
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 521–529,
Portland, Oregon, June 19-24, 2011. c©2011 Association for Computational Linguistics

Semi-supervised Relation Extraction with Large-scale Word Clustering

Ang Sun Ralph Grishman Satoshi Sekine

Computer Science Department

New York University

{asun,grishman,sekine}@cs.nyu.edu

Abstract

We present a simple semi-supervised

relation extraction system with large-scale
word clustering. We focus on

systematically exploring the effectiveness

of different cluster-based features. We also

propose several statistical methods for
selecting clusters at an appropriate level of

granularity. When training on different

sizes of data, our semi-supervised approach
consistently outperformed a state-of-the-art

supervised baseline system.

1 Introduction

Relation extraction is an important information

extraction task in natural language processing
(NLP), with many practical applications. The goal

of relation extraction is to detect and characterize

semantic relations between pairs of entities in text.
For example, a relation extraction system needs to

be able to extract an Employment relation between

the entities US soldier and US in the phrase US
soldier.

Current supervised approaches for tackling this

problem, in general, fall into two categories:
feature based and kernel based. Given an entity

pair and a sentence containing the pair, both

approaches usually start with multiple level
analyses of the sentence such as tokenization,

partial or full syntactic parsing, and dependency

parsing. Then the feature based method explicitly
extracts a variety of lexical, syntactic and semantic

features for statistical learning, either generative or

discriminative (Miller et al., 2000; Kambhatla,

2004; Boschee et al., 2005; Grishman et al., 2005;
Zhou et al., 2005; Jiang and Zhai, 2007). In

contrast, the kernel based method does not

explicitly extract features; it designs kernel
functions over the structured sentence

representations (sequence, dependency or parse

tree) to capture the similarities between different
relation instances (Zelenko et al., 2003; Bunescu

and Mooney, 2005a; Bunescu and Mooney, 2005b;

Zhao and Grishman, 2005; Zhang et al., 2006;
Zhou et al., 2007; Qian et al., 2008). Both lines of

work depend on effective features, either explicitly

or implicitly.
The performance of a supervised relation

extraction system is usually degraded by the

sparsity of lexical features. For example, unless the
example US soldier has previously been seen in the

training data, it would be difficult for both the

feature based and the kernel based systems to
detect whether there is an Employment relation or

not. Because the syntactic feature of the phrase US

soldier is simply a noun-noun compound which is
quite general, the words in it are crucial for

extracting the relation.

This motivates our work to use word clusters as
additional features for relation extraction. The

assumption is that even if the word soldier may

never have been seen in the annotated Employment
relation instances, other words which share the

same cluster membership with soldier such as

president and ambassador may have been
observed in the Employment instances. The

absence of lexical features can be compensated by

521

the cluster features. Moreover, word clusters may

implicitly correspond to different relation classes.
For example, the cluster of president may be

related to the Employment relation as in US

president while the cluster of businessman may be
related to the Affiliation relation as in US

businessman.

The main contributions of this paper are: we
explore the cluster-based features in a systematic

way and propose several statistical methods for

selecting effective clusters. We study the impact
of the size of training data on cluster features and

analyze the performance improvements through an

extensive experimental study.
The rest of this paper is organized as follows:

Section 2 presents related work and Section 3

provides the background of the relation extraction
task and the word clustering algorithm. Section 4

describes in detail a state-of-the-art supervised

baseline system. Section 5 describes the cluster-
based features and the cluster selection methods.

We present experimental results in Section 6 and

conclude in Section 7.

2 Related Work

The idea of using word clusters as features in
discriminative learning was pioneered by Miller et

al. (2004), who augmented name tagging training

data with hierarchical word clusters generated by
the Brown clustering algorithm (Brown et al., 1992)

from a large unlabeled corpus. They used different

thresholds to cut the word hierarchy to obtain
clusters of various granularities for feature

decoding. Ratinov and Roth (2009) and Turian et

al. (2010) also explored this approach for name
tagging. Though all of them used the same

hierarchical word clustering algorithm for the task

of name tagging and reported improvements, we
noticed that the clusters used by Miller et al. (2004)

were quite different from that of Ratinov and Roth

(2009) and Turian et al. (2010). To our knowledge,
there has not been work on selecting clusters in a

principled way. We move a step further to explore

several methods in choosing effective clusters. A
second difference between this work and the above

ones is that we utilize word clusters in the task of

relation extraction which is very different from
sequence labeling tasks such as name tagging and

chunking.

Though Boschee et al. (2005) and Chan and

Roth (2010) used word clusters in relation
extraction, they shared the same limitation as the

above approaches in choosing clusters. For

example, Boschee et al. (2005) chose clusters of
different granularities and Chan and Roth (2010)

simply used a single threshold for cutting the word

hierarchy. Moreover, Boschee et al. (2005) only
augmented the predicate (typically a verb or a

noun of the most importance in a relation in their

definition) with word clusters while Chan and Roth
(2010) performed this for any lexical feature

consisting of a single word. In this paper, we

systematically explore the effectiveness of adding
word clusters to different lexical features.

3 Background

3.1 Relation Extraction

One of the well defined relation extraction tasks is
the Automatic Content Extraction

1
 (ACE) program

sponsored by the U.S. government. ACE 2004

defined 7 major entity types: PER (Person), ORG
(Organization), FAC (Facility), GPE (Geo-Political

Entity: countries, cities, etc.), LOC (Location),

WEA (Weapon) and VEH (Vehicle). An entity has
three types of mention: NAM (proper name), NOM

(nominal) or PRO (pronoun). A relation was

defined over a pair of entity mentions within a
single sentence. The 7 major relation types with

examples are shown in Table 1. ACE 2004 also

defined 23 relation subtypes. Following most of
the previous work, this paper only focuses on

relation extraction of major types.
Given a relation instance (, ,)i jx s m m , where

im and jm are a pair of mentions and s is the
sentence containing the pair, the goal is to learn a
function which maps the instance x to a type c,
where c is one of the 7 defined relation types or the
type Nil (no relation exists). There are two
commonly used learning paradigms for relation
extraction:

Flat: This strategy performs relation detection
and classification at the same time. One multi-class
classifier is trained to discriminate among the 7
relation types plus the Nil type.

Hierarchical: This one separates relation
detection from relation classification. One binary

1 Task definition: http://www.itl.nist.gov/iad/894.01/tests/ace/
ACE guidelines: http://projects.ldc.upenn.edu/ace/

522

classifier is trained first to distinguish between
relation instances and non-relation instances. This
can be done by grouping all the instances of the 7
relation types into a positive class and the instances
of Nil into a negative class. Then the thresholded
output of this binary classifier is used as training
data for learning a multi-class classifier for the 7
relation types (Bunescu and Mooney, 2005b).

Type Example

EMP-ORG US president

PHYS a military base in Germany

GPE-AFF U.S. businessman

PER-SOC a spokesman for the senator

DISC each of whom

ART US helicopters

OTHER-AFF Cuban-American people

Table 1: ACE relation types and examples from the

annotation guideline 2 . The heads of the two entity

mentions are marked. Types are listed in decreasing
order of frequency of occurrence in the ACE corpus.

3.2 Brown Word Clustering

The Brown algorithm is a hierarchical clustering

algorithm which initially assigns each word to its

own cluster and then repeatedly merges the two
clusters which cause the least loss in average

mutual information between adjacent clusters

based on bigram statistics. By tracing the pairwise
merging steps, one can obtain a word hierarchy

which can be represented as a binary tree. A word

can be compactly represented as a bit string by
following the path from the root to itself in the tree,

assigning a 0 for each left branch, and a 1 for each

right branch. A cluster is just a branch of that tree.
A high branch may correspond to more general

concepts while the lower branches it includes

might correspond to more specific ones.
Brown et al. (1992) described an efficient

implementation based on a greedy algorithm which

initially assigned only the most frequent words into
distinct clusters. It is worth pointing out that in this

implementation each word occupies a leaf in the

hierarchy, but each leaf might contain more than
one word as can be seen from Table 2. The lengths

of the bit strings also vary among different words.

2 http://projects.ldc.upenn.edu/ace/docs/EnglishRDCV4-3-
2.PDF

Bit string Examples

111011011100 US …

1110110111011 U.S. …

1110110110000 American …

1110110111110110 Cuban, Pakistani, Russian …

11111110010111 Germany, Poland, Greece …

110111110100 businessman, journalist, reporter

1101111101111 president, governor, premier…

1101111101100 senator, soldier, ambassador …

11011101110 spokesman, spokeswoman, …

11001100 people, persons, miners, Haitians

110110111011111 base, compound, camps, camp …

110010111 helicopters, tanks, Marines …

Table 2: An example of words and their bit string

representations obtained in this paper. Words in bold are

head words that appeared in Table 1.

4 Feature Based Relation Extraction

Given a pair of entity mentions ,i jm m  and the
sentence containing the pair, a feature based
system extracts a feature vector v which contains
diverse lexical, syntactic and semantic features.
The goal is to learn a function which can estimate
the conditional probability (|)p c v , the probability
of a relation type c given the feature vector v . The
type with the highest probability will be output as
the class label for the mention pair.

We now describe a supervised baseline system

with a very large set of features and its learning

strategy.

4.1 Baseline Feature Set

We first adopted the full feature set from Zhou et

al. (2005), a state-of-the-art feature based relation

extraction system. For space reasons, we only
show the lexical features as in Table 3 and refer the

reader to the paper for the rest of the features.

At the lexical level, a relation instance can be
seen as a sequence of tokens which form a five

tuple <Before, M1, Between, M2, After>. Tokens

of the five members and the interaction between
the heads of the two mentions can be extracted as

features as shown in Table 3.

In addition, we cherry-picked the following
features which were not included in Zhou et al.

(2005) but were shown to be quite effective for

relation extraction.
Bigram of the words between the two mentions:

This was extracted by both Zhao and Grishman

(2005) and Jiang and Zhai (2007), aiming to

523

provide more order information of the tokens

between the two mentions.
Patterns: There are three types of patterns: 1)

the sequence of the tokens between the two

mentions as used in Boschee et al. (2005); 2) the
sequence of the heads of the constituents between

the two mentions as used by Grishman et al. (2005);

3) the shortest dependency path between the two
mentions in a dependency tree as adopted by

Bunescu and Mooney (2005a). These patterns can

provide more structured information of how the
two mentions are connected.

Title list: This is tailored for the EMP-ORG type

of relations as the head of one of the mentions is
usually a title. The features are decoded in a way

similar to that of Sun (2009).

Position Feature Description

Before BM1F first word before M1

BM1L second word before M1

M1 WM1 bag-of-words in M1

HM1 head3 word of M1

Between WBNULL when no word in between

WBFL the only word in between when

only one word in between

WBF first word in between when at

least two words in between

WBL last word in between when at

least two words in between

WBO other words in between except

first and last words when at

least three words in between

M2 WM2 bag-of-words in M2

HM2 head word of M2

M12 HM12 combination of HM1 and HM2

After AM2F first word after M2

AM2L second word after M2

Table 3: Lexical features for relation extraction.

4.2 Baseline Learning Strategy

We employ a simple learning framework that is

similar to the hierarchical learning strategy as
described in Section 3.1. Specifically, we first train

a binary classifier to distinguish between relation

instances and non-relation instances. Then rather
than using the thresholded output of this binary

classifier as training data, we use only the

annotated relation instances to train a multi-class
classifier for the 7 relation types. In the test phase,

3 The head word of a mention is normally set as the last word
of the mention as in Zhou et al. (2005).

given a test instance x , we first apply the binary

classifier to it for relation detection; if it is detected

as a relation instance we then apply the multi-class

relation classifier to classify it
4
.

5 Cluster Feature Selection

The selection of cluster features aims to answer the
following two questions: which lexical features

should be augmented with word clusters to

improve generalization accuracy? How to select
clusters at an appropriate level of granularity? We

will describe our solutions in Section 5.1 and 5.2.

5.1 Cluster Feature Decoding

While each one of the lexical features in Table 3
used by the baseline can potentially be augmented

with word clusters, we believe the effectiveness of

a lexical feature with augmentation of word
clusters should be tested either individually or

incrementally according to a rank of its importance

as shown in Table 4. We will show the
effectiveness of each cluster feature in the

experiment section.

Impor-

tance

Lexical

Feature

Description of

lexical feature

Cluster Feature

1 HM HM1, HM2 and

HM12

HM1_WC,

HM2_WC,

HM12_WC

2 BagWM WM1 and WM2 BagWM_WC

3 HC a head5 of a chunk

in context

HC_WC

4 BagWC word of context BagWC_WC

Table 4: Cluster features ordered by importance.

The importance is based on linguistic intuitions

and observations of the contributions of different

lexical features from various feature based systems.
Table 4 simplifies a relation instance as a three

tuple <Context, M1, M2> where the Context

includes the Before, Between and After from the

4 Both the binary and multi-class classifiers output normalized
probabilities in the range [0,1]. When the binary classifier’s
prediction probability is greater than 0.5, we take the
prediction with the highest probability of the multi-class
classifier as the final class label. When it is in the range

[0.3,0.5], we only consider as the final class label the
prediction of the multi-class classifier with a probability which
is greater than 0.9. All other cases are taken as non-relation
instances.
5 The head of a chunk is defined as the last word in the chunk.

524

five tuple representation. As a relation in ACE is

usually short, the words of the two entity mentions
can provide more critical indications for relation

classification than the words from the context.

Within the two entity mentions, the head word of
each mention is usually more important than other

words of the mention; the conjunction of the two

heads can provide an additional clue. And in
general words other than the chunk head in the

context do not contribute to establishing a

relationship between the two entity mentions.
The cluster based semi-supervised system works

by adding an additional layer of lexical features

that incorporate word clusters as shown in column
4 of Table 4. Take the US soldier as an example, if

we decide to use a length of 10 as a threshold to

cut the Brown word hierarchy to generate word
clusters, we will extract a cluster feature

HM1_WC10=1101111101 in addition to the

lexical feature HM1=soldier given that the full bit
string of soldier is 1101111101100 in Table 2.

(Note that the cluster feature is a nominal feature,

not to be confused with an integer feature.)

5.2 Selection of Clusters

Given the bit string representations of all the words

in a vocabulary, researchers usually use prefixes of
different lengths of the bit strings to produce word

clusters of various granularities. However, how to

choose the set of prefix lengths in a principled way?
This has not been answered by prior work.

Our main idea is to learn the best set of prefix

lengths, perhaps through the validation of their
effectiveness on a development set of data. To our

knowledge, previous research simply uses ad-hoc

prefix lengths and lacks this training procedure.
The training procedure can be extremely slow for

reasons to be explained below.
Formally, let l be the set of available prefix

lengths ranging from 1 bit to the length of the
longest bit string in the Brown word hierarchy and
let m be the set of prefix lengths we want to use in
decoding cluster features, then the problem of
selecting effective clusters transforms to finding a
| |m -combination of the set l which maximizes
system performance. The training procedure can be
extremely time consuming if we enumerate every
possible | |m -combination of l , given that | |m
can range from 1 to the size of l and the size of
l equals the length of the longest bit string which is

usually 20 when inducing 1,000 clusters using the
Brown algorithm.

One way to achieve better efficiency is to
consider only a subset of l instead of the full set. In
addition, we limit ourselves to use sizes 3 and 4 for
m for matching prior work. This keeps the cluster
features to a manageable size considering that
every word in your vocabulary could contribute to
a lexical feature. For picking a subset of l , we
propose below two statistical measures for
computing the importance of a certain prefix
length.

Information Gain (IG): IG measures the

quality or importance of a feature f by computing
the difference between the prior entropy of classes

C and the posterior entropy, given values V of the

feature f (Hunt et al., 1966; Quinlan, 1986). For
our purpose, C is the set of relation types, f is a

cluster-based feature with a certain prefix length

such as HM1_WC* where * means the prefix
length and a value v is the prefix of the bit string

representation of HM1. More formally, the IG of f

is computed as follows:

() () log ()

(() (|) log (|))

c C

v V c C

IG f p c p c

p v p c v p c v



 

  

 



 
 (1)

where the first and second terms refer to the prior

and posterior entropies respectively.

For each prefix length in the set l , we can

compute its IG for a type of cluster feature and
then rank the prefix lengths based on their IGs for

that cluster feature. For simplicity, we rank the

prefix lengths for a group of cluster features (a
group is a row from column 4 in Table 4) by

collapsing the individual cluster features into a

single cluster feature. For example, we collapse the
3 types: HM1_WC, HM2_WC and HM12_WC into

a single type HM_WC for computing the IG.

Prefix Coverage (PC): If we use a short prefix
then the clusters produced correspond to the high

branches in the word hierarchy and would be very

general. The cluster features may not provide more
informative information than the words themselves.

Similarly, if we use a long prefix such as the length

of the longest bit string, then maybe only a few of
the lexical features can be covered by clusters. To

capture this intuition, we define the PC of a prefix

length i as below:

525

()
()

()

ic

l

count f
PC i

count f
 (2)

where lf stands for a lexical feature such as HM1
and

icf a cluster feature with prefix length i such as
HM1_WCi, (*)count is the number of
occurrences of that feature in training data.

Similar to IG, we compute PC for a group of

cluster features, not for each individual feature.
In our experiments, the top 10 ranked prefix

lengths based on IG and prefix lengths with PC

values in the range [0.4, 0.9] were used.
In addition to the above two statistical measures,

for comparison, we introduce another two simple

but extreme measures for the selection of clusters.
Use All Prefixes (UA): UA produces a cluster

feature at every available bit length with the hope

that the underlying supervised system can learn
proper weights of different cluster features during

training. For example, if the full bit representation

of “Apple” is “000”, UA would produce three
cluster features: prefix1=0, prefix2=00 and

prefix3=000. Because this method does not need

validation on the development set, it is the laziest
but the fastest method for selecting clusters.

Exhaustive Search (ES): ES works by trying

every possible combination of the set l and picking

the one that works the best for the development set.
This is the most cautious and the slowest method

for selecting clusters.

6 Experiments

In this section, we first present details of our

unsupervised word clusters, the relation extraction
data set and its preprocessing. We then present a

series of experiments coupled with result analyses.

We used the English portion of the TDT5
corpora (LDC2006T18) as our unlabeled data for

inducing word clusters. It contains roughly 83

million words in 3.4 million sentences with a
vocabulary size of 450K. We left case intact in the

corpora. Following previous work, we used

Liang’s implementation of the Brown clustering
algorithm (Liang, 2005). We induced 1,000 word

clusters for words that appeared at least twice in

the corpora. The reduced vocabulary contains
255K unique words. The clusters are available at

http://www.cs.nyu.edu/~asun/data/TDT5_BrownW

C.tar.gz.
For relation extraction, we used the benchmark

ACE 2004 training data. Following most of the

previous research, we used in experiments the

nwire (newswire) and bnews (broadcast news)
genres of the data containing 348 documents and

4374 relation instances. We extracted an instance

for every pair of mentions in the same sentence
which were separated by no more than two other

mentions. The non-relation instances generated

were about 8 times more than the relation instances.
Preprocessing of the ACE documents: We used

the Stanford parser
6
 for syntactic and dependency

parsing. We used chunklink
7
 to derive chunking

information from the Stanford parsing. Because

some bnews documents are in lower case, we

recover the case for the head of a mention if its
type is NAM by making the first character into its

upper case. This is for better matching between the

words in ACE and the words in the unsupervised
word clusters.

We used the OpenNLP
8

 maximum entropy

(maxent) package as our machine learning tool.
We choose to work with maxent because the

training is fast and it has a good support for multi-

class classification.

6.1 Baseline Performance

Following previous work, we did 5-fold cross-

validation on the 348 documents with hand-
annotated entity mentions. Our results are shown in

Table 5 which also lists the results of another three

state-of-the-art feature based systems. For this and
the following experiments, all the results were

computed at the relation mention level.

System P(%) R(%) F(%)

Zhou et al. (2007)9 78.2 63.4 70.1

Zhao and Grishman (2005)10 69.2 71.5 70.4

Our Baseline 73.4 67.7 70.4

Jiang and Zhai (2007) 11 72.4 70.2 71.3

Table 5: Performance comparison on the ACE 2004
data over the 7 relation types.

6 http://nlp.stanford.edu/software/lex-parser.shtml
7 http://ilk.uvt.nl/team/sabine/chunklink/README.html
8 http://opennlp.sourceforge.net/
9 Zhou et al. (2005) tested their system on the ACE 2003 data;
Zhou et al. (2007) tested their system on the ACE 2004 data.

10 The paper gives a recall value of 70.5, which is not
consistent with the given values of P and F. An examination of

the correspondence in preparing this paper indicates that the
correct recall value is 71.5.
11 The result is from using the All features in Jiang and Zhai
(2007). It is not quite clear from the paper that whether they
used the 348 documents or the whole 2004 training data.

526

Note that although all the 4 systems did 5-fold

cross-validation on the ACE 2004 data, the
detailed data partition might be different. Also, we

were doing cross-validation at the document level

which we believe was more natural than the
instance level. Nonetheless, we believe our

baseline system has achieved very competitive

performance.

6.2 The Effectiveness of Cluster Selection

Methods

We investigated the tradeoff between performance

and training time of each proposed method in
selecting clusters. In this experiment, we randomly

selected 70 documents from the 348 documents as
test data which roughly equaled the size of 1 fold

in the baseline in Section 6.1. For the baseline in

this section, all the rest of the documents were used
as training data. For the semi-supervised system,

70 percent of the rest of the documents were

randomly selected as training data and 30 percent
as development data. The set of prefix lengths that

worked the best for the development set was

chosen to select clusters. We only used the cluster
feature HM_WC in this experiment.

System F △ Training Time (in minute)

Baseline 70.70 1

UA 71.19 +0.49 1.5

PC3 71.65 +0.95 30

PC4 71.72 +1.02 46

IG3 71.65 +0.95 45

IG4 71.68 +0.98 78

ES3 71.66 +0.96 465

ES4 71.60 +0.90 1678

Table 6: The tradeoff between performance and training

time of each method in selecting clusters. PC3 means

using 3 prefixes with the PC method. △ in this paper

means the difference between a system and the baseline.

Table 6 shows that all the 4 proposed methods

improved baseline performance, with UA as the

fastest and ES as the slowest. It was interesting that
ES did not always outperform the two statistical

methods which might be because of its overfitting

to the development set. In general, both PC and IG
had good balances between performance and

training time. There was no dramatic difference in

performance between using 3 and 4 prefix lengths.

For the rest of this paper, we will only use PC4

as our method in selecting clusters.

6.3 The Effectiveness of Cluster Features

The baseline here is the same one used in Section

6.1. For the semi-supervised system, each test fold

was the same one used in the baseline and the other
4 folds were further split into a training set and a

development set in a ratio of 7:3 for selecting

clusters. We first added the cluster features
individually into the baseline and then added them

incrementally according to the order specified in

Table 4.

System F △

1 Baseline 70.4

2 1 + HM_WC 71.5 + 1.1

3 1 + BagWM_WC 71.0 + 0.6

4 1 + HC_WC 69.6 - 0.8

5 1 + BagWC_WC 46.1 - 24.3

6 2 + BagWM_WC 71.0 + 0.6

7 6 + HC_WC 70.6 + 0.2

8 7+ BagWC_WC 50.3 - 20.1

Table 7: Performance 12 of the baseline and using

different cluster features with PC4 over the 7 types.

We found that adding clusters to the heads of the

two mentions was the most effective way of

introducing cluster features. Adding clusters to the
words of the mentions can also help, though not as

good as the heads. We were surprised that the

heads of chunks in context did not help. This might
be because ACE relations are usually short and the

limited number of long relations is not sufficient in

generalizing cluster features. Adding clusters to
every word in context hurt the performance a lot.

Because of the behavior of each individual feature,

it was not surprising that adding them
incrementally did not give more performance gain.

For the rest of this paper, we will only use

HM_WC as cluster features.

6.4 The Impact of Training Size

We studied the impact of training data size on

cluster features as shown in Table 8. The test data
was always the same as the 5-fold used in the

baseline in Section 6.1. no matter the size of the

training data. The training documents for the

12 All the improvements of F in Table 7, 8 and 9 were
significant at confidence levels >= 95%.

527

docs F of Relation Classification F of Relation Detection

Baseline PC4 (△) Prefix10(△) Baseline PC4(△) Prefix10(△)

50 62.9 63.8(+ 0.9) 63.7(+0.8) 71.4 71.9(+ 0.5) 71.6(+0.2)

75 62.8 64.6(+ 1.8) 63.9(+1.1) 71.5 72.3(+ 0.8) 72.5(+1.0)

125 66.1 68.1(+ 2.0) 67.5(+1.4) 74.5 74.8(+ 0.3) 74.3(-0.2)

175 67.8 69.7(+ 1.9) 69.5(+1.7) 75.2 75.5(+ 0.3) 75.2(0.0)

225 68.9 70.1(+ 1.2) 69.6(+0.7) 75.6 75.9(+ 0.3) 75.3(-0.3)

≈280 70.4 71.5(+ 1.1) 70.7(+0.3) 76.4 76.9(+ 0.5) 76.3(-0.1)

Table 8: Performance over the 7 relation types with different sizes of training data. Prefix10 uses the single prefix

length 10 to generate word clusters as used by Chan and Roth (2010).

Type P R F

Baseline PC4 (△) Baseline PC4 (△) Baseline PC4 (△)

EMP-ORG 75.4 77.2(+1.8) 79.8 81.5(+1.7) 77.6 79.3(+1.7)

PHYS 73.2 71.2(-2.0) 61.6 60.2(-1.4) 66.9 65.3(-1.7)

GPE-AFF 67.1 69.0(+1.9) 60.0 63.2(+3.2) 63.3 65.9(+2.6)

PER-SOC 88.2 83.9(-4.3) 58.4 61.0(+2.6) 70.3 70.7(+0.4)

DISC 79.4 80.6(+1.2) 42.9 46.0(+3.2) 55.7 58.6(+2.9)

ART 87.9 96.9(+9.0) 63.0 67.4(+4.4) 73.4 79.3(+5.9)

OTHER-AFF 70.6 80.0(+9.4) 41.4 41.4(0.0) 52.2 54.6(+2.4)

Table 9: Performance of each individual relation type based on 5-fold cross-validation.

current size setup were randomly selected and

added to the previous size setup (if applicable). For
example, we randomly selected another 25

documents and added them to the previous 50

documents to get 75 documents. We made sure
that every document participated in this experiment.

The training documents for each size setup were

split into a real training set and a development set
in a ratio of 7:3 for selecting clusters.

There are some clear trends in Table 8. Under

each training size, PC4 consistently outperformed
the baseline and the system Prefix10 for relation

classification. For PC4, the gain for classification

was more pronounced than detection. The mixed
detection results of Prefix10 indicated that only

using a single prefix may not be stable.

We did not observe the same trend in the
reduction of annotation need with cluster-based

features as in Koo et al. (2008) for dependency

parsing. PC4 with sizes 50, 125, 175 outperformed
the baseline with sizes 75, 175, 225 respectively.

But this was not the case when PC4 was tested

with sizes 75 and 225. This might due to the
complexity of the relation extraction task.

6.5 Analysis

There were on average 69 cross-type errors in the

baseline in Section 6.1 which were reduced to 56

by using PC4. Table 9 showed that most of the

improvements involved EMP-ORG, GPE-AFF,
DISC, ART and OTHER-AFF. The performance

gain for PER-SOC was not as pronounced as the

other five types. The five types of relations are
ambiguous as they share the same entity type GPE

while the PER-SOC relation only holds between

PER and PER. This reflects that word clusters can
help to distinguish between ambiguous relation

types.

As mentioned earlier the gain of relation
detection was not as pronounced as classification

as shown in Table 8. The unbalanced distribution

of relation instances and non-relation instances
remains as an obstacle for pushing the performance

of relation extraction to the next level.

7 Conclusion and Future Work

We have described a semi-supervised relation

extraction system with large-scale word clustering.

We have systematically explored the effectiveness
of different cluster-based features. We have also

demonstrated that the two proposed statistical

methods are both effective and efficient in
selecting clusters at an appropriate level of

granularity through an extensive experimental

study.

528

Based on the experimental results, we plan to

investigate additional ways to improve the
performance of relation detection. Moreover,

extending word clustering to phrase clustering (Lin

and Wu, 2009) and pattern clustering (Sun and
Grishman, 2010) is worth future investigation for

relation extraction.

References

Rie K. Ando and Tong Zhang. 2005 A Framework for

Learning Predictive Structures from Multiple Tasks

and Unlabeled Data. Journal of Machine Learning

Research, Vol 6:1817-1853.

Elizabeth Boschee, Ralph Weischedel, and Alex

Zamanian. 2005. Automatic information extraction.
In Proceedings of the International Conference on

Intelligence Analysis.

Peter F. Brown, Vincent J. Della Pietra, Peter V.

deSouza, Jenifer C. Lai, and Robert L. Mercer. 1992.

Class-based n-gram models of natural language.

Computational Linguistics, 18(4):467–479.

Razvan C. Bunescu and Raymond J. Mooney. 2005a. A

shortest path dependency kenrel for relation
extraction. In Proceedings of HLT/EMNLP.

Razvan C. Bunescu and Raymond J. Mooney. 2005b.

Subsequence kernels for relation extraction. In

Proceedings of NIPS.

Yee Seng Chan and Dan Roth. 2010. Exploiting

background knowledge for relation extraction. In

Proc. of COLING.

Ralph Grishman, David Westbrook and Adam Meyers.
2005. NYU’s English ACE 2005 System Description.

ACE 2005 Evaluation Workshop.

Earl B. Hunt, Philip J. Stone and Janet Marin. 1966.

Experiments in Induction. New York: Academic

Press, 1966.

Jing Jiang and ChengXiang Zhai. 2007. A systematic

exploration of the feature space for relation

extraction. In Proceedings of HLT-NAACL-07.

Nanda Kambhatla. 2004. Combining lexical, syntactic,

and semantic features with maximum entropy models

for information extraction. In Proceedings of ACL-04.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.

Simple Semi-supervised Dependency Parsing. In

Proceedings of ACL-08: HLT.

Percy Liang. 2005. Semi-Supervised Learning for

Natural Language. Master’s thesis, Massachusetts
Institute of Technology.

Dekang Lin and Xiaoyun Wu. 2009. Phrase Clustering

for Discriminative Learning. In Proc. of ACL-09.

Scott Miller, Heidi Fox, Lance Ramshaw, and Ralph

Weischedel. 2000. A novel use of statistical parsing
to extract information from text. In Proc. of NAACL.

Scott Miller, Jethran Guinness and Alex Zamanian.

2004. Name Tagging with Word Clusters and

Discriminative Training. In Proc. of HLT-NAACL.

Longhua Qian, Guodong Zhou, Qiaoming Zhu and

Peide Qian. 2008. Exploiting constituent

dependencies for tree kernel-based semantic relation

extraction . In Proc. of COLING.

John Ross Quinlan. 1986. Induction of decision trees.

Machine Learning, 1(1), 81-106.

Lev Ratinov and Dan Roth. 2009. Design challenges

and misconceptions in named entity recognition. In

Proceedings of CoNLL-09.

Ang Sun. 2009. A Two-stage Bootstrapping Algorithm

for Relation Extraction. In RANLP-09.

Ang Sun and Ralph Grishman. 2010. Semi-supervised
Semantic Pattern Discovery with Guidance from

Unsupervised Pattern Clusters. In Proc. of COLING.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.

2010. Word representations: A simple and general

method for semi-supervised learning. In Proceedings

of ACL.

Dmitry Zelenko, Chinatsu Aone, and Anthony

Richardella. 2003. Kernel methods for relation
extraction. Journal of Machine Learning Research,

3:1083–1106.

Zhu Zhang. 2004. Weakly supervised relation

classification for information extraction. In Proc. of

CIKM’2004.

Min Zhang, Jie Zhang, Jian Su, and GuoDong Zhou.

2006. A composite kernel to extract relations

between entities with both flat and structured features.
In Proceedings of COLING-ACL-06.

Shubin Zhao and Ralph Grishman. 2005. Extracting

relations with integrated information using kernel

methods. In Proceedings of ACL.

Guodong Zhou, Jian Su, Jie Zhang, and Min Zhang.

2005. Exploring various knowledge in relation

extraction. In Proceedings of ACL-05.

Guodong Zhou, Min Zhang, DongHong Ji, and

QiaoMing Zhu. 2007. Tree kernel-based relation

extraction with context-sensitive structured parse tree
information. In Proceedings of EMNLPCoNLL-07.

529

