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Abstract

Unsupervised word alignment is most often
modeled as a Markov process that generates a
sentence f conditioned on its translation e. A
similar model generating e from f will make
different alignment predictions. Statistical
machine translation systems combine the pre-
dictions of two directional models, typically
using heuristic combination procedures like
grow-diag-final. This paper presents a graph-
ical model that embeds two directional align-
ers into a single model. Inference can be per-
formed via dual decomposition, which reuses
the efficient inference algorithms of the direc-
tional models. Our bidirectional model en-
forces a one-to-one phrase constraint while ac-
counting for the uncertainty in the underlying
directional models. The resulting alignments
improve upon baseline combination heuristics
in word-level and phrase-level evaluations.

1 Introduction

Word alignment is the task of identifying corre-
sponding words in sentence pairs. The standard
approach to word alignment employs directional
Markov models that align the words of a sentence
f to those of its translation e, such as IBM Model 4
(Brown et al., 1993) or the HMM-based alignment
model (Vogel et al., 1996).

Machine translation systems typically combine
the predictions of two directional models, one which
aligns f to e and the other e to f (Och et al.,
1999). Combination can reduce errors and relax
the one-to-many structural restriction of directional
models. Common combination methods include the
union or intersection of directional alignments, as

well as heuristic interpolations between the union
and intersection like grow-diag-final (Koehn et al.,
2003). This paper presents a model-based alterna-
tive to aligner combination. Inference in a prob-
abilistic model resolves the conflicting predictions
of two directional models, while taking into account
each model’s uncertainty over its output.

This result is achieved by embedding two direc-
tional HMM-based alignment models into a larger
bidirectional graphical model. The full model struc-
ture and potentials allow the two embedded direc-
tional models to disagree to some extent, but reward
agreement. Moreover, the bidirectional model en-
forces a one-to-one phrase alignment structure, sim-
ilar to the output of phrase alignment models (Marcu
and Wong, 2002; DeNero et al., 2008), unsuper-
vised inversion transduction grammar (ITG) models
(Blunsom et al., 2009), and supervised ITG models
(Haghighi et al., 2009; DeNero and Klein, 2010).

Inference in our combined model is not tractable
because of numerous edge cycles in the model
graph. However, we can employ dual decomposi-
tion as an approximate inference technique (Rush et
al., 2010). In this approach, we iteratively apply the
same efficient sequence algorithms for the underly-
ing directional models, and thereby optimize a dual
bound on the model objective. In cases where our
algorithm converges, we have a certificate of opti-
mality under the full model. Early stopping before
convergence still yields useful outputs.

Our model-based approach to aligner combina-
tion yields improvements in alignment quality and
phrase extraction quality in Chinese-English exper-
iments, relative to typical heuristic combinations
methods applied to the predictions of independent
directional models.
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2 Model Definition

Our bidirectional model G = (V,D) is a globally
normalized, undirected graphical model of the word
alignment for a fixed sentence pair (e,f). Each ver-
tex in the vertex set V corresponds to a model vari-
able Vi, and each undirected edge in the edge set D
corresponds to a pair of variables (Vi, Vj). Each ver-
tex has an associated potential function ωi(vi) that
assigns a real-valued potential to each possible value
vi of Vi.1 Likewise, each edge has an associated po-
tential function µij(vi, vj) that scores pairs of val-
ues. The probability under the model of any full as-
signment v to the model variables, indexed by V ,
factors over vertex and edge potentials.

P(v) ∝
∏
vi∈V

ωi(vi) ·
∏

(vi,vj)∈D

µij(vi, vj)

Our model contains two directional hidden
Markov alignment models, which we review in Sec-
tion 2.1, along with additional structure that that we
introduce in Section 2.2.

2.1 HMM-Based Alignment Model
This section describes the classic hidden Markov
model (HMM) based alignment model (Vogel et al.,
1996). The model generates a sequence of words f
conditioned on a word sequence e. We convention-
ally index the words of e by i and f by j. P(f |e)
is defined in terms of a latent alignment vector a,
where aj = i indicates that word position i of e
aligns to word position j of f .

P(f |e) =
∑
a

P(f ,a|e)

P(f ,a|e) =

|f |∏
j=1

D(aj |aj−1)M(fj |eaj ) . (1)

In Equation 1 above, the emission model M is
a learned multinomial distribution over word types.
The transition model D is a multinomial over tran-
sition distances, which treats null alignments as a
special case.

D(aj = 0|aj−1 = i) = po
D(aj = i′ 6= 0|aj−1 = i) = (1− po) · c(i′ − i) ,

1Potentials in an undirected model play the same role as con-
ditional probabilities in a directed model, but do not need to be
locally normalized.

where c(i′ − i) is a learned distribution over signed
distances, normalized over the possible transitions
from i. The parameters of the conditional multino-
mial M and the transition model c can be learned
from a sentence aligned corpus via the expectation
maximization algorithm. The null parameter po is
typically fixed.2

The highest probability word alignment vector
under the model for a given sentence pair (e,f) can
be computed exactly using the standard Viterbi al-
gorithm for HMMs in O(|e|2 · |f |) time.

An alignment vector a can be converted trivially
into a set of word alignment links A:

Aa = {(i, j) : aj = i, i 6= 0} .

Aa is constrained to be many-to-one from f to e;
many positions j can align to the same i, but each j
appears at most once.

We have defined a directional model that gener-
ates f from e. An identically structured model can
be defined that generates e from f . Let b be a vector
of alignments where bi = j indicates that word po-
sition j of f aligns to word position i of e. Then,
P(e,b|f) is defined similarly to Equation 1, but
with e and f swapped. We can distinguish the tran-
sition and emission distributions of the two models
by subscripting them with their generative direction.

P(e,b|f) =

|e|∏
j=1

Df→e(bi|bi−1)Mf→e(ei|fbi) .

The vector b can be interpreted as a set of align-
ment links that is one-to-many: each value i appears
at most once in the set.

Ab = {(i, j) : bi = j, j 6= 0} .

2.2 A Bidirectional Alignment Model

We can combine two HMM-based directional align-
ment models by embedding them in a larger model

2In experiments, we set po = 10−6. Transitions from a null-
aligned state aj−1 = 0 are also drawn from a fixed distribution,
where D(aj = 0|aj−1 = 0) = 10−4 and for i′ ≥ 1,

D(aj = i′|aj−1 = 0) ∝ 0.8

(
−
∣∣∣i′· |f||e|−j

∣∣∣)
.

With small po, the shape of this distribution has little effect on
the alignment outcome.
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Figure 1: The structure of our graphical model for a sim-
ple sentence pair. The variables a are blue, b are red, and
c are green.

that includes all of the random variables of two di-
rectional models, along with additional structure that
promotes agreement and resolves discrepancies.

The original directional models include observed
word sequences e and f , along with the two latent
alignment vectors a and b defined in Section 2.1.
Because the word types and lengths of e and f are
always fixed by the observed sentence pair, we can
define our model only over a and b, where the edge
potentials between any aj , fj , and e are compiled
into a vertex potential function ω(a)

j on aj , defined
in terms of f and e, and likewise for any bi.

ω
(a)
j (i) = Me→f (fj |ei)

ω
(b)
i (j) = Mf→e(ei|fj)

The edge potentials between a and b encode the
transition model in Equation 1.

µ
(a)
j−1,j(i, i

′) = De→f (aj = i′|aj−1 = i)

µ
(b)
i−1,i(j, j

′) = Df→e(bi = j′|bi−1 = j)

In addition, we include in our model a latent
boolean matrix c that encodes the output of the com-
bined aligners:

c ∈ {0, 1}|e|×|f | .

This matrix encodes the alignment links proposed
by the bidirectional model:

Ac = {(i, j) : cij = 1} .

Each model node for an element cij ∈ {0, 1} is
connected to aj and bi via coherence edges. These
edges allow the model to ensure that the three sets
of variables, a, b, and c, together encode a coher-
ent alignment analysis of the sentence pair. Figure 1
depicts the graph structure of the model.

2.3 Coherence Potentials
The potentials on coherence edges are not learned
and do not express any patterns in the data. Instead,
they are fixed functions that promote consistency be-
tween the integer-valued directional alignment vec-
tors a and b and the boolean-valued matrix c.

Consider the assignment aj = i, where i = 0
indicates that word fj is null-aligned, and i ≥ 1 in-
dicates that fj aligns to ei. The coherence potential
ensures the following relationship between the vari-
able assignment aj = i and the variables ci′j , for
any i′ ∈ [1, |e|].

• If i = 0 (null-aligned), then all ci′j = 0.

• If i > 0, then cij = 1.

• ci′j = 1 only if i′ ∈ {i− 1, i, i+ 1}.

• Assigning ci′j = 1 for i′ 6= i incurs a cost e−α.

Collectively, the list of cases above enforce an intu-
itive correspondence: an alignment aj = i ensures
that cij must be 1, adjacent neighbors may be 1 but
incur a cost, and all other elements are 0.

This pattern of effects can be encoded in a poten-
tial function µ(c) for each coherence edge. These
edge potential functions takes an integer value i for
some variable aj and a binary value k for some ci′j .

µ
(c)
(aj ,ci′j)

(i, k) =



1 i = 0 ∧ k = 0

0 i = 0 ∧ k = 1

1 i = i′ ∧ k = 1

0 i = i′ ∧ k = 0

1 i 6= i′ ∧ k = 0

e−α |i− i′| = 1 ∧ k = 1

0 |i− i′| > 1 ∧ k = 1

(2)

Above, potentials of 0 effectively disallow certain
cases because a full assignment to (a,b, c) is scored
by the product of all model potentials. The poten-
tial function µ(c)

(bi,cij′ )
(j, k) for a coherence edge be-

tween b and c is defined similarly.
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2.4 Model Properties
We interpret c as the final alignment produced by the
model, ignoring a and b. In this way, we relax the
one-to-many constraints of the directional models.
However, all of the information about how words
align is expressed by the vertex and edge potentials
on a and b. The coherence edges and the link ma-
trix c only serve to resolve conflicts between the di-
rectional models and communicate information be-
tween them.

Because directional alignments are preserved in-
tact as components of our model, extensions or
refinements to the underlying directional Markov
alignment model could be integrated cleanly into
our model as well, including lexicalized transition
models (He, 2007), extended conditioning contexts
(Brunning et al., 2009), and external information
(Shindo et al., 2010).

For any assignment to (a,b, c) with non-zero
probability, c must encode a one-to-one phrase
alignment with a maximum phrase length of 3. That
is, any word in either sentence can align to at most
three words in the opposite sentence, and those
words must be contiguous. This restriction is di-
rectly enforced by the edge potential in Equation 2.

3 Model Inference

In general, graphical models admit efficient, exact
inference algorithms if they do not contain cycles.
Unfortunately, our model contains numerous cycles.
For every pair of indices (i, j) and (i′, j′), the fol-
lowing cycle exists in the graph:

cij → bi → cij′ → aj′ →
ci′j′ → bi′ → ci′j → aj → cij

Additional cycles also exist in the graph through
the edges between aj−1 and aj and between bi−1

and bi. The general phrase alignment problem under
an arbitrary model is known to be NP-hard (DeNero
and Klein, 2008).

3.1 Dual Decomposition
While the entire graphical model has loops, there are
two overlapping subgraphs that are cycle-free. One
subgraph Ga includes all of the vertices correspond-
ing to variables a and c. The other subgraph Gb in-
cludes vertices for variables b and c. Every edge in

the graph belongs to exactly one of these two sub-
graphs.

The dual decomposition inference approach al-
lows us to exploit this sub-graph structure (Rush et
al., 2010). In particular, we can iteratively apply
exact inference to the subgraph problems, adjusting
their potentials to reflect the constraints of the full
problem. The technique of dual decomposition has
recently been shown to yield state-of-the-art perfor-
mance in dependency parsing (Koo et al., 2010).

3.2 Dual Problem Formulation
To describe a dual decomposition inference proce-
dure for our model, we first restate the inference
problem under our graphical model in terms of the
two overlapping subgraphs that admit tractable in-
ference. Let c(a) be a copy of c associated with Ga,
and c(b) with Gb. Also, let f(a, c(a)) be the un-
normalized log-probability of an assignment to Ga
and g(b, c(b)) be the unnormalized log-probability
of an assignment to Gb. Finally, let I be the index
set of all (i, j) for c. Then, the maximum likelihood
assignment to our original model can be found by
optimizing

max
a,b,c(a),c(b)

f(a, c(a)) + g(b, c(b)) (3)

such that: c(a)
ij = c

(b)
ij ∀ (i, j) ∈ I .

The Lagrangian relaxation of this optimization
problem is L(a,b, c(a), c(b),u) =

f(a, c(a))+ g(b, c(b))+
∑

(i,j)∈I

u(i, j)(c
(a)
i,j −c

(b)
i,j ) .

Hence, we can rewrite the original problem as

max
a,b,c(a),c(b)

min
u
L(a,b, c(a), c(b),u) .

We can form a dual problem that is an up-
per bound on the original optimization problem by
swapping the order of min and max. In this case,
the dual problem decomposes into two terms that are
each local to an acyclic subgraph.

min
u

max
a,c(a)

f(a, c(a)) +
∑
i,j

u(i, j)c
(a)
ij


+ max

b,c(b)

g(b, c(b))−
∑
i,j

u(i, j)c
(b)
ij

 (4)
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Figure 2: Our combined model decomposes into two
acyclic models that each contain a copy of c.

The decomposed model is depicted in Figure 2.
As in previous work, we solve for the dual variable
u by repeatedly performing inference in the two de-
coupled maximization problems.

3.3 Sub-Graph Inference
We now address the problem of evaluating Equa-
tion 4 for fixed u. Consider the first line of Equa-
tion 4, which includes variables a and c(a).

max
a,c(a)

f(a, c(a)) +
∑
i,j

u(i, j)c
(a)
ij

 (5)

Because the graph Ga is tree-structured, Equa-
tion 5 can be evaluated in polynomial time. In fact,
we can make a stronger claim: we can reuse the
Viterbi inference algorithm for linear chain graph-
ical models that applies to the embedded directional
HMM models. That is, we can cast the optimization
of Equation 5 as

max
a

 |f |∏
j=1

De→f (aj |aj−1) ·M′j(aj = i)

 .

In the original HMM-based aligner, the vertex po-
tentials correspond to bilexical probabilities. Those
quantities appear in f(a, c(a)), and therefore will be
a part of M′j(·) above. The additional terms of Equa-
tion 5 can also be factored into the vertex poten-
tials of this linear chain model, because the optimal
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Figure 3: The tree-structured subgraph Ga can be mapped
to an equivalent chain-structured model by optimizing
over ci′j for aj = i.

choice of each cij can be determined from aj and the
model parameters. If aj = i, then cij = 1 according
to our edge potential defined in Equation 2. Hence,
setting aj = i requires the inclusion of the corre-
sponding vertex potential ω(a)

j (i), as well as u(i, j).
For i′ 6= i, either ci′j = 0, which contributes noth-
ing to Equation 5, or ci′j = 1, which contributes
u(i′, j)−α, according to our edge potential between
aj and ci′j .

Thus, we can capture the net effect of assigning
aj and then optimally assigning all ci′j in a single
potential M′j(aj = i) =

ω
(a)
j (i) + exp

u(i, j) +
∑

j′:|j′−j|=1

max(0, u(i, j′)− α)


Note that Equation 5 and f are sums of terms in

log space, while Viterbi inference for linear chains
assumes a product of terms in probability space,
which introduces the exponentiation above.

Defining this potential allows us to collapse the
source-side sub-graph inference problem defined
by Equation 5, into a simple linear chain model
that only includes potential functions M′j and µ(a).
Hence, we can use a highly optimized linear chain
inference implementation rather than a solver for
general tree-structured graphical models. Figure 3
depicts this transformation.

An equivalent approach allows us to evaluate the
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Algorithm 1 Dual decomposition inference algo-
rithm for the bidirectional model

for t = 1 to max iterations do
r ← 1

t . Learning rate

c(a) ← arg max f(a, c(a)) +
∑

i,j u(i, j)c
(a)
ij

c(b) ← arg max g(b, c(b))−
∑

i,j u(i, j)c
(b)
ij

if c(a) = c(b) then
return c(a) . Converged

u← u + r · (c(b) − c(a)) . Dual update
return combine(c(a), c(b)) . Stop early

second line of Equation 4 for fixed u:

max
b,c(b)

g(b, c(b)) +
∑
i,j

u(i, j)c
(b)
ij

 . (6)

3.4 Dual Decomposition Algorithm

Now that we have the means to efficiently evalu-
ate Equation 4 for fixed u, we can define the full
dual decomposition algorithm for our model, which
searches for a u that optimizes Equation 4. We can
iteratively search for such a u via sub-gradient de-
scent. We use a learning rate 1

t that decays with the
number of iterations t. The full dual decomposition
optimization procedure appears in Algorithm 1.

If Algorithm 1 converges, then we have found a u
such that the value of c(a) that optimizes Equation 5
is identical to the value of c(b) that optimizes Equa-
tion 6. Hence, it is also a solution to our original
optimization problem: Equation 3. Since the dual
problem is an upper bound on the original problem,
this solution must be optimal for Equation 3.

3.5 Convergence and Early Stopping

Our dual decomposition algorithm provides an infer-
ence method that is exact upon convergence.3 When
Algorithm 1 does not converge, the two alignments
c(a) and c(b) can still be used. While these align-
ments may differ, they will likely be more similar
than the alignments of independent aligners.

These alignments will still need to be combined
procedurally (e.g., taking their union), but because

3This certificate of optimality is not provided by other ap-
proximate inference algorithms, such as belief propagation,
sampling, or simulated annealing.

they are more similar, the importance of the combi-
nation procedure is reduced. We analyze the behav-
ior of early stopping experimentally in Section 5.

3.6 Inference Properties

Because we set a maximum number of iterations
n in the dual decomposition algorithm, and each
iteration only involves optimization in a sequence
model, our entire inference procedure is only a con-
stant multiple n more computationally expensive
than evaluating the original directional aligners.

Moreover, the value of u is specific to a sen-
tence pair. Therefore, our approach does not require
any additional communication overhead relative to
the independent directional models in a distributed
aligner implementation. Memory requirements are
virtually identical to the baseline: only u must be
stored for each sentence pair as it is being processed,
but can then be immediately discarded once align-
ments are inferred.

Other approaches to generating one-to-one phrase
alignments are generally more expensive. In par-
ticular, an ITG model requires O(|e|3 · |f |3) time,
whereas our algorithm requires only

O(n · (|f ||e|2 + |e||f |2)) .

Moreover, our approach allows Markov distortion
potentials, while standard ITG models are restricted
to only hierarchical distortion.

4 Related Work

Alignment combination normally involves selecting
some A from the output of two directional models.
Common approaches include forming the union or
intersection of the directional sets.

A∪ = Aa ∪ Ab

A∩ = Aa ∩ Ab .

More complex combiners, such as the grow-diag-
final heuristic (Koehn et al., 2003), produce align-
ment link sets that include all of A∩ and some sub-
set ofA∪ based on the relationship of multiple links
(Och et al., 1999).

In addition, supervised word alignment models
often use the output of directional unsupervised
aligners as features or pruning signals. In the case
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that a supervised model is restricted to proposing
alignment links that appear in the output of a di-
rectional aligner, these models can be interpreted as
a combination technique (Deng and Zhou, 2009).
Such a model-based approach differs from ours in
that it requires a supervised dataset and treats the di-
rectional aligners’ output as fixed.

Combination is also related to agreement-based
learning (Liang et al., 2006). This approach to
jointly learning two directional alignment mod-
els yields state-of-the-art unsupervised performance.
Our method is complementary to agreement-based
learning, as it applies to Viterbi inference under the
model rather than computing expectations. In fact,
we employ agreement-based training to estimate the
parameters of the directional aligners in our experi-
ments.

A parallel idea that closely relates to our bidi-
rectional model is posterior regularization, which
has also been applied to the word alignment prob-
lem (Graça et al., 2008). One form of posterior
regularization stipulates that the posterior probabil-
ity of alignments from two models must agree, and
enforces this agreement through an iterative proce-
dure similar to Algorithm 1. This approach also
yields state-of-the-art unsupervised alignment per-
formance on some datasets, along with improve-
ments in end-to-end translation quality (Ganchev et
al., 2008).

Our method differs from this posterior regulariza-
tion work in two ways. First, we iterate over Viterbi
predictions rather than posteriors. More importantly,
we have changed the output space of the model to
be a one-to-one phrase alignment via the coherence
edge potential functions.

Another similar line of work applies belief prop-
agation to factor graphs that enforce a one-to-one
word alignment (Cromières and Kurohashi, 2009).
The details of our models differ: we employ
distance-based distortion, while they add structural
correspondence terms based on syntactic parse trees.
Also, our model training is identical to the HMM-
based baseline training, while they employ belief
propagation for both training and Viterbi inference.
Although differing in both model and inference, our
work and theirs both find improvements from defin-
ing graphical models for alignment that do not admit
exact polynomial-time inference algorithms.

Aligner Intersection Union Agreement
Model |A∩| |A∪| |A∩|/|A∪|
Baseline 5,554 10,998 50.5%
Bidirectional 7,620 10,262 74.3%

Table 1: The bidirectional model’s dual decomposition
algorithm substantially increases the overlap between the
predictions of the directional models, measured by the
number of links in their intersection.

5 Experimental Results

We evaluated our bidirectional model by comparing
its output to the annotations of a hand-aligned cor-
pus. In this way, we can show that the bidirectional
model improves alignment quality and enables the
extraction of more correct phrase pairs.

5.1 Data Conditions

We evaluated alignment quality on a hand-aligned
portion of the NIST 2002 Chinese-English test set
(Ayan and Dorr, 2006). We trained the model on a
portion of FBIS data that has been used previously
for alignment model evaluation (Ayan and Dorr,
2006; Haghighi et al., 2009; DeNero and Klein,
2010). We conducted our evaluation on the first 150
sentences of the dataset, following previous work.
This portion of the dataset is commonly used to train
supervised models.

We trained the parameters of the directional mod-
els using the agreement training variant of the expec-
tation maximization algorithm (Liang et al., 2006).
Agreement-trained IBM Model 1 was used to ini-
tialize the parameters of the HMM-based alignment
models (Brown et al., 1993). Both IBM Model 1
and the HMM alignment models were trained for
5 iterations on a 6.2 million word parallel corpus
of FBIS newswire. This training regimen on this
data set has provided state-of-the-art unsupervised
results that outperform IBM Model 4 (Haghighi et
al., 2009).

5.2 Convergence Analysis

With n = 250 maximum iterations, our dual decom-
position inference algorithm only converges 6.2%
of the time, perhaps largely due to the fact that the
two directional models have different one-to-many
structural constraints. However, the dual decompo-
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Model Combiner Prec Rec AER
union 57.6 80.0 33.4

Baseline intersect 86.2 62.7 27.2
grow-diag 60.1 78.8 32.1
union 63.3 81.5 29.1

Bidirectional intersect 77.5 75.1 23.6
grow-diag 65.6 80.6 28.0

Table 2: Alignment error rate results for the bidirectional
model versus the baseline directional models. “grow-
diag” denotes the grow-diag-final heuristic.

Model Combiner Prec Rec F1
union 75.1 33.5 46.3

Baseline intersect 64.3 43.4 51.8
grow-diag 68.3 37.5 48.4
union 63.2 44.9 52.5

Bidirectional intersect 57.1 53.6 55.3
grow-diag 60.2 47.4 53.0

Table 3: Phrase pair extraction accuracy for phrase pairs
up to length 5. “grow-diag” denotes the grow-diag-final
heuristic.

sition algorithm does promote agreement between
the two models. We can measure the agreement
between models as the fraction of alignment links
in the union A∪ that also appear in the intersection
A∩ of the two directional models. Table 1 shows
a 47% relative increase in the fraction of links that
both models agree on by running dual decomposi-
tion (bidirectional), relative to independent direc-
tional inference (baseline). Improving convergence
rates represents an important area of future work.

5.3 Alignment Error Evaluation

To evaluate alignment error of the baseline direc-
tional aligners, we must apply a combination pro-
cedure such as union or intersection to Aa and Ab.
Likewise, in order to evaluate alignment error for
our combined model in cases where the inference
algorithm does not converge, we must apply combi-
nation to c(a) and c(b). In cases where the algorithm
does converge, c(a) = c(b) and so no further combi-
nation is necessary.

We evaluate alignments relative to hand-aligned
data using two metrics. First, we measure align-
ment error rate (AER), which compares the pro-

posed alignment setA to the sure set S and possible
set P in the annotation, where S ⊆ P .

Prec(A,P) =
|A ∩ P|
|A|

Rec(A,S) =
|A ∩ S|
|S|

AER(A,S,P) = 1− |A ∩ S|+ |A ∩ P|
|A|+ |S|

AER results for Chinese-English are reported in
Table 2. The bidirectional model improves both pre-
cision and recall relative to all heuristic combination
techniques, including grow-diag-final (Koehn et al.,
2003). Intersected alignments, which are one-to-one
phrase alignments, achieve the best AER.

Second, we measure phrase extraction accuracy.
Extraction-based evaluations of alignment better co-
incide with the role of word aligners in machine
translation systems (Ayan and Dorr, 2006). Let
R5(S,P) be the set of phrases up to length 5 ex-
tracted from the sure link set S and possible link set
P . Possible links are both included and excluded
from phrase pairs during extraction, as in DeNero
and Klein (2010). Null aligned words are never in-
cluded in phrase pairs for evaluation. Phrase ex-
traction precision, recall, and F1 for R5(A,A) are
reported in Table 3. Correct phrase pair recall in-
creases from 43.4% to 53.6% (a 23.5% relative in-
crease) for the bidirectional model, relative to the
best baseline.

Finally, we evaluated our bidirectional model in a
large-scale end-to-end phrase-based machine trans-
lation system from Chinese to English, based on
the alignment template approach (Och and Ney,
2004). The translation model weights were tuned for
both the baseline and bidirectional alignments using
lattice-based minimum error rate training (Kumar et
al., 2009). In both cases, union alignments outper-
formed other combination heuristics. Bidirectional
alignments yielded a modest improvement of 0.2%
BLEU4 on a single-reference evaluation set of sen-
tences sampled from the web (Papineni et al., 2002).

4BLEU improved from 29.59% to 29.82% after training
IBM Model 1 for 3 iterations and training the HMM-based
alignment model for 3 iterations. During training, link poste-
riors were symmetrized by pointwise linear interpolation.
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As our model only provides small improvements in
alignment precision and recall for the union com-
biner, the magnitude of the BLEU improvement is
not surprising.

6 Conclusion

We have presented a graphical model that combines
two classical HMM-based alignment models. Our
bidirectional model, which requires no additional
learning and no supervised data, can be applied us-
ing dual decomposition with only a constant factor
additional computation relative to independent di-
rectional inference. The resulting predictions im-
prove the precision and recall of both alignment
links and extraced phrase pairs in Chinese-English
experiments. The best results follow from combina-
tion via intersection.

Because our technique is defined declaratively in
terms of a graphical model, it can be extended in a
straightforward manner, for instance with additional
potentials on c or improvements to the component
directional models. We also look forward to dis-
covering the best way to take advantage of these
new alignments in downstream applications like ma-
chine translation, supervised word alignment, bilin-
gual parsing (Burkett et al., 2010), part-of-speech
tag induction (Naseem et al., 2009), or cross-lingual
model projection (Smith and Eisner, 2009; Das and
Petrov, 2011).
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