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Abstract

We present a novel approach to discovering re-
lations and their instantiations from a collec-
tion of documents in a single domain. Our
approach learns relation types by exploiting
meta-constraints that characterize the general
qualities of a good relation in any domain.
These constraints state that instances of a
single relation should exhibit regularities at
multiple levels of linguistic structure, includ-
ing lexicography, syntax, and document-level
context. We capture these regularities via the
structure of our probabilistic model as well
as a set of declaratively-specified constraints
enforced during posterior inference. Across
two domains our approach successfully recov-
ers hidden relation structure, comparable to
or outperforming previous state-of-the-art ap-
proaches. Furthermore, we find that a small
set of constraints is applicable across the do-
mains, and that using domain-specific con-
straints can further improve performance. 1

1 Introduction

In this paper, we introduce a novel approach for the
unsupervised learning of relations and their instan-
tiations from a set of in-domain documents. Given
a collection of news articles about earthquakes, for
example, our method discovers relations such as the
earthquake’s location and resulting damage, and ex-
tracts phrases representing the relations’ instantia-
tions. Clusters of similar in-domain documents are

1The source code for this work is available at:
http://groups.csail.mit.edu/rbg/code/relation extraction/

A strong earthquake rocked the Philippine island of Min-
doro early Tuesday, [destroying]ind [some homes]arg ...

A strong earthquake hit the China-Burma border early
Wednesday ... The official Xinhua News Agency said
[some houses]arg were [damaged]ind ...

A strong earthquake with a preliminary magnitude of 6.6
shook northwestern Greece on Saturday, ... [destroying]ind

[hundreds of old houses]arg ...

Figure 1: Excerpts from newswire articles about earth-
quakes. The indicator and argument words for the dam-
age relation are highlighted.

increasingly available in forms such as Wikipedia ar-
ticle categories, financial reports, and biographies.

In contrast to previous work, our approach learns
from domain-independent meta-constraints on rela-
tion expression, rather than supervision specific to
particular relations and their instances. In particular,
we leverage the linguistic intuition that documents
in a single domain exhibit regularities in how they
express their relations. These regularities occur both
in the relations’ lexical and syntactic realizations as
well as at the level of document structure. For in-
stance, consider the damage relation excerpted from
earthquake articles in Figure 1. Lexically, we ob-
serve similar words in the instances and their con-
texts, such as “destroying” and “houses.” Syntacti-
cally, in two instances the relation instantiation is the
dependency child of the word “destroying.” On the
discourse level, these instances appear toward the
beginning of their respective documents. In general,
valid relations in many domains are characterized by
these coherence properties.

We capture these regularities using a Bayesian
model where the underlying relations are repre-
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sented as latent variables. The model takes as in-
put a constituent-parsed corpus and explains how the
constituents arise from the latent variables. Each re-
lation instantiation is encoded by the variables as
a relation-evoking indicator word (e.g., “destroy-
ing”) and corresponding argument constituent (e.g.,
“some homes”).2 Our approach capitalizes on rela-
tion regularity in two ways. First, the model’s gen-
erative process encourages coherence in the local
features and placement of relation instances. Sec-
ond, we apply posterior regularization (Graça et
al., 2007) during inference to enforce higher-level
declarative constraints, such as requiring indicators
and arguments to be syntactically linked.

We evaluate our approach on two domains pre-
viously studied for high-level document structure
analysis, news articles about earthquakes and finan-
cial markets. Our results demonstrate that we can
successfully identify domain-relevant relations. We
also study the importance and effectiveness of the
declaratively-specified constraints. In particular, we
find that a small set of declarative constraints are
effective across domains, while additional domain-
specific constraints yield further benefits.

2 Related Work

Extraction with Reduced Supervision Recent
research in information extraction has taken large
steps toward reducing the need for labeled data. Ex-
amples include using bootstrapping to amplify small
seed sets of example outputs (Agichtein and Gra-
vano, 2000; Yangarber et al., 2000; Bunescu and
Mooney, 2007; Zhu et al., 2009), leveraging ex-
isting databases that overlap with the text (Mintz
et al., 2009; Yao et al., 2010), and learning gen-
eral domain-independent knowledge bases by ex-
ploiting redundancies in large web and news cor-
pora (Hasegawa et al., 2004; Shinyama and Sekine,
2006; Banko et al., 2007; Yates and Etzioni, 2009).

Our approach is distinct in both the supervision
and data we operate over. First, in contrast to boot-
strapping and database matching approaches, we
learn from meta-qualities, such as low variability in
syntactic patterns, that characterize a good relation.

2We do not use the word “argument” in the syntactic sense—
a relation’s argument may or may not be the syntactic depen-
dency argument of its indicator.

We hypothesize that these properties hold across re-
lations in different domains. Second, in contrast to
work that builds general relation databases from het-
erogeneous corpora, our focus is on learning the re-
lations salient in a single domain. Our setup is more
germane to specialized domains expressing informa-
tion not broadly available on the web.

Earlier work in unsupervised information extrac-
tion has also leveraged meta-knowledge indepen-
dent of specific relation types, such as declaratively-
specified syntactic patterns (Riloff, 1996), frequent
dependency subtree patterns (Sudo et al., 2003), and
automatic clusterings of syntactic patterns (Lin and
Pantel, 2001; Zhang et al., 2005) and contexts (Chen
et al., 2005; Rosenfeld and Feldman, 2007). Our ap-
proach incorporates a broader range of constraints
and balances constraints with underlying patterns
learned from the data, thereby requiring more so-
phisticated machinery for modeling and inference.

Extraction with Constraints Previous work has
recognized the appeal of applying declarative con-
straints to extraction. In a supervised setting, Roth
and Yih (2004) induce relations by using linear pro-
gramming to impose global declarative constraints
on the output from a set of classifiers trained on lo-
cal features. Chang et al. (2007) propose an objec-
tive function for semi-supervised extraction that bal-
ances likelihood of labeled instances and constraint
violation on unlabeled instances. Recent work has
also explored how certain kinds of supervision can
be formulated as constraints on model posteriors.
Such constraints are not declarative, but instead
based on annotations of words’ majority relation la-
bels (Mann and McCallum, 2008) and pre-existing
databases with the desired output schema (Bellare
and McCallum, 2009). In contrast to previous work,
our approach explores a different class of constraints
that does not rely on supervision that is specific to
particular relation types and their instances.

3 Model

Our work performs in-domain relation discovery by
leveraging regularities in relation expression at the
lexical, syntactic, and discourse levels. These regu-
larities are captured via two components: a proba-
bilistic model that explains how documents are gen-
erated from latent relation variables and a technique
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is_verb 0 1 0
earthquake 1 0 0
hit 0 1 0

       

has_proper 0 0 1
has_number 0 0 0
depth 1 3 2

Figure 2: Words w and constituents x of syntactic parses
are represented with indicator features φi and argument
features φa respectively. A single relation instantiation is
a pair of indicator w and argument x; we filter w to be
nouns and verbs and x to be noun phrases and adjectives.

for biasing inference to adhere to declaratively-
specified constraints on relation expression. This
section describes the generative process, while Sec-
tions 4 and 5 discuss declarative constraints.

3.1 Problem Formulation

Our input is a corpus of constituent-parsed docu-
ments and a number K of relation types. The output
is K clusters of semantically related relation instan-
tiations. We represent these instantiations as a pair
of indicator word and argument sequence from the
same sentence. The indicator’s role is to anchor a
relation and identify its type. We only allow nouns
or verbs to be indicators. For instance, in the earth-
quake domain a likely indicator for damage would
be “destroyed.” The argument is the actual rela-
tion value, e.g., “some homes,” and corresponds to
a noun phrase or adjective.3

Along with the document parse trees, we utilize
a set of features φi(w) and φa(x) describing each
potential indicator word w and argument constituent
x, respectively. An example feature representation
is shown in Figure 2. These features can encode
words, part-of-speech tags, context, and so on. Indi-
cator and argument feature definitions need not be
the same (e.g., has number is important for argu-

3In this paper we focus on unary relations; binary relations
can be modeled with extensions of the hidden variables and con-
straints.

ments but irrelevant for indicators).4

3.2 Generative Process
Our model associates each relation type k with a set
of feature distributions θk and a location distribution
λk. Each instantiation’s indicator and argument, and
its position within a document, are drawn from these
distributions. By sharing distributions within each
relation, the model places high probability mass on
clusters of instantiations that are coherent in features
and position. Furthermore, we allow at most one in-
stantiation per document and relation, so as to target
relations that are relevant to the entire document.

There are three steps to the generative process.
First, we draw feature and location distributions for
each relation. Second, an instantiation is selected
for every pair of document d and relation k. Third,
the indicator features of each word and argument
features of each constituent are generated based on
the relation parameters and instantiations. Figure 3
presents a reference for the generative process.

Generating Relation Parameters Each relation k
is associated with four feature distribution param-
eter vectors: θi

k for indicator words, θbi
k for non-

indicator words, θa
k for argument constituents, and

θba
k for non-argument constituents. Each of these is

a set of multinomial parameters per feature drawn
from a symmetric Dirichlet prior. A likely indica-
tor word should have features that are highly proba-
ble according to θi

k, and likewise for arguments and
θa
k. Parameters θbi

k and θba
k represent background dis-

tributions for non-relation words and constituents,
similar in spirit to other uses of background distri-
butions that filter out irrelevant words (Che, 2006).5

By drawing each instance from these distributions,
we encourage the relation to be coherent in local lex-
ical and syntactic properties.

Each relation type k is also associated with a pa-
rameter vector λk over document segments drawn
from a symmetric Dirichlet prior. Documents are
divided into L equal-length segments; λk states how
likely relation k is for each segment, with one null
outcome for the relation not occurring in the doc-
ument. Because λk is shared within a relation, its

4We consider only categorical features here, though the ex-
tension to continuous or ordinal features is straightforward.

5We use separate background distributions for each relation
to make inference more tractable.
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For each relation type k:

• For each indicator feature φi draw feature distri-
butions θi

k,φi , θ
bi
k,φi ∼ Dir(θ0)

• For each argument feature φa draw feature dis-
tributions θa

k,φa , θba
k,φa ∼ Dir(θ0)

• Draw location distribution λk ∼ Dir(λ0)

For each relation type k and document d:

• Select document segment sd,k ∼ Mult(λk)

• Select sentence zd,k uniformly from segment
sd,k, and indicator id,k and argument ad,k uni-
formly from sentence zd,k

For each word w in every document d:

• Draw each indicator feature φi(w) ∼
Mult

(
1
Z

∏K
k=1 θk,φi

)
, where θk,φi is θi

k,φi

if id,k = w and θbi
k,φi otherwise

For each constituent x in every document d:

• Draw each argument feature φa(x) ∼
Mult

(
1
Z

∏K
k=1 θk,φa

)
, where θk,φa is θa

k,φa

if ad,k = x and θba
k,φa otherwise

Figure 3: The generative process for model parameters
and features. In the above Dir and Mult refer respectively
to the Dirichlet distribution and multinomial distribution.
Fixed hyperparameters are subscripted with zero.

instances will tend to occur in the same relative po-
sitions across documents. The model can learn, for
example, that a particular relation typically occurs in
the first quarter of a document (if L = 4).

Generating Relation Instantiations For every rela-
tion type k and document d, we first choose which
portion of the document (if any) contains the instan-
tiation by drawing a document segment sd,k from
λk. Our model only draws one instantiation per pair
of k and d, so each discovered instantiation within a
document is a separate relation. We then choose the
specific sentence zd,k uniformly from within the seg-
ment, and the indicator word id,k and argument con-
stituent ad,k uniformly from within that sentence.

Generating Text Finally, we draw the feature val-
ues. We make a Naı̈ve Bayes assumption between
features, drawing each independently conditioned
on relation structure. For a word w, we want all re-
lations to be able to influence its generation. Toward

this end, we compute the element-wise product of
feature parameters across relations k = 1, . . . ,K,
using indicator parameters θi

k if relation k selected
w as an indicator word (if id,k = w) and background
parameters θbi

k otherwise. The result is then normal-
ized to form a valid multinomial that produces word
w’s features. Constituents are drawn similarly from
every relations’ argument distributions.

4 Inference with Constraints

The model presented above leverages relation reg-
ularities in local features and document placement.
However, it is unable to specify global syntactic
preferences about relation expression, such as indi-
cators and arguments being in the same clause. An-
other issue with this model is that different relations
could overlap in their indicators and arguments.6

To overcome these obstacles, we apply declara-
tive constraints by imposing inequality constraints
on expectations of the posterior during inference
using posterior regularization (Graça et al., 2007).
In this section we present the technical details
of the approach; Section 5 explains the specific
linguistically-motivated constraints we consider.

4.1 Inference with Posterior Regularization
We first review how posterior regularization impacts
the variational inference procedure in general. Let
θ, z, and x denote the parameters, hidden struc-
ture, and observations of an arbitrary model. We
are interested in estimating the posterior distribution
p(θ, z | x) by finding a distribution q(θ, z) ∈ Q that
is minimal in KL-divergence to the true posterior:

KL(q(θ, z) ‖ p(θ, z | x))

=
∫
q(θ, z) log

q(θ, z)
p(θ, z, x)

dθdz + log p(x). (1)

For tractability, variational inference typically
makes a mean-field assumption that restricts the set
Q to distributions where θ and z are independent,
i.e., q(θ, z) = q(θ)q(z). We then optimize equa-
tion 1 by coordinate-wise descent on q(θ) and q(z).

To incorporate constraints into inference, we fur-
ther restrict Q to distributions that satisfy a given

6In fact, a true maximum a posteriori estimate of the model
parameters would find the same most salient relation over and
over again for every k, rather than finding K different relations.
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set of inequality constraints, each of the form
Eq[f(z)] ≤ b. Here, f(z) is a deterministic func-
tion of z and b is a user-specified threshold. Inequal-
ities in the opposite direction simply require negat-
ing f(z) and b. For example, we could apply a syn-
tactic constraint of the form Eq[f(z)] ≥ b, where
f(z) counts the number of indicator/argument pairs
that are syntactically connected in a pre-specified
manner (e.g., the indicator and argument modify the
same verb), and b is a fixed threshold.

Given a set C of constraints with functions fc(z)
and thresholds bc, the updates for q(θ) and q(z) from
equation 1 are as follows:

q(θ) = argmin
q(θ)

KL
(
q(θ) ‖ q′(θ)

)
, (2)

where q′(θ) ∝ exp Eq(z)[log p(θ, z, x)], and

q(z) = argmin
q(z)

KL
(
q(z) ‖ q′(z)

)
s.t. Eq(z)[fc(z)] ≤ bc, ∀c ∈ C, (3)

where q′(z) ∝ exp Eq(θ)[log p(θ, z, x)]. Equation 2
is not affected by the posterior constraints and is up-
dated by setting q(θ) to q′(θ). We solve equation 3
in its dual form (Graça et al., 2007):

argmin
κ

∑
c∈C

κcbc + log
∑
z

q′(z)e−
P

c∈C κcfc(z)

s.t. κc ≥ 0, ∀c ∈ C. (4)

With the box constraints of equation 4, a numerical
optimization procedure such as L-BFGS-B (Byrd
et al., 1995) can be used to find optimal dual pa-
rameters κ∗. The original q(z) is then updated to
q′(z) exp

(
−
∑

c∈C κ
∗
cfc(z)

)
and renormalized.

4.2 Updates for our Model
Our model uses this mean-field factorization:

q(θ, λ, z, a, i)

=
K∏
k=1

q(λk; λ̂k)q(θi
k; θ̂

i
k)q(θ

bi
k ; θ̂bi

k )q(θa
k; θ̂

a
k)q(θ

ba
k ; θ̂ba

k )

×
∏
d

q(zd,k, ad,k, id,k; ĉd,k) (5)

In the above, λ̂ and θ̂ are Dirichlet distribution pa-
rameters, and ĉ are multinomial parameters. Note

that we do not factorize the distribution of z, i, and
a for a single document and relation, instead repre-
senting their joint distribution with a single set of
variational parameters ĉ. This is tractable because a
single relation occurs only once per document, re-
ducing the joint search space of z, i, and a. The
factors in equation 5 are updated one at a time while
holding the other factors fixed.

Updating θ̂ Due to the Naı̈ve Bayes assumption
between features, each feature’s q(θ) distributions
can be updated separately. However, the product
between feature parameters of different relations in-
troduces a nonconjugacy in the model, precluding
a closed form update. Instead we numerically opti-
mize equation 1 with respect to each θ̂, similarly to
previous work (Boyd-Graber and Blei, 2008). For
instance, θ̂i

k,φ of relation k and feature φ is updated
by finding the gradient of equation 1 with respect to
θ̂i
k,φ and applying L-BFGS. Parameters θ̂bi, θ̂a, and
θ̂ba are updated analogously.

Updating λ̂ This update follows the standard
closed form for Dirichlet parameters:

λ̂k,` = λ0 + Eq(z,a,i)[C`(z, a, i)], (6)

whereC` counts the number of times z falls into seg-
ment ` of a document.

Updating ĉ Parameters ĉ are updated by first com-
puting an unconstrained update q′(z, a, i; ĉ′):

ĉ′d,k,(z,a,i) ∝ exp

Eq(λk)[log p(z, a, i | λk)]

+ Eq(θi
k)[log p(i | θi

k)] +
∑
w 6=i

Eq(θbi
k )[log p(w | θbi

k )]

+ Eq(θa
k)[log p(a | θa

k)] +
∑
x 6=a

Eq(θba
k )[log p(x | θba

k )]


We then perform the minimization on the dual in
equation 4 under the provided constraints to derive a
final update to the constrained ĉ.

Simplifying Approximation The update for θ̂ re-
quires numerical optimization due to the nonconju-
gacy introduced by the point-wise product in fea-
ture generation. If instead we have every relation
type separately generate a copy of the corpus, the θ̂
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Quantity f(z, a, i) ≤ or ≥ b
Syntax ∀k Counts i, a of relation k that match a pattern (see text) ≥ 0.8D
Prevalence ∀k Counts instantiations of relation k ≥ 0.8D
Separation (ind) ∀w Counts times w selected as i ≤ 2
Separation (arg) ∀w Counts times w selected as part of a ≤ 1

Table 1: Each constraint takes the form Eq[f(z, a, i)] ≤ b or Eq[f(z, a, i)] ≥ b; D denotes the number of corpus
documents, ∀k means one constraint per relation type, and ∀w means one constraint per token in the corpus.

updates becomes closed-form expressions similar to
equation 6. This approximation yields similar pa-
rameter estimates as the true updates while vastly
improving speed, so we use it in our experiments.

5 Declarative Constraints

We now have the machinery to incorporate a va-
riety of declarative constraints during inference.
The classes of domain-independent constraints we
study are summarized in Table 1. For the propor-
tion constraints we arbitrarily select a threshold of
80% without any tuning, in the spirit of building a
domain-independent approach.

Syntax As previous work has observed, most rela-
tions are expressed using a limited number of com-
mon syntactic patterns (Riloff, 1996; Banko and Et-
zioni, 2008). Our syntactic constraint captures this
insight by requiring that a certain proportion of the
induced instantiations for each relation match one of
these syntactic patterns:

• The indicator is a verb and the argument’s
headword is either the child or grandchild of
the indicator word in the dependency tree.

• The indicator is a noun and the argument is a
modifier or complement.

• The indicator is a noun in a verb’s subject and
the argument is in the corresponding object.

Prevalence For a relation to be domain-relevant, it
should occur in numerous documents across the cor-
pus, so we institute a constraint on the number of
times a relation is instantiated. Note that the effect
of this constraint could also be achieved by tuning
the prior probability of a relation not occurring in a
document. However, this prior would need to be ad-
justed every time the number of documents or fea-
ture selection changes; using a constraint is an ap-
pealing alternative that is portable across domains.

Separation The separation constraint encourages

diversity in the discovered relation types by restrict-
ing the number of times a single word can serve as
either an indicator or part of the argument of a re-
lation instance. Specifically, we require that every
token of the corpus occurs at most once as a word
in a relation’s argument in expectation. On the other
hand, a single word can sometimes be evocative of
multiple relations (e.g., “occurred” signals both date
and time in “occurred on Friday at 3pm”). Thus, we
allow each word to serve as an indicator more than
once, arbitrarily fixing the limit at two.

6 Experimental Setup

Datasets and Metrics We evaluate on two datasets,
financial market reports and newswire articles about
earthquakes, previously used in work on high-level
content analysis (Barzilay and Lee, 2004; Lap-
ata, 2006). Finance articles chronicle daily mar-
ket movements of currencies and stock indexes, and
earthquake articles document specific earthquakes.
Constituent parses are obtained automatically us-
ing the Stanford parser (Klein and Manning, 2003)
and then converted to dependency parses using the
PennConvertor tool (Johansson and Nugues, 2007).
We manually annotated relations for both corpora,
selecting relation types that occurred frequently in
each domain. We found 15 types for finance and
9 for earthquake. Corpus statistics are summarized
below, and example relation types are shown in Ta-
ble 2.

Docs Sent/Doc Tok/Doc Vocab
Finance 100 12.1 262.9 2918
Earthquake 200 9.3 210.3 3155

In our task, annotation conventions for desired
output relations can greatly impact token-level per-
formance, and the model cannot learn to fit a par-
ticular convention by looking at example data. For
example, earthquakes times are frequently reported
in both local and GMT, and either may be arbitrar-
ily chosen as correct. Moreover, the baseline we
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Fi
na

nc
e Bond 104.58 yen, 98.37 yen

Dollar Change up 0.52 yen, down 0.01 yen

Tokyo Index Change down 5.38 points or 0.41 percent, up 0.16 points, insignificant in percentage terms
E

ar
th

qu
ak

e Damage about 10000 homes, some buildings, no information

Epicenter
Patuca about 185 miles (300 kilometers) south of Quito, 110 kilometers (65 miles)
from shore under the surface of the Flores sea in the Indonesian archipelago

Magnitude 5.7, 6, magnitude-4

Table 2: Example relation types identified in the finance and earthquake datasets with example instance arguments.

compare against produces lambda calculus formulas
rather than spans of text as output, so a token-level
comparison requires transforming its output.

For these reasons, we evaluate on both sentence-
level and token-level precision, recall, and F-score.
Precision is measured by mapping every induced re-
lation cluster to its closest gold relation and comput-
ing the proportion of predicted sentences or words
that are correct. Conversely, for recall we map ev-
ery gold relation to its closest predicted relation and
find the proportion of gold sentences or words that
are predicted. This mapping technique is based on
the many-to-one scheme used for evaluating unsu-
pervised part-of-speech induction (Johnson, 2007).
Note that sentence-level scores are always at least as
high as token-level scores, since it is possible to se-
lect a sentence correctly but none of its true relation
tokens while the opposite is not possible.
Domain-specific Constraints On top of the cross-
domain constraints from Section 5, we study
whether imposing basic domain-specific constraints
can be beneficial. The finance dataset is heav-
ily quantitative, so we consider applying a single
domain-specific constraint stating that most rela-
tion arguments should include a number. Likewise,
earthquake articles are typically written with a ma-
jority of the relevant information toward the begin-
ning of the document, so its domain-specific con-
straint is that most relations should occur in the
first two sentences of a document. Note that these
domain-specific constraints are not specific to in-
dividual relations or instances, but rather encode a
preference across all relation types. In both cases,
we again use an 80% threshold without tuning.
Features For indicators, we use the word, part of
speech, and word stem. For arguments, we use the
word, syntactic constituent label, the head word of
the parent constituent, and the dependency label of

the argument to its parent.
Baselines We compare against three alternative un-
supervised approaches. Note that the first two only
identify relation-bearing sentences, not the specific
words that participate in the relation.

Clustering (CLUTO): A straightforward way of
identifying sentences bearing the same relation is
to simply cluster them. We implement a cluster-
ing baseline using the CLUTO toolkit with word and
part-of-speech features. As with our model, we set
the number of clusters K to the true number of rela-
tion types.

Mallows Topic Model (MTM): Another technique
for grouping similar sentences is the Mallows-based
topic model of Chen et al. (2009). The datasets we
consider here exhibit high-level regularities in con-
tent organization, so we expect that a topic model
with global constraints could identify plausible clus-
ters of relation-bearing sentences. Again, K is set to
the true number of relation types.

Unsupervised Semantic Parsing (USP): Our fi-
nal unsupervised comparison is to USP, an unsuper-
vised deep semantic parser introduced by Poon and
Domingos (2009). USP induces a lambda calculus
representation of an entire corpus and was shown to
be competitive with open information extraction ap-
proaches (Lin and Pantel, 2001; Banko et al., 2007).
We give USP the required Stanford dependency for-
mat as input (de Marneffe and Manning, 2008). We
find that the results are sensitive to the cluster granu-
larity prior, so we tune this parameter and report the
best-performing runs.

We recognize that USP targets a different out-
put representation than ours: a hierarchical semantic
structure over the entirety of a dependency-parsed
text. In contrast, we focus on discovering a limited
numberK of domain-relevant relations expressed as
constituent phrases. Despite these differences, both
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methods ultimately aim to capture domain-specific
relations expressed with varying verbalizations, and
both operate over in-domain input corpora supple-
mented with syntactic information. For these rea-
sons, USP provides a clear and valuable point of
comparison. For this comparison, we transform
USP’s lambda calculus formulas to relation spans as
follows. First, we group lambda forms by a combi-
nation of core form, argument form, and the parent’s
core form.7 We then filter to the K relations that
appear in the most documents. For token-level eval-
uation we take the dependency tree fragment corre-
sponding to the lambda form. For example, in the
sentence “a strong earthquake rocked the Philippines
island of Mindoro early Tuesday,” USP learns that
the word “Tuesday” has a core form corresponding
to words {Tuesday, Wednesday, Saturday}, a parent
form corresponding to words {shook, rock, hit, jolt},
and an argument form of TMOD; all phrases with
this same combination are grouped as a relation.
Training Regimes and Hyperparameters For each
run of our model we perform three random restarts
to convergence and select the posterior with lowest
final free energy. We fix K to the true number of
annotated relation types for both our model and USP
and L (the number of document segments) to five.
Dirichlet hyperparameters are set to 0.1.

7 Results

Table 3’s first two sections present the results of our
main evaluation. For earthquake, the far more diffi-
cult domain, our base model with only the domain-
independent constraints strongly outperforms all
three baselines across both metrics. For finance,
the CLUTO and USP baselines achieve performance
comparable to or slightly better than our base model.
Our approach, however, has the advantage of provid-
ing a formalism for seamlessly incorporating addi-
tional arbitrary domain-specific constraints. When
we add such constraints (denoted as model+DSC),
we achieve consistently higher performance than all
baselines across both datasets and metrics, demon-
strating that this approach provides a simple and ef-
fective framework for injecting domain knowledge
into relation discovery.

7This grouping mechanism yields better results than only
grouping by core form.

The first two baselines correspond to a setup
where the number of sentence clusters K is set to
the true number of relation types. This has the effect
of lowering precision because each sentence must be
assigned a cluster. To mitigate this impact, we exper-
imented with using K+N clusters, with N ranging
from 1 to 30. In each case, we then keep only the K
largest clusters. For the earthquake dataset, increas-
ing N improves performance until some point, after
which performance degrades. However, the best F-
Score corresponding to the optimal number of clus-
ters is 42.2, still far below our model’s 66.0 F-score.
For the finance domain, increasing the number of
clusters hurts performance.

Our results show a large gap in F-score between
the sentence and token-level evaluations for both the
USP baseline and our model. A qualitative analysis
of the results indicates that our model often picks up
on regularities that are difficult to distinguish with-
out relation-specific supervision. For earthquake, a
location may be annotated as “the Philippine island
of Mindoro” while we predict just the word “Min-
doro.” For finance, an index change can be anno-
tated as “30 points, or 0.8 percent,” while our model
identifies “30 points” and “0.8 percent” as separate
relations. In practice, these outputs are all plausi-
ble discoveries, and a practitioner desiring specific
outputs could impose additional constraints to guide
relation discovery toward them.

The Impact of Constraints To understand the im-
pact of the declarative constraints, we perform an
ablation analysis on the constraint sets. We con-
sider removing the constraints on syntactic patterns
(no-syn) and the constraints disallowing relations to
overlap (no-sep) from the full domain-independent
model.8 We also try a version with hard syntac-
tic constraints (hard-syn), which requires that every
extraction match one of the three syntactic patterns
specified by the syntactic constraint.

Table 3’s bottom section presents the results of
this evaluation. The model’s performance degrades
when either of the two constraint sets are removed,
demonstrating that the constraints are in fact benefi-
cial for relation discovery. Additionally, in the hard-
syn case, performance drops dramatically for finance

8Prevalence constraints are always enforced, as otherwise
the prior on not instantiating a relation would need to be tuned.
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Finance Earthquake
Sentence-level Token-level Sentence-level Token-level

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
Model 82.1 59.7 69.2 42.2 23.9 30.5 54.2 68.1 60.4 20.2 16.8 18.3
Model+DSC 87.3 81.6 84.4 51.8 30.0 38.0 66.4 65.6 66.0 22.6 23.1 22.8
CLUTO 56.3 92.7 70.0 — — — 19.8 58.0 29.5 — — —
MTM 40.4 99.3 57.5 — — — 18.6 74.6 29.7 — — —
USP 91.3 66.1 76.7 28.5 32.6 30.4 61.2 43.5 50.8 9.9 32.3 15.1
No-sep 97.8 35.4 52.0 86.1 8.7 15.9 42.2 21.9 28.8 16.1 4.6 7.1
No-syn 83.3 46.1 59.3 20.8 9.9 13.4 53.8 60.9 57.1 14.0 13.8 13.9
Hard-syn 47.7 39.0 42.9 11.6 7.0 8.7 55.0 66.2 60.1 20.1 17.3 18.6

Table 3: Top section: our model, with and without domain-specific constraints (DSC). Middle section: The three
baselines. Bottom section: ablation analysis of constraint sets for our model. For all scores, higher is better.

while remaining almost unchanged for earthquake.
This suggests that formulating constraints as soft in-
equalities on posterior expectations gives our model
the flexibility to accommodate both the underlying
signal in the data and the declarative constraints.

Comparison against Supervised CRF Our final
set of experiments compares a semi-supervised ver-
sion of our model against a conditional random field
(CRF) model. The CRF model was trained using
the same features as our model’s argument features.
To incorporate training examples in our model, we
simply treat annotated relation instances as observed
variables. For both the baselines and our model,
we experiment with using up to 10 annotated docu-
ments. At each of those levels of supervision, we av-
erage results over 10 randomly drawn training sets.

At the sentence level, our model compares very
favorably to the supervised CRF. For finance, it takes
at least 10 annotated documents (corresponding to
roughly 130 annotated relation instances) for the
CRF to match the semi-supervised model’s perfor-
mance. For earthquake, using even 10 annotated
documents (about 71 relation instances) is not suf-
ficient to match our model’s performance.

At the token level, the supervised CRF base-
line is far more competitive. Using a single la-
beled document (13 relation instances) yields su-
perior performance to either of our model variants
for finance, while four labeled documents (29 re-
lation instances) do the same for earthquake. This
result is not surprising—our model makes strong
domain-independent assumptions about how under-
lying patterns of regularities in the text connect to
relation expression. Without domain-specific super-
vision such assumptions are necessary, but they can

prevent the model from fully utilizing available la-
beled instances. Moreover, being able to annotate
even a single document requires a broad understand-
ing of every relation type germane to the domain,
which can be infeasible when there are many unfa-
miliar, complex domains to process.

In light of our strong sentence-level performance,
this suggests a possible human-assisted application:
use our model to identify promising relation-bearing
sentences in a new domain, then have a human an-
notate those sentences for use by a supervised ap-
proach to achieve optimal token-level extraction.

8 Conclusions
This paper has presented a constraint-based ap-
proach to in-domain relation discovery. We have
shown that a generative model augmented with
declarative constraints on the model posterior can
successfully identify domain-relevant relations and
their instantiations. Furthermore, we found that a
single set of constraints can be used across divergent
domains, and that tailoring constraints specific to a
domain can yield further performance benefits.
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