it also produces
a function, Γ : I → P(Σ), which identifies, for
each r(e) ∈ I , the set of sentences in Σ that contain
a mention describing r(e). In general, the corpus-
level extraction problem is easier, since it need only
make aggregate predictions, perhaps using corpus-
wide statistics. In contrast, sentence-level extrac-
tion must justify each extraction with every sentence
which expresses the fact.

The knowledge-based weakly supervised learning
problem takes as input (1) Σ, a training corpus, (2)
E, a set of entities mentioned in that corpus, (3) R,
a set of relation names, and (4), ∆, a set of ground
facts of relations in R. As output the learner pro-
duces an extraction model.

3 Modeling Overlapping Relations

We define an undirected graphical model that al-
lows joint reasoning about aggregate (corpus-level)
and sentence-level extraction decisions. Figure 1(a)
shows the model in plate form.

3.1 Random Variables

There exists a connected component for each pair of
entities e = (e1, e2) ∈ E × E that models all of
the extraction decisions for this pair. There is one
Boolean output variable Y r for each relation name
r ∈ R, which represents whether the ground fact
r(e) is true. Including this set of binary random
variables enables our model to extract overlapping
relations.

Let S(e1,e2) ⊂ Σ be the set of sentences which
contain mentions of both of the entities. For each
sentence xi ∈ S(e1,e2) there exists a latent variable
Zi which ranges over the relation names r ∈ R and,
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Figure 1: (a) Network structure depicted as plate model and (b) an example network instantiation for the pair of entities
Steve Jobs, Apple.

importantly, also the distinct value none. Zi should
be assigned a value r ∈ R only when xi expresses
the ground fact r(e), thereby modeling sentence-
level extraction.

Figure 1(b) shows an example instantiation of the
model with four relation names and three sentences.

3.2 A Joint, Conditional Extraction Model
We use a conditional probability model that defines
a joint distribution over all of the extraction random
variables defined above. The model is undirected
and includes repeated factors for making sentence
level predictions as well as globals factors for ag-
gregating these choices.

For each entity pair e = (e1, e2), define x to
be a vector concatenating the individual sentences
xi ∈ S(e1,e2), Y to be vector of binary Y r random
variables, one for each r ∈ R, and Z to be the vec-
tor of Zi variables, one for each sentence xi. Our
conditional extraction model is defined as follows:

p(Y = y,Z = z|x; θ)
def
=

1

Zx

∏
r

Φjoin(yr, z)
∏
i

Φextract(zi, xi)

where the parameter vector θ is used, below, to de-
fine the factor Φextract.

The factors Φjoin are deterministic OR operators

Φjoin(yr, z)
def
=

{
1 if yr = true ∧ ∃i : zi = r

0 otherwise

which are included to ensure that the ground fact
r(e) is predicted at the aggregate level for the as-
signment Y r = yr only if at least one of the sen-

tence level assignments Zi = zi signals a mention
of r(e).

The extraction factors Φextract are given by

Φextract(zi, xi)
def
= exp

∑
j

θjφj(zi, xi)


where the features φj are sensitive to the relation
name assigned to extraction variable zi, if any, and
cues from the sentence xi. We will make use of the
Mintz et al. (2009) sentence-level features in the ex-
peiments, as described in Section 7.

3.3 Discussion

This model was designed to provide a joint approach
where extraction decisions are almost entirely driven
by sentence-level reasoning. However, defining the
Y r random variables and tying them to the sentence-
level variables, Zi, provides a direct method for
modeling weak supervision. We can simply train the
model so that the Y variables match the facts in the
database, treating the Zi as hidden variables that can
take any value, as long as they produce the correct
aggregate predictions.

This approach is related to the multi-instance
learning approach of Riedel et al. (2010), in that
both models include sentence-level and aggregate
random variables. However, their sentence level
variables are binary and they only have a single ag-
gregate variable that takes values r ∈ R ∪ {none},
thereby ruling out overlapping relations. Addition-
ally, their aggregate decisions make use of Mintz-
style aggregate features (Mintz et al., 2009), that col-
lect evidence from multiple sentences, while we use
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Inputs:
(1) Σ, a set of sentences,
(2)E, a set of entities mentioned in the sentences,
(3) R, a set of relation names, and
(4) ∆, a database of atomic facts of the form
r(e1, e2) for r ∈ R and ei ∈ E.

Definitions:
We define the training set {(xi,yi)|i = 1 . . . n},
where i is an index corresponding to a particu-
lar entity pair (ej , ek) in ∆, xi contains all of
the sentences in Σ with mentions of this pair, and
yi = relVector(ej , ek).

Computation:
initialize parameter vector Θ← 0
for t = 1...T do

for i = 1...n do
(y′, z′)← arg maxy,z p(y, z|xi; θ)
if y′ 6= yi then

z∗ ← arg maxz p(z|xi,yi; θ)
Θ← Θ + φ(xi, z

∗)− φ(xi, z
′)

end if
end for

end for
Return Θ

Figure 2: The MULTIR Learning Algorithm

only the deterministic OR nodes. Perhaps surpris-
ing, we are still able to improve performance at both
the sentential and aggregate extraction tasks.

4 Learning

We now present a multi-instance learning algo-
rithm for our weak-supervision model that treats the
sentence-level extraction random variables Zi as la-
tent, and uses facts from a database (e.g., Freebase)
as supervision for the aggregate-level variables Y r.

As input we have (1) Σ, a set of sentences, (2)
E, a set of entities mentioned in the sentences, (3)
R, a set of relation names, and (4) ∆, a database
of atomic facts of the form r(e1, e2) for r ∈ R and
ei ∈ E. Since we are using weak learning, the Y r

variables in Y are not directly observed, but can be
approximated from the database ∆. We use a proce-
dure, relVector(e1, e2) to return a bit vector whose
jth bit is one if rj(e1, e2) ∈ ∆. The vector does not
have a bit for the special none relation; if there is no
relation between the two entities, all bits are zero.

Finally, we can now define the training set to be
pairs {(xi,yi)|i = 1 . . . n}, where i is an index
corresponding to a particular entity pair (ej , ek), xi
contains all of the sentences with mentions of this
pair, and yi = relVector(ej , ek).

Given this form of supervision, we would like to
find the setting for θ with the highest likelihood:

O(θ) =
∏
i

p(yi|xi; θ) =
∏
i

∑
z

p(yi, z|xi; θ)

However, this objective would be difficult to op-
timize exactly, and algorithms for doing so would
be unlikely to scale to data sets of the size we con-
sider. Instead, we make two approximations, de-
scribed below, leading to a Perceptron-style addi-
tive (Collins, 2002) parameter update scheme which
has been modified to reason about hidden variables,
similar in style to the approaches of (Liang et al.,
2006; Zettlemoyer and Collins, 2007), but adapted
for our specific model. This approximate algorithm
is computationally efficient and, as we will see,
works well in practice.

Our first modification is to do online learning
instead of optimizing the full objective. Define the
feature sums φ(x, z) =

∑
j φ(xj , zj) which range

over the sentences, as indexed by j. Now, we can
define an update based on the gradient of the local
log likelihood for example i:

∂ logOi(θ)
∂θj

= Ep(z|xi,yi;θ)[φj(xi, z)]

−Ep(y,z|xi;θ)[φj(xi, z)]

where the deterministic OR Φjoin factors ensure that
the first expectation assigns positive probability only
to assignments that produce the labeled facts yi but
that the second considers all valid sets of extractions.

Of course, these expectations themselves, espe-
cially the second one, would be difficult to com-
pute exactly. Our second modification is to do
a Viterbi approximation, by replacing the expecta-
tions with maximizations. Specifically, we compute
the most likely sentence extractions for the label
facts arg maxz p(z|xi,yi; θ) and the most likely ex-
traction for the input, without regard to the labels,
arg maxy,z p(y, z|xi; θ). We then compute the fea-
tures for these assignments and do a simple additive
update. The final algorithm is detailed in Figure 2.
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5 Inference

To support learning, as described above, we need
to compute assignments arg maxz p(z|x,y; θ) and
arg maxy,z p(y, z|x; θ). In this section, we describe
algorithms for both cases that use the deterministic
OR nodes to simplify the required computations.

Predicting the most likely joint extraction
arg maxy,z p(y, z|x; θ) can be done efficiently
given the structure of our model. In particular, we
note that the factors Φjoin represent deterministic de-
pendencies between Z and Y, which when satisfied
do not affect the probability of the solution. It is thus
sufficient to independently compute an assignment
for each sentence-level extraction variable Zi, ignor-
ing the deterministic dependencies. The optimal set-
ting for the aggregate variables Y is then simply the
assignment that is consistent with these extractions.
The time complexity is O(|R| · |S|).

Predicting sentence level extractions given weak
supervision facts, arg maxz p(z|x,y; θ), is more
challenging. We start by computing extraction
scores Φextract(xi, zi) for each possible extraction as-
signment Zi = zi at each sentence xi ∈ S, and
storing the values in a dynamic programming table.
Next, we must find the most likely assignment z that
respects our output variables y. It turns out that
this problem is a variant of the weighted, edge-cover
problem, for which there exist polynomial time op-
timal solutions.

Let G = (E ,V = VS ∪ Vy) be a complete
weighted bipartite graph with one node vS

i ∈ VS for
each sentence xi ∈ S and one node vyr ∈ Vy for each
relation r ∈ R where yr = 1. The edge weights are
given by c((vS

i , v
y
r ))

def
= Φextract(xi, zi). Our goal is

to select a subset of the edges which maximizes the
sum of their weights, subject to each node vS

i ∈ VS

being incident to exactly one edge, and each node
vyr ∈ Vy being incident to at least one edge.

Exact Solution An exact solution can be obtained
by first computing the maximum weighted bipartite
matching, and adding edges to nodes which are not
incident to an edge. This can be computed in time
O(|V|(|E| + |V| log |V|)), which we can rewrite as
O((|R|+ |S|)(|R||S|+ (|R|+ |S|) log(|R|+ |S|))).

Approximate Solution An approximate solution
can be obtained by iterating over the nodes in Vy,

𝑣bornIn

y
 𝑣locatedIn

y
 

𝑣1
S 𝑣2

S 𝑣3
S 

𝑝(𝑍1 = bornIn|𝐱) 𝑝(𝑍3 = locatedIn|𝐱) 

𝑝(𝑍1 … 

Figure 3: Inference of arg maxz p(Z = z|x,y) requires
solving a weighted, edge-cover problem.

and each time adding the highest weight incident
edge whose addition doesn’t violate a constraint.
The running time is O(|R||S|). This greedy search
guarantees each fact is extracted at least once and
allows any additional extractions that increase the
overall probability of the assignment. Given the
computational advantage, we use it in all of the ex-
perimental evaluations.

6 Experimental Setup

We follow the approach of Riedel et al. (2010) for
generating weak supervision data, computing fea-
tures, and evaluating aggregate extraction. We also
introduce new metrics for measuring sentential ex-
traction performance, both relation-independent and
relation-specific.

6.1 Data Generation
We used the same data sets as Riedel et al. (2010)
for weak supervision. The data was first tagged with
the Stanford NER system (Finkel et al., 2005) and
then entity mentions were found by collecting each
continuous phrase where words were tagged iden-
tically (i.e., as a person, location, or organization).
Finally, these phrases were matched to the names of
Freebase entities.

Given the set of matches, define Σ to be set of NY
Times sentences with two matched phrases, E to be
the set of Freebase entities which were mentioned in
one or more sentences, ∆ to be the set of Freebase
facts whose arguments, e1 and e2 were mentioned in
a sentence in Σ, and R to be set of relations names
used in the facts of ∆. These sets define the weak
supervision data.

6.2 Features and Initialization
We use the set of sentence-level features described
by Riedel et al. (2010), which were originally de-
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veloped by Mintz et al. (2009). These include in-
dicators for various lexical, part of speech, named
entity, and dependency tree path properties of entity
mentions in specific sentences, as computed with the
Malt dependency parser (Nivre and Nilsson, 2004)
and OpenNLP POS tagger1. However, unlike the
previous work, we did not make use of any features
that explicitly aggregate these properties across mul-
tiple mention instances.

The MULTIR algorithm has a single parameter T ,
the number of training iterations, that must be spec-
ified manually. We used T = 50 iterations, which
performed best in development experiments.

6.3 Evaluation Metrics

Evaluation is challenging, since only a small per-
centage (approximately 3%) of sentences match
facts in Freebase, and the number of matches is
highly unbalanced across relations, as we will see
in more detail later. We use the following metrics.

Aggregate Extraction Let ∆e be the set of ex-
tracted relations for any of the systems; we com-
pute aggregate precision and recall by comparing
∆e with ∆. This metric is easily computed but un-
derestimates extraction accuracy because Freebase
is incomplete and some true relations in ∆e will be
marked wrong.

Sentential Extraction Let Se be the sentences
where some system extracted a relation and SF be
the sentences that match the arguments of a fact in
∆. We manually compute sentential extraction ac-
curacy by sampling a set of 1000 sentences from
Se ∪ SF and manually labeling the correct extrac-
tion decision, either a relation r ∈ R or none. We
then report precision and recall for each system on
this set of sampled sentences. These results provide
a good approximation to the true precision but can
overestimate the actual recall, since we did not man-
ually check the much larger set of sentences where
no approach predicted extractions.

6.4 Precision / Recall Curves

To compute precision / recall curves for the tasks,
we ranked the MULTIR extractions as follows. For
sentence-level evaluations, we ordered according to

1http://opennlp.sourceforge.net/
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Figure 4: Aggregate extraction precision / recall curves
for Riedel et al. (2010), a reimplementation of that ap-
proach (SOLOR), and our algorithm (MULTIR).

the extraction factor score Φextract(zi, xi). For aggre-
gate comparisons, we set the score for an extraction
Y r = true to be the max of the extraction factor
scores for the sentences where r was extracted.

7 Experiments

To evaluate our algorithm, we first compare it to an
existing approach for using multi-instance learning
with weak supervision (Riedel et al., 2010), using
the same data and features. We report both aggregate
extraction and sentential extraction results. We then
investigate relation-specific performance of our sys-
tem. Finally, we report running time comparisons.

7.1 Aggregate Extraction

Figure 4 shows approximate precision / recall curves
for three systems computed with aggregate metrics
(Section 6.3) that test how closely the extractions
match the facts in Freebase. The systems include the
original results reported by Riedel et al. (2010) as
well as our new model (MULTIR). We also compare
with SOLOR, a reimplementation of their algorithm,
which we built in Factorie (McCallum et al., 2009),
and will use later to evaluate sentential extraction.

MULTIR achieves competitive or higher preci-
sion over all ranges of recall, with the exception
of the very low recall range of approximately 0-
1%. It also significantly extends the highest recall
achieved, from 20% to 25%, with little loss in preci-
sion. To investigate the low precision in the 0-1% re-
call range, we manually checked the ten highest con-
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Figure 5: Sentential extraction precision / recall curves
for MULTIR and SOLOR.

fidence extractions produced by MULTIR that were
marked wrong. We found that all ten were true facts
that were simply missing from Freebase. A manual
evaluation, as we perform next for sentential extrac-
tion, would remove this dip.

7.2 Sentential Extraction

Although their model includes variables to model
sentential extraction, Riedel et al. (2010) did not re-
port sentence level performance. To generate the
precision / recall curve we used the joint model as-
signment score for each of the sentences that con-
tributed to the aggregate extraction decision.

Figure 4 shows approximate precision / recall
curves for MULTIR and SOLOR computed against
manually generated sentence labels, as defined in
Section 6.3. MULTIR achieves significantly higher
recall with a consistently high level of precision. At
the highest recall point, MULTIR reaches 72.4% pre-
cision and 51.9% recall, for an F1 score of 60.5%.

7.3 Relation-Specific Performance

Since the data contains an unbalanced number of in-
stances of each relation, we also report precision and
recall for each of the ten most frequent relations. Let
SMr be the sentences where MULTIR extracted an
instance of relation r ∈ R, and let SFr be the sen-
tences that match the arguments of a fact about re-
lation r in ∆. For each r, we sample 100 sentences
from both SMr and SFr and manually check accu-
racy. To estimate precision P̃r we compute the ratio
of true relation mentions in SMr , and to estimate re-
call R̃r we take the ratio of true relation mentions in

SFr which are returned by our system.
Table 1 presents this approximate precision and

recall for MULTIR on each of the relations, along
with statistics we computed to measure the qual-
ity of the weak supervision. Precision is high for
the majority of relations but recall is consistently
lower. We also see that the Freebase matches are
highly skewed in quantity and can be low quality for
some relations, with very few of them actually cor-
responding to true extractions. The approach gener-
ally performs best on the relations with a sufficiently
large number of true matches, in many cases even
achieving precision that outperforms the accuracy of
the heuristic matches, at reasonable recall levels.

7.4 Overlapping Relations

Table 1 also highlights some of the effects of learn-
ing with overlapping relations. For example, in the
data, almost all of the matches for the administra-
tive divisions relation overlap with the contains re-
lation, because they both model relationships for a
pair of locations. Since, in general, sentences are
much more likely to describe a contains relation, this
overlap leads to a situation were almost none of the
administrate division matches are true ones, and we
cannot accurately learn an extractor. However, we
can still learn to accurately extract the contains rela-
tion, despite the distracting matches. Similarly, the
place of birth and place of death relations tend to
overlap, since it is often the case that people are born
and die in the same city. In both cases, the precision
outperforms the labeling accuracy and the recall is
relatively high.

To measure the impact of modeling overlapping
relations, we also evaluated a simple, restricted
baseline. Instead of labeling each entity pair with
the set of all true Freebase facts, we created a dataset
where each true relation was used to create a dif-
ferent training example. Training MULTIR on this
data simulates effects of conflicting supervision that
can come from not modeling overlaps. On average
across relations, precision increases 12 points but re-
call drops 26 points, for an overall reduction in F1
score from 60.5% to 40.3%.

7.5 Running Time

One final advantage of our model is the mod-
est running time. Our implementation of the
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Relation Freebase Matches MULTIR
#sents % true P̃ R̃

/business/person/company 302 89.0 100.0 25.8
/people/person/place lived 450 60.0 80.0 6.7
/location/location/contains 2793 51.0 100.0 56.0

/business/company/founders 95 48.4 71.4 10.9
/people/person/nationality 723 41.0 85.7 15.0

/location/neighborhood/neighborhood of 68 39.7 100.0 11.1
/people/person/children 30 80.0 100.0 8.3

/people/deceased person/place of death 68 22.1 100.0 20.0
/people/person/place of birth 162 12.0 100.0 33.0

/location/country/administrative divisions 424 0.2 N/A 0.0

Table 1: Estimated precision and recall by relation, as well as the number of matched sentences (#sents) and accuracy
(% true) of matches between sentences and facts in Freebase.

Riedel et al. (2010) approach required approxi-
mately 6 hours to train on NY Times 05-06 and 4
hours to test on the NY Times 07, each without pre-
processing. Although they do sampling for infer-
ence, the global aggregation variables require rea-
soning about an exponentially large (in the number
of sentences) sample space.

In contrast, our approach required approximately
one minute to train and less than one second to test,
on the same data. This advantage comes from the
decomposition that is possible with the determinis-
tic OR aggregation variables. For test, we simply
consider each sentence in isolation and during train-
ing our approximation to the weighted assignment
problem is linear in the number of sentences.

7.6 Discussion

The sentential extraction results demonstrates the
advantages of learning a model that is primarily
driven by sentence-level features. Although previ-
ous approaches have used more sophisticated fea-
tures for aggregating the evidence from individual
sentences, we demonstrate that aggregating strong
sentence-level evidence with a simple deterministic
OR that models overlapping relations is more effec-
tive, and also enables training of a sentence extractor
that runs with no aggregate information.

While the Riedel et al. approach does include a
model of which sentences express relations, it makes
significant use of aggregate features that are primar-
ily designed to do entity-level relation predictions
and has a less detailed model of extractions at the
individual sentence level. Perhaps surprisingly, our

model is able to do better at both the sentential and
aggregate levels.

8 Related Work

Supervised-learning approaches to IE were intro-
duced in (Soderland et al., 1995) and are too nu-
merous to summarize here. While they offer high
precision and recall, these methods are unlikely to
scale to the thousands of relations found in text on
the Web. Open IE systems, which perform self-
supervised learning of relation-independent extrac-
tors (e.g., Preemptive IE (Shinyama and Sekine,
2006), TEXTRUNNER (Banko et al., 2007; Banko
and Etzioni, 2008) and WOE (Wu and Weld, 2010))
can scale to millions of documents, but don’t output
canonicalized relations.

8.1 Weak Supervision
Weak supervision (also known as distant- or self su-
pervision) refers to a broad class of methods, but
we focus on the increasingly-popular idea of using
a store of structured data to heuristicaly label a tex-
tual corpus. Craven and Kumlien (1999) introduced
the idea by matching the Yeast Protein Database
(YPD) to the abstracts of papers in PubMed and
training a naive-Bayes extractor. Bellare and Mc-
Callum (2007) used a database of BibTex records
to train a CRF extractor on 12 bibliographic rela-
tions. The KYLIN system aplied weak supervision
to learn relations from Wikipedia, treating infoboxes
as the associated database (Wu and Weld, 2007);
Wu et al. (2008) extended the system to use smooth-
ing over an automatically generated infobox taxon-
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omy. Mintz et al. (2009) used Freebase facts to train
100 relational extractors on Wikipedia. Hoffmann
et al. (2010) describe a system similar to KYLIN,
but which dynamically generates lexicons in order
to handle sparse data, learning over 5000 Infobox
relations with an average F1 score of 61%. Yao
et al. (2010) perform weak supervision, while using
selectional preference constraints to a jointly reason
about entity types.

The NELL system (Carlson et al., 2010) can also
be viewed as performing weak supervision. Its ini-
tial knowledge consists of a selectional preference
constraint and 20 ground fact seeds. NELL then
matches entity pairs from the seeds to a Web cor-
pus, but instead of learning a probabilistic model,
it bootstraps a set of extraction patterns using semi-
supervised methods for multitask learning.

8.2 Multi-Instance Learning

Multi-instance learning was introduced in order to
combat the problem of ambiguously-labeled train-
ing data when predicting the activity of differ-
ent drugs (Dietterich et al., 1997). Bunescu and
Mooney (2007) connect weak supervision with
multi-instance learning and extend their relational
extraction kernel to this context.

Riedel et al. (2010), combine weak supervision
and multi-instance learning in a more sophisticated
manner, training a graphical model, which assumes
only that at least one of the matches between the
arguments of a Freebase fact and sentences in the
corpus is a true relational mention. Our model may
be seen as an extension of theirs, since both models
include sentence-level and aggregate random vari-
ables. However, Riedel et al. have only a single ag-
gregate variable that takes values r ∈ R ∪ {none},
thereby ruling out overlapping relations. We have
discussed the comparison in more detail throughout
the paper, including in the model formulation sec-
tion and experiments.

9 Conclusion

We argue that weak supervision is promising method
for scaling information extraction to the level where
it can handle the myriad, different relations on the
Web. By using the contents of a database to heuris-
tically label a training corpus, we may be able to

automatically learn a nearly unbounded number of
relational extractors. Since the processs of match-
ing database tuples to sentences is inherently heuris-
tic, researchers have proposed multi-instance learn-
ing algorithms as a means for coping with the result-
ing noisy data. Unfortunately, previous approaches
assume that all relations are disjoint — for exam-
ple they cannot extract the pair Founded(Jobs,
Apple) and CEO-of(Jobs, Apple), because
two relations are not allowed to have the same argu-
ments.

This paper presents a novel approach for multi-
instance learning with overlapping relations that
combines a sentence-level extraction model with a
simple, corpus-level component for aggregating the
individual facts. We apply our model to learn extrac-
tors for NY Times text using weak supervision from
Freebase. Experiments show improvements for both
sentential and aggregate (corpus level) extraction,
and demonstrate that the approach is computation-
ally efficient.

Our early progress suggests many interesting di-
rections. By joining two or more Freebase tables,
we can generate many more matches and learn more
relations. We also wish to refine our model in order
to improve precision. For example, we would like
to add type reasoning about entities and selectional
preference constraints for relations. Finally, we are
also interested in applying the overall learning ap-
proaches to other tasks that could be modeled with
weak supervision, such as coreference and named
entity classification.

The source code of our system, its out-
put, and all data annotations are available at
http://cs.uw.edu/homes/raphaelh/mr.
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