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Abstract

We design a class of submodular functions
meant for document summarization tasks.
These functions each combine two terms,
one which encourages the summary to be
representative of the corpus, and the other
which positively rewards diversity. Critically,
our functions are monotone nondecreasing
and submodular, which means that an efficient
scalable greedy optimization scheme has
a constant factor guarantee of optimality.
When evaluated on DUC 2004-2007 corpora,
we obtain better than existing state-of-art
results in both generic and query-focused
document summarization. Lastly, we show
that several well-established methods for
document summarization correspond, in fact,
to submodular function optimization, adding
further evidence that submodular functions are
a natural fit for document summarization.

1 Introduction

In this paper, we address the problem of generic and
query-based extractive summarization from collec-
tions of related documents, a task commonly known
as multi-document summarization. We treat this task
as monotone submodular function maximization (to
be defined in Section 2). This has a number of criti-
cal benefits. On the one hand, there exists a simple
greedy algorithm for monotone submodular func-
tion maximization where the summary solution ob-
tained (say Ŝ) is guaranteed to be almost as good
as the best possible solution (say Sopt) according to
an objective F . More precisely, the greedy algo-
rithm is a constant factor approximation to the car-
dinality constrained version of the problem, so that

F(Ŝ) ≥ (1 − 1/e)F(Sopt) ≈ 0.632F(Sopt). This
is particularly attractive since the quality of the so-
lution does not depend on the size of the problem,
so even very large size problems do well. It is also
important to note that this is a worst case bound, and
in most cases the quality of the solution obtained will
be much better than this bound suggests.

Of course, none of this is useful if the objective
function F is inappropriate for the summarization
task. In this paper, we argue that monotone nonde-
creasing submodular functionsF are an ideal class of
functions to investigate for document summarization.
We show, in fact, that many well-established methods
for summarization (Carbonell and Goldstein, 1998;
Filatova and Hatzivassiloglou, 2004; Takamura and
Okumura, 2009; Riedhammer et al., 2010; Shen and
Li, 2010) correspond to submodular function opti-
mization, a property not explicitly mentioned in these
publications. We take this fact, however, as testament
to the value of submodular functions for summariza-
tion: if summarization algorithms are repeatedly de-
veloped that, by chance, happen to be an instance of a
submodular function optimization, this suggests that
submodular functions are a natural fit. On the other
hand, other authors have started realizing explicitly
the value of submodular functions for summarization
(Lin and Bilmes, 2010; Qazvinian et al., 2010).

Submodular functions share many properties in
common with convex functions, one of which is that
they are closed under a number of common combi-
nation operations (summation, certain compositions,
restrictions, and so on). These operations give us the
tools necessary to design a powerful submodular ob-
jective for submodular document summarization that
extends beyond any previous work. We demonstrate
this by carefully crafting a class of submodular func-
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tions we feel are ideal for extractive summarization
tasks, both generic and query-focused. In doing so,
we demonstrate better than existing state-of-the-art
performance on a number of standard summarization
evaluation tasks, namely DUC-04 through to DUC-
07. We believe our work, moreover, might act as a
springboard for researchers in summarization to con-
sider the problem of “how to design a submodular
function” for the summarization task.

In Section 2, we provide a brief background on sub-
modular functions and their optimization. Section 3
describes how the task of extractive summarization
can be viewed as a problem of submodular function
maximization. We also in this section show that many
standard methods for summarization are, in fact, al-
ready performing submodular function optimization.
In Section 4, we present our own submodular func-
tions. Section 5 presents results on both generic and
query-focused summarization tasks, showing as far
as we know the best known ROUGE results for DUC-
04 through DUC-06, and the best known precision
results for DUC-07, and the best recall DUC-07 re-
sults among those that do not use a web search engine.
Section 6 discusses implications for future work.

2 Background on Submodularity

We are given a set of objects V = {v1, . . . , vn} and a
functionF : 2V → R that returns a real value for any
subset S ⊆ V . We are interested in finding the subset
of bounded size |S| ≤ k that maximizes the function,
e.g., argmaxS⊆V F(S). In general, this operation
is hopelessly intractable, an unfortunate fact since
the optimization coincides with many important ap-
plications. For example, F might correspond to the
value or coverage of a set of sensor locations in an
environment, and the goal is to find the best locations
for a fixed number of sensors (Krause et al., 2008).

If the function F is monotone submodular then the
maximization is still NP complete, but it was shown
in (Nemhauser et al., 1978) that a greedy algorithm
finds an approximate solution guaranteed to be within
e−1
e ∼ 0.63 of the optimal solution, as mentioned

in Section 1. A version of this algorithm (Minoux,
1978), moreover, scales to very large data sets. Sub-
modular functions are those that satisfy the property
of diminishing returns: for anyA ⊆ B ⊆ V \v, a sub-
modular functionF must satisfyF(A+v)−F(A) ≥

F(B + v)−F(B). That is, the incremental “value”
of v decreases as the context in which v is considered
grows from A to B. An equivalent definition, useful
mathematically, is that for any A,B ⊆ V , we must
have that F(A) +F(B) ≥ F(A ∪B) +F(A ∩B).
If this is satisfied everywhere with equality, then
the function F is called modular, and in such case
F(A) = c +

∑
a∈A

~fa for a sized |V | vector ~f of
real values and constant c. A set function F is mono-
tone nondecreasing if ∀A ⊆ B, F(A) ≤ F(B). As
shorthand, in this paper, monotone nondecreasing
submodular functions will simply be referred to as
monotone submodular.

Historically, submodular functions have their roots
in economics, game theory, combinatorial optimiza-
tion, and operations research. More recently, submod-
ular functions have started receiving attention in the
machine learning and computer vision community
(Kempe et al., 2003; Narasimhan and Bilmes, 2005;
Krause and Guestrin, 2005; Narasimhan and Bilmes,
2007; Krause et al., 2008; Kolmogorov and Zabin,
2004) and have recently been introduced to natural
language processing for the tasks of document sum-
marization (Lin and Bilmes, 2010) and word align-
ment (Lin and Bilmes, 2011).

Submodular functions share a number of proper-
ties in common with convex and concave functions
(Lovász, 1983), including their wide applicability,
their generality, their multiple options for their repre-
sentation, and their closure under a number of com-
mon operators (including mixtures, truncation, com-
plementation, and certain convolutions). For exam-
ple, if a collection of functions {Fi}i is submodular,
then so is their weighted sum F =

∑
i αiFi where

αi are nonnegative weights. It is not hard to show
that submodular functions also have the following
composition property with concave functions:

Theorem 1. Given functions F : 2V → R and
f : R→ R, the composition F ′ = f ◦ F : 2V → R
(i.e., F ′(S) = f(F(S))) is nondecreasing sub-
modular, if f is non-decreasing concave and F is
nondecreasing submodular.

This property will be quite useful when defining sub-
modular functions for document summarization.
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3 Submodularity in Summarization

3.1 Summarization with knapsack constraint
Let the ground set V represents all the sentences
(or other linguistic units) in a document (or docu-
ment collection, in the multi-document summariza-
tion case). The task of extractive document sum-
marization is to select a subset S ⊆ V to represent
the entirety (ground set V ). There are typically con-
straints on S, however. Obviously, we should have
|S| < |V | = N as it is a summary and should
be small. In standard summarization tasks (e.g.,
DUC evaluations), the summary is usually required
to be length-limited. Therefore, constraints on S
can naturally be modeled as knapsack constraints:∑

i∈S ci ≤ b, where ci is the non-negative cost of
selecting unit i (e.g., the number of words in the sen-
tence) and b is our budget. If we use a set function
F : 2V → R to measure the quality of the summary
set S, the summarization problem can then be for-
malized as the following combinatorial optimization
problem:

Problem 1. Find

S∗ ∈ argmax
S⊆V

F(S) subject to:
∑
i∈S

ci ≤ b.

Since this is a generalization of the cardinality
constraint (where ci = 1,∀i), this also constitutes
a (well-known) NP-hard problem. In this case as
well, however, a modified greedy algorithm with par-
tial enumeration can solve Problem 1 near-optimally
with (1−1/e)-approximation factor ifF is monotone
submodular (Sviridenko, 2004). The partial enumer-
ation, however, is too computationally expensive for
real world applications. In (Lin and Bilmes, 2010),
we generalize the work by Khuller et al. (1999) on
the budgeted maximum cover problem to the gen-
eral submodular framework, and show a practical
greedy algorithm with a (1− 1/

√
e)-approximation

factor, where each greedy step adds the unit with the
largest ratio of objective function gain to scaled cost,
while not violating the budget constraint (see (Lin
and Bilmes, 2010) for details). Note that in all cases,
submodularity and monotonicity are two necessary
ingredients to guarantee that the greedy algorithm
gives near-optimal solutions.

In fact, greedy-like algorithms have been widely
used in summarization. One of the more popular

approaches is maximum marginal relevance (MMR)
(Carbonell and Goldstein, 1998), where a greedy
algorithm selects the most relevant sentences, and
at the same time avoids redundancy by removing
sentences that are too similar to ones already selected.
Interestingly, the gain function defined in the original
MMR paper (Carbonell and Goldstein, 1998) satisfies
diminishing returns, a fact apparently unnoticed until
now. In particular, Carbonell and Goldstein (1998)
define an objective function gain of adding element
k to set S (k /∈ S) as:

λSim1(sk, q)− (1− λ) max
i∈S

Sim2(si, sk), (1)

where Sim1(sk, q) measures the similarity between
unit sk to a query q, Sim2(si, sk) measures the simi-
larity between unit si and unit sk, and 0 ≤ λ ≤ 1 is
a trade-off coefficient. We have:

Theorem 2. Given an expression forFMMR such that
FMMR(S ∪{k})−FMMR(S) is equal to Eq. 1, FMMR

is non-monotone submodular.

Obviously, diminishing-returns hold since

max
i∈S

Sim2(si, sk) ≤ max
i∈R

Sim2(si, sk)

for all S ⊆ R, and therefore FMMR is submodular.
On the other hand,FMMR, would not be monotone, so
the greedy algorithm’s constant-factor approximation
guarantee does not apply in this case.

When scoring a summary at the sub-sentence
level, submodularity naturally arises. Concept-based
summarization (Filatova and Hatzivassiloglou, 2004;
Takamura and Okumura, 2009; Riedhammer et al.,
2010; Qazvinian et al., 2010) usually maximizes the
weighted credit of concepts covered by the summary.
Although the authors may not have noticed, their ob-
jective functions are also submodular, adding more
evidence suggesting that submodularity is natural for
summarization tasks. Indeed, let S be a subset of
sentences in the document and denote Γ(S) as the
set of concepts contained in S. The total credit of the
concepts covered by S is then

Fconcept(S) ,
∑
i∈Γ(S)

ci,

where ci is the credit of concept i. This function is
known to be submodular (Narayanan, 1997).
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Similar to the MMR approach, in (Lin and Bilmes,
2010), a submodular graph based objective function
is proposed where a graph cut function, measuring
the similarity of the summary to the rest of document,
is combined with a subtracted redundancy penalty
function. The objective function is submodular but
again, non-monotone. We theoretically justify that
the performance guarantee of the greedy algorithm
holds for this objective function with high probability
(Lin and Bilmes, 2010). Our justification, however,
is shown to be applicable only to certain particular
non-monotone submodular functions, under certain
reasonable assumptions about the probability distri-
bution over weights of the graph.

3.2 Summarization with covering constraint
Another perspective is to treat the summarization
problem as finding a low-cost subset of the document
under the constraint that a summary should cover
all (or a sufficient amount of) the information in the
document. Formally, this can be expressed as

Problem 2. Find

S∗ ∈ argmin
S⊆V

∑
i∈S

ci subject to: F(S) ≥ α,

where ci are the element costs, and set function F(S)
measure the information covered by S. When F
is submodular, the constraint F(S) ≥ α is called
a submodular cover constraint. When F is mono-
tone submodular, a greedy algorithm that iteratively
selects k with minimum ck/(F(S ∪ {k}) − F(S))
has approximation guarantees (Wolsey, 1982). Re-
cent work (Shen and Li, 2010) proposes to model
document summarization as finding a minimum dom-
inating set and a greedy algorithm is used to solve
the problem. The dominating set constraint is also
a submodular cover constraint. Define δ(S) be the
set of elements that is either in S or is adjacent to
some element in S. Then S is a dominating set if
|δ(S)| = |V |. Note that

Fdom(S) , |δ(S)|

is monotone submodular. The dominating set
constraint is then also a submodular cover constraint,
and therefore the approaches in (Shen and Li, 2010)
are special cases of Problem 2. The solutions found
in this framework, however, do not necessarily

satisfy a summary’s budget constraint. Consequently,
a subset of the solution found by solving Problem 2
has to be constructed as the final summary, and the
near-optimality is no longer guaranteed. Therefore,
solving Problem 1 for document summarization
appears to be a better framework regarding global
optimality. In the present paper, our framework is
that of Problem 1.

3.3 Automatic summarization evaluation
Automatic evaluation of summary quality is impor-
tant for the research of document summarization as
it avoids the labor-intensive and potentially inconsis-
tent human evaluation. ROUGE (Lin, 2004) is widely
used for summarization evaluation and it has been
shown that ROUGE-N scores are highly correlated
with human evaluation (Lin, 2004). Interestingly,
ROUGE-N is monotone submodular, adding further
evidence that monotone submodular functions are
natural for document summarization.

Theorem 3. ROUGE-N is monotone submodular.

Proof. By definition (Lin, 2004), ROUGE-N is the
n-gram recall between a candidate summary and a
set of reference summaries. Precisely, let S be the
candidate summary (a set of sentences extracted from
the ground set V ), ce : 2V → Z+ be the number of
times n-gram e occurs in summary S, and Ri be the
set of n-grams contained in the reference summary i
(suppose we have K reference summaries, i.e., i =
1, · · · ,K). Then ROUGE-N can be written as the
following set function:

FROUGE-N(S) ,

∑K
i=1

∑
e∈Ri min(ce(S), re,i)∑K
i=1

∑
e∈Ri re,i

,

where re,i is the number of times n-gram e occurs
in reference summary i. Since ce(S) is monotone
modular and min(x, a) is a concave non-decreasing
function of x, min(ce(S), re,i) is monotone sub-
modular by Theorem 1. Since summation preserves
submodularity, and the denominator is constant, we
see that FROUGE-N is monotone submodular.

Since the reference summaries are unknown, it is
of course impossible to optimize FROUGE-N directly.
Therefore, some approaches (Filatova and Hatzivas-
siloglou, 2004; Takamura and Okumura, 2009; Ried-
hammer et al., 2010) instead define “concepts”. Alter-
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natively, we herein propose a class of monotone sub-
modular functions that naturally models the quality of
a summary while not depending on an explicit notion
of concepts, as we will see in the following section.

4 Monotone Submodular Objectives

Two properties of a good summary are relevance and
non-redundancy. Objective functions for extractive
summarization usually measure these two separately
and then mix them together trading off encouraging
relevance and penalizing redundancy. The redun-
dancy penalty usually violates the monotonicity of
the objective functions (Carbonell and Goldstein,
1998; Lin and Bilmes, 2010). We therefore propose
to positively reward diversity instead of negatively
penalizing redundancy. In particular, we model the
summary quality as

F(S) = L(S) + λR(S), (2)

where L(S) measures the coverage, or “fidelity”,
of summary set S to the document, R(S) rewards
diversity in S, and λ ≥ 0 is a trade-off coefficient.
Note that the above is analogous to the objectives
widely used in machine learning, where a loss
function that measures the training set error (we
measure the coverage of summary to a document),
is combined with a regularization term encouraging
certain desirable (e.g., sparsity) properties (in
our case, we “regularize” the solution to be more
diverse). In the following, we discuss how both L(S)
andR(S) are naturally monotone submodular.

4.1 Coverage function
L(S) can be interpreted either as a set function that
measures the similarity of summary set S to the docu-
ment to be summarized, or as a function representing
some form of “coverage” of V by S. Most naturally,
L(S) should be monotone, as coverage improves
with a larger summary. L(S) should also be submod-
ular: consider adding a new sentence into two sum-
mary sets, one a subset of the other. Intuitively, the
increment when adding a new sentence to the small
summary set should be larger than the increment
when adding it to the larger set, as the information
carried by the new sentence might have already been
covered by those sentences that are in the larger sum-
mary but not in the smaller summary. This is exactly

the property of diminishing returns. Indeed, Shan-
non entropy, as the measurement of information, is
another well-known monotone submodular function.

There are several ways to define L(S) in our
context. For instance, we could use L(S) =∑

i∈V,j∈S wi,j where wi,j represents the similarity
between i and j. L(S) could also be facility
location objective, i.e., L(S) =

∑
i∈V maxj∈S wi,j ,

as used in (Lin et al., 2009). We could also use
L(S) =

∑
i∈Γ(S) ci as used in concept-based

summarization, where the definition of “concept”
and the mechanism to extract these concepts become
important. All of these are monotone submodular.

Alternatively, in this paper we propose the follow-
ing objective that does not reply on concepts. Let

L(S) =
∑
i∈V

min {Ci(S), α Ci(V )} , (3)

where Ci : 2V → R is a monotone submodular func-
tion and 0 ≤ α ≤ 1 is a threshold co-efficient. Firstly,
L(S) as defined in Eqn. 3 is a monotone submodular
function. The monotonicity is immediate. To see that
L(S) is submodular, consider the fact that f(x) =
min(x, a) where a ≥ 0 is a concave non-decreasing
function, and by Theorem 1, each summand in Eqn. 3
is a submodular function, and as summation pre-
serves submodularity, L(S) is submodular.

Next, we explain the intuition behind Eqn. 3. Basi-
cally, Ci(S) measures how similar S is to element i,
or how much of i is “covered” by S. Then Ci(V ) is
just the largest value that Ci(S) can achieve. We call
i “saturated” by S when min{Ci(S), αCi(V )} =
αCi(V ). When i is already saturated in this way,
any new sentence j can not further improve the
coverage of i even if it is very similar to i (i.e.,
Ci(S ∪ {j}) − Ci(S) is large). This will give other
sentences that are not yet saturated a higher chance
of being better covered, and therefore the resulting
summary tends to better cover the entire document.

One simple way to define Ci(S) is just to use

Ci(S) =
∑
j∈S

wi,j (4)

where wi,j ≥ 0 measures the similarity between i
and j. In this case, when α = 1, Eqn. 3 reduces
to the case where L(S) =

∑
i∈V,j∈S wi,j . As we

will see in Section 5, having an α that is less than
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1 significantly improves the performance compared
to the case when α = 1, which coincides with our
intuition that using a truncation threshold improves
the final summary’s coverage.

4.2 Diversity reward function

Instead of penalizing redundancy by subtracting from
the objective, we propose to reward diversity by
adding the following to the objective:

R(S) =
K∑
i=1

√ ∑
j∈Pi∩S

rj . (5)

where Pi, i = 1, · · ·K is a partition of the ground
set V (i.e.,

⋃
i Pi = V and the Pis are disjoint) into

separate clusters, and ri ≥ 0 indicates the singleton
reward of i (i.e., the reward of adding i into the empty
set). The value ri estimates the importance of i to
the summary. The functionR(S) rewards diversity
in that there is usually more benefit to selecting a
sentence from a cluster not yet having one of its
elements already chosen. As soon as an element
is selected from a cluster, other elements from the
same cluster start having diminishing gain, thanks
to the square root function. For instance, consider
the case where k1, k2 ∈ P1, k3 ∈ P2, and rk1 = 4,
rk2 = 9, and rk3 = 4. Assume k1 is already in the
summary set S. Greedily selecting the next element
will choose k3 rather than k2 since

√
13 < 2 + 2. In

other words, adding k3 achieves a greater reward as it
increases the diversity of the summary (by choosing
from a different cluster). Note,R(S) is distinct from
L(S) in that R(S) might wish to include certain
outlier material that L(S) could ignore.

It is easy to show that R(S) is submodular by
using the composition rule from Theorem 1. The
square root is non-decreasing concave function.
Inside each square root lies a modular function
with non-negative weights (and thus is monotone).
Applying the square root to such a monotone sub-
modular function yields a submodular function, and
summing them all together retains submodularity, as
mentioned in Section 2. The monotonicity ofR(S)
is straightforward. Note, the form of Eqn. 5 is similar
to structured group norms (e.g., (Zhao et al., 2009)),
recently shown to be related to submodularity (Bach,
2010; Jegelka and Bilmes, 2011).

Several extensions to Eqn. 5 are discussed
next: First, instead of using a ground set partition,
intersecting clusters can be used. Second, the
square root function in Eqn. 5 can be replaced with
any other non-decreasing concave functions (e.g.,
f(x) = log(1 + x)) while preserving the desired
property ofR(S), and the curvature of the concave
function then determines the rate that the reward
diminishes. Last, multi-resolution clustering (or
partitions) with different sizes (K) can be used, i.e.,
we can use a mixture of components, each of which
has the structure of Eqn. 5. A mixture can better
represent the core structure of the ground set (e.g.,
the hierarchical structure in the documents (Celiky-
ilmaz and Hakkani-tür, 2010)). All such extensions
preserve both monotonicity and submodularity.

5 Experiments

The document understanding conference (DUC)
(http://duc.nist.org) was the main forum
providing benchmarks for researchers working
on document summarization. The tasks in DUC
evolved from single-document summarization to
multi-document summarization, and from generic
summarization (2001–2004) to query-focused sum-
marization (2005–2007). As ROUGE (Lin, 2004)
has been officially adopted for DUC evaluations
since 2004, we also take it as our main evaluation
criterion. We evaluated our approaches on DUC
data 2003-2007, and demonstrate results on both
generic and query-focused summarization. In all
experiments, the modified greedy algorithm (Lin and
Bilmes, 2010) was used for summary generation.

5.1 Generic summarization

Summarization tasks in DUC-03 and DUC-04 are
multi-document summarization on English news
articles. In each task, 50 document clusters are
given, each of which consists of 10 documents.
For each document cluster, the system generated
summary may not be longer than 665 bytes including
spaces and punctuation. We used DUC-03 as
our development set, and tested on DUC-04 data.
We show ROUGE-1 scores1 as it was the main
evaluation criterion for DUC-03, 04 evaluations.

1ROUGE version 1.5.5 with options: -a -c 95 -b 665 -m -n 4
-w 1.2
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Documents were pre-processed by segmenting sen-
tences and stemming words using the Porter Stemmer.
Each sentence was represented using a bag-of-terms
vector, where we used context terms up to bi-grams.
Similarity between sentence i and sentence j, i.e.,
wi,j , was computed using cosine similarity:

wi,j =

∑
w∈si tfw,i × tfw,j × idf2

w√∑
w∈si tf2

w,si idf2
w

√∑
w∈sj tf2

w,j idf2
w

,

where tfw,i and tfw,j are the numbers of times that
w appears in si and sentence sj respectively, and
idfw is the inverse document frequency (IDF) of
term w (up to bigram), which was calculated as the
logarithm of the ratio of the number of articles that
w appears over the total number of all articles in the
document cluster.

Table 1: ROUGE-1 recall (R) and F-measure (F) results
(%) on DUC-04. DUC-03 was used as development set.

DUC-04 R FP
i∈V

P
j∈S wi,j 33.59 32.44

L1(S) 39.03 38.65
R1(S) 38.23 37.81

L1(S) + λR1(S) 39.35 38.90
Takamura and Okumura (2009) 38.50 -

Wang et al. (2009) 39.07 -
Lin and Bilmes (2010) - 38.39

Best system in DUC-04 (peer 65) 38.28 37.94

We first tested our coverage and diversity re-
ward objectives separately. For coverage, we use a
modular Ci(S) =

∑
j∈S wi,j for each sentence i, i.e.,

L1(S) =
∑
i∈V

min

∑
j∈S

wi,j , α
∑
k∈V

wi,k

 . (6)

When α = 1, L1(S) reduces to
∑

i∈V,j∈S wi,j ,
which measures the overall similarity of summary
set S to ground set V . As mentioned in Section 4.1,
using such similarity measurement could possibly
over-concentrate on a small portion of the document
and result in a poor coverage of the whole document.
As shown in Table 1, optimizing this objective
function gives a ROUGE-1 F-measure score 32.44%.
On the other hand, when using L1(S) with an α < 1
(the value of α was determined on DUC-03 using
a grid search), a ROUGE-1 F-measure score 38.65%
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Figure 1: ROUGE-1 F-measure scores on DUC-03 when
α and K vary in objective function L1(S) + λR1(S),
where λ = 6 and α = a

N .

is achieved, which is already better than the best
performing system in DUC-04.

As for the diversity reward objective, we define
the singleton reward as ri = 1

N

∑
j wi,j , which is

the average similarity of sentence i to the rest of the
document. It basically states that the more similar to
the whole document a sentence is, the more reward
there will be by adding this sentence to an empty
summary set. By using this singleton reward, we
have the following diversity reward function:

R1(S) =
K∑
k=1

√ ∑
j∈S∩Pk

1
N

∑
i∈V

wi,j . (7)

In order to generate Pk, k = 1, · · ·K, we used
CLUTO2 to cluster the sentences, where the IDF-
weighted term vector was used as feature vector, and
a direct K-mean clustering algorithm was used. In
this experiment, we set K = 0.2N . In other words,
there are 5 sentences in each cluster on average.
And as we can see in Table 1, optimizing the
diversity reward function alone achieves comparable
performance to the DUC-04 best system.

Combining L1(S) and R1(S), our system outper-
forms the best system in DUC-04 significantly, and
it also outperforms several recent systems, including
a concept-based summarization approach (Takamura
and Okumura, 2009), a sentence topic model based
system (Wang et al., 2009), and our MMR-styled
submodular system (Lin and Bilmes, 2010). Figure 1
illustrates how ROUGE-1 scores change when α and
K vary on the development set (DUC-03).

2http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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Table 2: ROUGE-2 recall (R) and F-measure (F) results
(%) on DUC-05, where DUC-05 was used as training set.

DUC-05 R F
L1(S) + λRQ(S) 8.38 8.31

Daumé III and Marcu (2006) 7.62 -
Extr, Daumé et al. (2009) 7.67 -
Vine, Daumé et al. (2009) 8.24 -

Table 3: ROUGE-2 recall (R) and F-measure (F) results
on DUC-05 (%). We used DUC-06 as training set.

DUC-05 R F
L1(S) + λRQ(S) 7.82 7.72

Daumé III and Marcu (2006) 6.98 -
Best system in DUC-05 (peer 15) 7.44 7.43

5.2 Query-focused summarization

We evaluated our approach on the task of query-
focused summarization using DUC 05-07 data. In
DUC-05 and DUC-06, participants were given 50
document clusters, where each cluster contains 25
news articles related to the same topic. Participants
were asked to generate summaries of at most 250
words for each cluster. For each cluster, a title and
a narrative describing a user’s information need are
provided. The narrative is usually composed of a
set of questions or a multi-sentence task description.
The main task in DUC-07 is the same as in DUC-06.

In DUC 05-07, ROUGE-2 was the primary
criterion for evaluation, and thus we also report
ROUGE-23 (both recall R, and precision F). Docu-
ments were processed as in Section 5.1. We used both
the title and the narrative as query, where stop words,
including some function words (e.g., “describe”) that
appear frequently in the query, were removed. All
queries were then stemmed using the Porter Stemmer.

Note that there are several ways to incorporate
query-focused information into both the coverage
and diversity reward objectives. For instance, Ci(S)
could be query-dependent in how it measures how
much query-dependent information in i is covered
by S. Also, the coefficient α could be query and sen-
tence dependent, where it takes larger value when a
sentence is more relevant to query (i.e., a larger value
of α means later truncation, and therefore more pos-
sible coverage). Similarly, sentence clustering and
singleton rewards in the diversity function can also

3ROUGE version 1.5.5 was used with option -n 2 -x -m -2 4
-u -c 95 -r 1000 -f A -p 0.5 -t 0 -d -l 250

Table 4: ROUGE-2 recall (R) and F-measure (F) results
(%) on DUC-06, where DUC-05 was used as training set.

DUC-06 R F
L1(S) + λRQ(S) 9.75 9.77

Celikyilmaz and Hakkani-tür (2010) 9.10 -
Shen and Li (2010) 9.30 -

Best system in DUC-06 (peer 24) 9.51 9.51

Table 5: ROUGE-2 recall (R) and F-measure (F) re-
sults (%) on DUC-07. DUC-05 was used as training
set for objective L1(S) + λRQ(S). DUC-05 and DUC-
06 were used as training sets for objective L1(S) +∑
κ λκRQ,κ(S).

DUC-07 R F
L1(S) + λRQ(S) 12.18 12.13

L1(S) +
P3
κ=1 λκRQ,κ(S) 12.38 12.33

Toutanova et al. (2007) 11.89 11.89
Haghighi and Vanderwende (2009) 11.80 -

Celikyilmaz and Hakkani-tür (2010) 11.40 -
Best system in DUC-07 (peer 15) 12.45 12.29

be query-dependent. In this experiment, we explore
an objective with a query-independent coverage func-
tion (R1(S)), indicating prior importance, combined
with a query-dependent diversity reward function,
where the latter is defined as:

RQ(S) =
K∑
k=1

√√√√ ∑
j∈S∩Pk

(
β

N

∑
i∈V

wi,j + (1− β)rj,Q

)
,

where 0 ≤ β ≤ 1, and rj,Q represents the rel-
evance between sentence j to query Q. This
query-dependent reward function is derived by
using a singleton reward that is expressed as a
convex combination of the query-independent score
( 1
N

∑
i∈V wi,j) and the query-dependent score (rj,Q)

of a sentence. We simply used the number of
terms (up to a bi-gram) that sentence j overlaps the
query Q as rj,Q, where the IDF weighting is not
used (i.e., every term in the query, after stop word
removal, was treated as equally important). Both
query-independent and query-dependent scores were
then normalized by their largest value respectively
such that they had roughly the same dynamic range.

To better estimate of the relevance between query
and sentences, we further expanded sentences with
synonyms and hypernyms of its constituent words. In
particular, part-of-speech tags were obtained for each
sentence using the maximum entropy part-of-speech
tagger (Ratnaparkhi, 1996), and all nouns were then
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expanded with their synonyms and hypernyms using
WordNet (Fellbaum, 1998). Note that these expanded
documents were only used in the estimation rj,Q, and
we plan to further explore whether there is benefit to
use the expanded documents either in sentence sim-
ilarity estimation or in sentence clustering in our fu-
ture work. We also tried to expand the query with syn-
onyms and observed a performance decrease, presum-
ably due to noisy information in a query expression.

While it is possible to use an approach that is
similar to (Toutanova et al., 2007) to learn the
coefficients in our objective function, we trained all
coefficients to maximize ROUGE-2 F-measure score
using the Nelder-Mead (derivative-free) method.
Using L1(S)+λRQ(S) as the objective and with the
same sentence clustering algorithm as in the generic
summarization experiment (K = 0.2N ), our system,
when both trained and tested on DUC-05 (results in
Table 2), outperforms the Bayesian query-focused
summarization approach and the search-based
structured prediction approach, which were also
trained and tested on DUC-05 (Daumé et al., 2009).
Note that the system in (Daumé et al., 2009) that
achieves its best performance (8.24% in ROUGE-2
recall) is a so called “vine-growth” system, which
can be seen as an abstractive approach, whereas our
system is purely an extractive system. Comparing
to the extractive system in (Daumé et al., 2009), our
system performs much better (8.38% v.s. 7.67%).
More importantly, when trained only on DUC-06 and
tested on DUC-05 (results in Table 3), our approach
outperforms the best system in DUC-05 significantly.

We further tested the system trained on DUC-05
on both DUC-06 and DUC-07. The results on
DUC-06 are shown in Table. 4. Our system outper-
forms the best system in DUC-06, as well as two
recent approaches (Shen and Li, 2010; Celikyilmaz
and Hakkani-tür, 2010). On DUC-07, in terms of
ROUGE-2 score, our system outperforms PYTHY
(Toutanova et al., 2007), a state-of-the-art supervised
summarization system, as well as two recent systems
including a generative summarization system based
on topic models (Haghighi and Vanderwende,
2009), and a hybrid hierarchical summarization
system (Celikyilmaz and Hakkani-tür, 2010). It
also achieves comparable performance to the best
DUC-07 system. Note that in the best DUC-07
system (Pingali et al., 2007; Jagarlamudi et al., 2006),

an external web search engine (Yahoo!) was used
to estimate a language model for query relevance. In
our system, no such web search expansion was used.

To further improve the performance of our system,
we used both DUC-05 and DUC-06 as a training
set, and introduced three diversity reward terms
into the objective where three different sentence
clusterings with different resolutions were produced
(with sizes 0.3N, 0.15N and 0.05N ). Denoting
a diversity reward corresponding to clustering κ
as RQ,κ(S), we model the summary quality as
L1(S) +

∑3
κ=1 λκRQ,κ(S). As shown in Table 5,

using this objective function with multi-resolution
diversity rewards improves our results further, and
outperforms the best system in DUC-07 in terms of
ROUGE-2 F-measure score.

6 Conclusion and discussion

In this paper, we show that submodularity naturally
arises in document summarization. Not only do
many existing automatic summarization methods cor-
respond to submodular function optimization, but
also the widely used ROUGE evaluation is closely
related to submodular functions. As the correspond-
ing submodular optimization problem can be solved
efficiently and effectively, the remaining question
is then how to design a submodular objective that
best models the task. To address this problem, we
introduce a powerful class of monotone submodular
functions that are well suited to document summariza-
tion by modeling two important properties of a sum-
mary, fidelity and diversity. While more advanced
NLP techniques could be easily incorporated into our
functions (e.g., language models could define a better
Ci(S), more advanced relevance estimations for the
singleton rewards ri, and better and/or overlapping
clustering algorithms for our diversity reward), we
already show top results on standard benchmark eval-
uations using fairly basic NLP methods (e.g., term
weighting and WordNet expansion), all, we believe,
thanks to the power and generality of submodular
functions. As information retrieval and web search
are closely related to query-focused summarization,
our approach might be beneficial in those areas as
well.
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