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Abstract 

Most previous work on multilingual sentiment 

analysis has focused on methods to adapt 

sentiment resources from resource-rich 

languages to resource-poor languages. We 

present a novel approach for joint bilingual 

sentiment classification at the sentence level 

that augments available labeled data in each 

language with unlabeled parallel data. We rely 

on the intuition that the sentiment labels for 

parallel sentences should be similar and present 

a model that jointly learns improved mono-

lingual sentiment classifiers for each language. 

Experiments on multiple data sets show that the 

proposed approach (1) outperforms the mono-

lingual baselines, significantly improving the 

accuracy for both languages by 3.44%-8.12%; 

(2) outperforms two standard approaches for 

leveraging unlabeled data; and (3) produces 

(albeit smaller) performance gains when 

employing pseudo-parallel data from machine 

translation engines. 

1 Introduction 

The field of sentiment analysis has quickly 

attracted the attention of researchers and 

practitioners alike (e.g. Pang et al., 2002; Turney, 

2002; Hu and Liu, 2004; Wiebe et al., 2005; Breck 

et al., 2007; Pang and Lee, 2008).
1

Indeed, 

sentiment analysis systems, which mine opinions 

from textual sources (e.g. news, blogs, and 

reviews), can be used in a wide variety of 

                                                           
*The work was conducted when the first author was visiting 

Cornell University. 

applications, including interpreting product 

reviews, opinion retrieval and political polling.  

Not surprisingly, most methods for sentiment 

classification are supervised learning techniques, 

which require training data annotated with the 

appropriate sentiment labels (e.g. document-level 

or sentence-level positive vs. negative polarity).  

This data is difficult and costly to obtain, and must 

be acquired separately for each language under 

consideration.  

Previous work in multilingual sentiment analysis 

has therefore focused on methods to adapt 

sentiment resources (e.g. lexicons) from resource-

rich languages (typically English) to other 

languages, with the goal of transferring sentiment 

or subjectivity analysis capabilities from English to 

other languages (e.g. Mihalcea et al. (2007); Banea 

et al. (2008; 2010); Wan (2008; 2009); 

Prettenhofer and Stein (2010)). In recent years, 

however, sentiment-labeled data is gradually 

becoming available for languages other than 

English (e.g. Seki et al. (2007; 2008); Nakagawa et 

al. (2010); Schulz et al. (2010)). In addition, there 

is still much room for improvement in existing 

monolingual (including English) sentiment 

classifiers, especially at the sentence level (Pang 

and Lee, 2008).  

This paper tackles the task of bilingual 

sentiment analysis. In contrast to previous work, 

we (1) assume that some amount of sentiment-

labeled data is available for the language pair 

under study, and (2) investigate methods to 

simultaneously improve sentiment classification 

for both languages. Given the labeled data in each 

language, we propose an approach that exploits an 

unlabeled parallel corpus with the following 
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intuition: two sentences or documents that are 

parallel (i.e. translations of one another) should 

exhibit the same sentiment — their sentiment 

labels (e.g. polarity, subjectivity, intensity) should 

be similar. The proposed maximum entropy-based 

EM approach jointly learns two monolingual 

sentiment classifiers by treating the sentiment 

labels in the unlabeled parallel text as unobserved 

latent variables, and maximizes the regularized 

joint likelihood of the language-specific labeled 

data together with the inferred sentiment labels of 

the parallel text.  Although our approach should be 

applicable at the document-level and for additional 

sentiment tasks, we focus on sentence-level 

polarity classification in this work. 

We evaluate our approach for English and 

Chinese on two dataset combinations (see Section 

4) and find that the proposed approach outperforms 

the monolingual baselines (i.e. maximum entropy 

and SVM classifiers) as well as two alternative 

methods for leveraging unlabeled data 

(transductive SVMs (Joachims, 1999b) and co-

training (Blum and Mitchell, 1998)).  Accuracy is 

significantly improved for both languages, by 

3.44%-8.12%. We furthermore find that 

improvements, albeit smaller, are obtained when 

the parallel data is replaced with a pseudo-parallel 

(i.e. automatically translated) corpus. To our 

knowledge, this is the first multilingual sentiment 

analysis study to focus on methods for 

simultaneously improving sentiment classification 

for a pair of languages based on unlabeled data 

rather than resource adaptation from one language 

to another.  

The rest of the paper is organized as follows. 

Section 2 introduces related work. In Section 3, the 

proposed joint model is described. Sections 4 and 

5, respectively, provide the experimental setup and 

results; the conclusion (Section 6) follows. 

2 Related Work 

Multilingual Sentiment Analysis.  There is a 

growing body of work on multilingual sentiment 

analysis. Most approaches focus on resource 

adaptation from one language (usually English) to 

other languages with few sentiment resources. 

Mihalcea et al. (2007), for example, generate 

subjectivity analysis resources in a new language 

from English sentiment resources by leveraging a 

bilingual dictionary or a parallel corpus. Banea et 

al. (2008; 2010) instead automatically translate the 

English resources using automatic machine 

translation engines for subjectivity classification. 

Prettenhofer and Stein (2010) investigate cross-

lingual sentiment classification from the 

perspective of domain adaptation based on 

structural correspondence learning (Blitzer et al., 

2006). 

Approaches that do not explicitly involve 

resource adaptation include Wan (2009), which 

uses co-training (Blum and Mitchell, 1998) with 

English vs. Chinese features comprising the two 

independent ―views‖ to exploit unlabeled Chinese 

data and a labeled English corpus and thereby 

improves Chinese sentiment classification. 

Another notable approach is the work of Boyd-

Graber and Resnik (2010), which presents a 

generative model --- supervised multilingual latent 

Dirichlet allocation --- that jointly models topics 

that are consistent across languages, and employs 

them to better predict sentiment ratings. 

Unlike the methods described above, we focus 

on simultaneously improving the performance of 

sentiment classification in a pair of languages by 

developing a model that relies on sentiment-

labeled data in each language as well as unlabeled 

parallel text for the language pair. 

Semi-supervised Learning.  Another line of 

related work is semi-supervised learning, which 

combines labeled and unlabeled data to improve 

the performance of the task of interest (Zhu and 

Goldberg, 2009). Among the popular semi-

supervised methods (e.g. EM on Naïve Bayes 

(Nigam et al., 2000), co-training (Blum and 

Mitchell, 1998), transductive SVMs (Joachims, 

1999b), and co-regularization (Sindhwani et al., 

2005; Amini et al., 2010)), our approach employs 

the EM algorithm, extending it to the bilingual 

case based on maximum entropy. We compare to 

co-training and transductive SVMs in Section 5. 

Multilingual NLP for Other Tasks. Finally, 

there exists related work using bilingual resources 

to help other NLP tasks, such as word sense 

disambiguation (e.g. Ido and Itai (1994)), parsing 

(e.g. Burkett and Klein (2008); Zhao et al. (2009); 

Burkett et al. (2010)), information retrieval (Gao et 

al., 2009), named entity detection (Burkett et al., 

2010); topic extraction (e.g. Zhang et al., 2010), 

text classification (e.g. Amini et al., 2010), and 

hyponym-relation acquisition (e.g. Oh et al., 2009). 
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In these cases, multilingual models increase 

performance because different languages contain 

different ambiguities and therefore present 

complementary views on the shared underlying 

labels.  Our work shares a similar motivation. 

3 A Joint Model with Unlabeled Parallel 

Text 

We propose a maximum entropy-based statistical 

model. Maximum entropy (MaxEnt) models
1
 have 

been widely used in many NLP tasks (Berger et al., 

1996; Ratnaparkhi, 1997; Smith, 2006). The 

models assign the conditional probability of the 

label   given the observation   as follows: 

          
 

 
                                 (1) 

where    is a real-valued vector of feature weights 

and    is a feature function that maps pairs       to 

a nonnegative real-valued feature vector. Each 

feature has an associated parameter,   , which is 

called its weight; and   is the corresponding 

normalization factor.  

Maximum likelihood parameter estimation 

(training) for such a model, with a set of labeled 

examples            
  , amounts to solving the 

following optimization problem: 

  
 
       

    
         

 
                        (2) 

3.1 Problem Definition 

Given two languages    and   , suppose we have 

two distinct (i.e. not parallel) sets of sentiment-

labeled data,    and     written in    and     

respectively. In addition, we have unlabeled (w.r.t. 

sentiment) bilingual (in    and   ) parallel data   

that are defined as follows. 

               
    

     
     

               
    

     
    

     
    

       
  

   
  

 
   

 
   

where               denotes the polarity of 

the  -th instance    (positive or negative);    and    

are respectively the numbers of labeled instances 

in    and   ;   
  

 and   
  

 are parallel instances in    

and   , respectively (i.e. they are supposed to be 

                                                           
1They are sometimes referred to as log-linear models, but also 

known as exponential models, generalized linear models, or 

logistic regression. 

translations of one another), whose labels   
  

 and 

  
  

 are unobserved, but according to the intuition 

outlined in Section 1, should be similar.  

Given the input data        and  , our task is to 

jointly learn two monolingual sentiment classifiers 

— one for    and one for   . With MaxEnt, we 

learn from the input data:  

                   

 
     

 
  

where    
   and     

 
 are the vectors of feature weights 

for    and   , respectively (for brevity we denote 

them as    and    in the remaining sections). In this 

study, we focus on sentence-level sentiment 

classification, i.e. each    is a sentence, and   
  

 and 

  
  

 are parallel sentences. 

3.2 The Joint Model  

Given the problem definition above, we now 

present a novel model to exploit the 

correspondence of parallel sentences in unlabeled 

bilingual text. The model maximizes the following 

joint likelihood with respect to    and   : 
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where          denotes    or   ; the first term on 

the right-hand side is the likelihood of labeled data 

for both    and   ; and the second term is the 

likelihood of the unlabeled parallel data  .  

If we assume that parallel sentences are perfect 

translations, the two sentences in each pair should 

have the same polarity label, which gives us:   

    
  

   
  

   
  

   
  

        

     
    

  
        

    
  

      
                          (4) 

where   
  is the unobserved class label for the  -th 

instance in the unlabeled data. This probability 

directly models the sentiment label agreement 

between   
  

 and   
  

. 

However, there could be considerable noise in 

real-world parallel data, i.e. the sentence pairs may 

be noisily parallel (or even comparable) instead of 

fully parallel (Munteanu and Marcu, 2005). In such 

noisy cases, the labels (positive or negative) could 

be different for the two monolingual sentences in a 

sentence pair. Although we do not know the exact 

probability that a sentence pair exhibits the same 

label, we can approximate it using their translation 
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probabilities, which can be computed using word 

alignment toolkits such as Giza++ (Och and Ney, 

2003) or the Berkeley word aligner (Liang et al., 

2006). The intuition here is that if the translation 

probability of two sentences is high, the probability 

that they have the same sentiment label should be 

high as well. Therefore, by considering the noise in 

parallel data, we get: 

    
  

   
  

   
  

   
  

         

              
  

           
  

          

                  
  

            
  

             (5)                 

where       is the translation probability of the  -th 

sentence pair in  ;
2
     is the opposite of   ; the first 

term models the probability that   
  

 and   
  

 have 

the same label; and the second term models the 

probability that they have different labels.  

By further considering the weight to ascribe to 

the unlabeled data vs. the labeled data (and the 

weight for the L2-norm regularization), we get the 

following regularized joint log likelihood to be 

maximized: 

                                     
    

         
    

    
    

         
  

 
      

  
         (6) 

where the first term on the right-hand side is the 

log likelihood of the labeled data from both    and 

    the second is the log likelihood of the 

unlabeled parallel data  , multiplied by     , a 

constant that controls the contribution of the 

unlabeled data; and      is a regularization 

constant that penalizes model complexity or large 

feature weights. When    is 0, the algorithm 

ignores the unlabeled data and degenerates to two 

MaxEnt models trained on only the labeled data. 

3.3 The EM Algorithm on MaxEnt 

To solve the optimization problem for the model, 

we need to jointly estimate the optimal parameters 

for the two monolingual classifiers by finding: 

   
    

                                       (7) 

This can be done with an EM algorithm, whose 

steps are summarized in Algorithm 1. First, the 

MaxEnt parameters,    and   , are estimated from 

                                                           
2The probability should be rescaled within the range of [0, 1], 

where 0.5 means that we are completely unsure if the 

sentences are translations of each other or not, and only those 

translation pairs with a probability larger than 0.5 are 

meaningful for our purpose. 

just the labeled data. Then, in the E-step, the 

classifiers, based on current values of     and   , 

compute          for each labeled example and 

assign probabilistically-weighted class labels to 

each unlabeled example. Next, in the M-step, the 

parameters,    and   , are updated using both the 

original labeled data (   and   ) and the newly 

labeled data  . These last two steps are iterated 

until convergence or a predefined iteration limit  . 

Algorithm 1. The MaxEnt-based EM Algorithm for 

Multilingual Sentiment Classification 

Input: Labeled data    and    

Unlabeled parallel data   

Output: 
Two monolingual MaxEnt classifiers with 

parameters   
  and   

 , respectively 

1. Train two initial monolingual models 

Train and initialize   
   

 and   
   

 on the labeled data 

2. Jointly optimize two monolingual models 

for     to   do // T: number of iterations 

       E-Step: 

Compute         for each example in    ,    and   

based on   
     

 and   
     

; 

Compute the expectation of the log likelihood with 

respect to       ; 

M-Step: 

Find    
   

 and   
   

 by maximizing the regularized 

joint log likelihood; 

Convergence: 

 If the increase of the joint log likelihood is 

sufficiently small, break; 

      end for  

3. Output    
  as   

   
s, and   

  as    
   

  

In the M-step, we can optimize the regularized 

joint log likelihood using any gradient-based 

optimization technique (Malouf, 2002). The 

gradient for Equation 3 based on Equation 4 is 

shown in Appendix A; those for Equations 5 and 6 

can be derived similarly. In our experiments, we 

use the L-BFGS algorithm (Liu et al., 1989) and 

run EM until the change in regularized joint log 

likelihood is less than 1e-5 or we reach 100 

iterations.
3
 

                                                           
3Since the EM-based algorithm may find a local maximum of 

the objective function, the initialization of the parameters is 

important. Our experiments show that an effective maximum 

can usually be found by initializing the parameters with those 

learned from the labeled data; performance would be much 

worse if we initialize all the parameters to 0 or 1. 
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3.4 Pseudo-Parallel Labeled and Unlabeled 

Data 

We also consider the case where a parallel corpus 

is not available: to obtain a pseudo-parallel corpus 

  (i.e. sentences in one language with their 

corresponding automatic translations), we use an 

automatic machine translation system (e.g. Google 

machine translation
4
) to translate unlabeled in-

domain data from    to    or vice versa. 

Since previous work (Banea et al., 2008; 2010; 

Wan, 2009) has shown that it could be useful to 

automatically translate the labeled data from the 

source language into the target language, we can 

further incorporate such translated labeled data into 

the joint model by adding the following component 

into Equation 6: 

           
     

   
    

   
   

 
                  (8) 

where    is the alternative class of  ,   
    is the 

automatically translated example from   
  ; and  

     is a constant that controls the weight of the 

translated labeled data. 

4 Experimental Setup 

4.1 Data Sets and Preprocessing 

The following labeled datasets are used in our 

experiments. 

MPQA (Labeled English Data): The Multi-

Perspective Question Answering (MPQA) corpus 

(Wiebe et al., 2005) consists of newswire 

documents manually annotated with phrase-level 

subjectivity information. We extract all sentences 

containing strong (i.e. intensity is medium or 

higher), sentiment-bearing (i.e. polarity is positive 

or negative) expressions following Choi and 

Cardie (2008). Sentences with both positive and 

negative strong expressions are then discarded, and 

the polarity of each remaining sentence is set to 

that of its sentiment-bearing expression(s). 

NTCIR-EN (Labeled English Data) and 

NTCIR-CH (Labeled Chinese Data): The 

NTCIR Opinion Analysis task (Seki et al., 2007; 

2008) provides sentiment-labeled news data in 

Chinese, Japanese and English. Only those 

sentences with a polarity label (positive or 

negative) agreed to by at least two annotators are 

extracted. We use the Chinese data from NTCIR-6 

                                                           
4http://translate.google.com/ 

as our Chinese labeled data. Since far fewer 

sentences in the English data pass the annotator 

agreement filter, we combine the English data from 

NTCIR-6 and NTCIR-7. The Chinese sentences 

are segmented using the Stanford Chinese word 

segmenter (Tseng et al., 2005). 

The number of sentences in each of these 

datasets is shown in Table 1. In our experiments, 

we evaluate two settings of the data: (1) 

MPQA+NTCIR-CH, and (2) NTCIR-EN+NTCIR-

CH. In each setting, the English labeled data 

constitutes    and the Chinese labeled data,   .  

 MPQA NTCIR-EN NTCIR-CH 

Positive 1,471 (30%) 528 (30%) 2,378 (55%) 

Negative 3,487 (70%) 1,209 (70%) 1,916 (45%) 

Total 4,958 1,737 4,294 

Table 1: Sentence Counts for the Labeled Data 

Unlabeled Parallel Text and its Preprocessing. 

For the unlabeled parallel text, we use the ISI 

Chinese-English parallel corpus (Munteanu and 

Marcu, 2005), which was extracted automatically 

from news articles published by Xinhua News 

Agency in the Chinese Gigaword (2
nd

 Edition) and 

English Gigaword (2
nd

 Edition) collections. 

Because sentence pairs in the ISI corpus are quite 

noisy, we rely on Giza++ (Och and Ney, 2003) to 

obtain a new translation probability for each 

sentence pair, and select the 100,000 pairs with the 

highest translation probabilities.
5
  

We also try to remove neutral sentences from 

the parallel data since they can introduce noise into 

our model, which deals only with positive and 

negative examples. To do this, we train a single 

classifier from the combined Chinese and English 

labeled data for each data setting above by 

concatenating the original English and Chinese 

feature sets. We then classify each unlabeled 

sentence pair by combining the two sentences in 

each pair into one. We choose the most confidently 

predicted 10,000 positive and 10,000 negative 

pairs to constitute the unlabeled parallel corpus   

for each data setting. 

                                                           
5We removed sentence pairs with an original confidence score 

(given in the corpus) smaller than 0.98, and also removed the 

pairs that are too long (more than 60 characters in one 

sentence) to facilitate Giza++. We first obtain translation 

probabilities for both directions (i.e. Chinese to English and 

English to Chinese) with Giza++, take the log of the product 

of those two probabilities, and then divide it by the sum of 

lengths of the two sentences in each pair.  
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4.2 Baseline Methods 

In our experiments, the proposed joint model is 

compared with the following baseline methods. 

MaxEnt: This method learns a MaxEnt 

classifier for each language given the monolingual 

labeled data; the unlabeled data is not used.  

SVM: This method learns an SVM classifier for 

each language given the monolingual labeled data; 

the unlabeled data is not used. SVM-light 

(Joachims, 1999a) is used for all the SVM-related 

experiments. 

Monolingual TSVM (TSVM-M): This method 

learns two transductive SVM (TSVM) classifiers 

given the monolingual labeled data and the 

monolingual unlabeled data for each language.  

Bilingual TSVM (TSVM-B): This method 

learns one TSVM classifier given the labeled 

training data in two languages together with the 

unlabeled sentences by combining the two 

sentences in each unlabeled pair into one. We 

expect this method to perform better than TSVM-

M since the combined (bilingual) unlabeled 

sentences could be more helpful than the unlabeled 

monolingual sentences. 

Co-Training with SVMs (Co-SVM): This 

method applies SVM-based co-training given both 

the labeled training data and the unlabeled parallel 

data following Wan (2009). First, two monolingual 

SVM classifiers are built based on only the 

corresponding labeled data, and then they are 

bootstrapped by adding the most confident 

predicted examples from the unlabeled data into 

the training set. We run bootstrapping for 100 

iterations. In each iteration, we select the most 

confidently predicted 50 positive and 50 negative 

sentences from each of the two classifiers, and take 

the union of the resulting 200 sentence pairs as the 

newly labeled training data. (Examples with 

conflicting labels within the pair are not included.) 

5 Results and Analysis 

In our experiments, the methods are tested in the 

two data settings with the corresponding unlabeled 

parallel corpus as mentioned in Section 4.
6
 We use 

                                                           
6 The results reported in this section employ Equation 4. 

Preliminary experiments showed that Equation 5 does not 

significantly improve the performance in our case, which is 

reasonable since we choose only sentence pairs with the 

highest translation probabilities to be our unlabeled data (see 

Section 4.1).      

5-fold cross-validation and report average accuracy 

(also MicroF1 in this case) and MacroF1 scores. 

Unigrams are used as binary features for all 

models, as Pang et al. (2002) showed that binary 

features perform better than frequency features for 

sentiment classification. The weights for unlabeled 

data and regularization,    and   , are set to 1 

unless otherwise stated. Later, we will show that 

the proposed approach performs well with a wide 

range of parameter values.
7
 

5.1 Method Comparison 

We first compare the proposed joint model (Joint) 

with the baselines in Table 2. As seen from the 

table, the proposed approach outperforms all five 

baseline methods in terms of both accuracy and 

MacroF1 for both English and Chinese and in both 

of the data settings.
8

 By making use of the 

unlabeled parallel data, our proposed approach 

improves the accuracy, compared to MaxEnt, by 

8.12% (or 33.27% error reduction) on English and 

3.44% (or 16.92% error reduction) on Chinese in 

the first setting, and by 5.07% (or 19.67% error 

reduction) on English and 3.87% (or 19.4% error 

reduction) on Chinese in the second setting. 

 Among the baselines, the best is Co-SVM; 

TSVMs do not always improve performance using 

the unlabeled data compared to the standalone 

SVM; and TSVM-B outperforms TSVM-M except 

for Chinese in the second setting. The MPQA data 

is more difficult in general compared to the NTCIR 

data. Without unlabeled parallel data, the 

performance on the Chinese data is better than on 

the English data, which is consistent with results 

reported in NTCIR-6 (Seki et al., 2007).  

Overall, the unlabeled parallel data improves 

classification accuracy for both languages when 

using our proposed joint model and Co-SVM. The 

joint model makes better use of the unlabeled 

parallel data than Co-SVM or TSVMs presumably 

because of its attempt to jointly optimize the two 

monolingual models via soft (probabilistic) 

assignments of the unlabeled instances to classes in 

each iteration, instead of the hard assignments in 

Co-SVM and TSVMs. Although English sentiment 

                                                           
7The code is at http://sites.google.com/site/lubin2010. 
8 Significance is tested using paired t-tests with  <0.05: 

€ 

denotes statistical significance compared to the corresponding 

performance of MaxEnt; * denotes statistical significance 

compared to SVM; and 
Γ
 denotes statistical significance 

compared to Co-SVM. 
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classification alone is more difficult than Chinese 

for our datasets, we obtain greater performance 

gains for English by exploiting unlabeled parallel 

data as well as the Chinese labeled data.  

5.2 Varying the Weight and Amount of 

Unlabeled Data 

Figure 1 shows the accuracy curve of the proposed 

approach for the two data settings when varying 

the weight for the unlabeled data,   , from 0 to 1. 

When    is set to 0, the joint model degenerates to 

two MaxEnt models trained with only the labeled 

data.  

We can see that the performance gains for the 

proposed approach are quite remarkable even when 

   is set to 0.1; performance is largely stable after 

   reaches 0.4. Although MPQA is more difficult 

in general compared to the NTCIR data, we still 

see steady improvements in performance with 

unlabeled parallel data. Overall, the proposed 

approach performs quite well for a wide range of 

parameter values of   .  

Figure 2 shows the accuracy curve of the 

proposed approach for the two data settings when 

varying the amount of unlabeled data from 0 to 

20,000 instances. We see that the performance of 

the proposed approach improves steadily by adding 

more and more unlabeled data. However, even 

with only 2,000 unlabeled sentence pairs, the 

proposed approach still produces large 

performance gains.  

5.3 Results on Pseudo-Parallel Unlabeled 

Data 

As discussed in Section 3.4, we generate pseudo-

parallel data by translating the monolingual 

sentences in each setting using Google’s machine 

translation system. Figures 3 and 4 show the 

performance of our model using the pseudo-

parallel data versus the real parallel data, in the two 

settings, respectively. The EN->CH pseudo-

parallel data consists of the English unlabeled data 

and its automatic Chinese translation, and vice 

versa. 

Although not as significant as those with parallel 

data, we can still obtain improvements using the 

pseudo-parallel data, especially in the first setting. 

The difference between using parallel versus 

pseudo-parallel data is around 2-4% in Figures 3 

and 4, which is reasonable since the quality of the 

pseudo-parallel data is not as good as that of the 

parallel data. Therefore, the performance using 

pseudo-parallel data is better with a small weight 

(e.g.   = 0.1) in some cases.  

 

Setting 1: NTCIR-EN+NTCIR-CH Setting 2: MPQA+NTCIR-CH 

Accuracy MacroF1 Accuracy MacroF1 

English Chinese English Chinese English Chinese English Chinese 

MaxEnt 75.59 79.67 66.61* 79.34 74.22 79.67 65.09* 79.34 

SVM 76.34 81.02 61.12 80.75€ 76.74€ 81.02 61.35 80.75€ 

TSVM-M 73.46 80.21 55.33 79.99 72.89 81.14 52.82 79.99 

TSVM-B 78.36 81.60€ 65.53 81.42 76.42€ 78.51 61.66 78.32 

Co-SVM 82.44€* 82.79€ 72.61€* 82.67€* 78.18€* 82.63€* 68.03€* 82.51€* 

Joint 83.71€* 83.11€* 75.89€*Γ 82.97€* 79.29€*Γ 83.54€* 72.58€*Γ 83.37€* 

Table 2: Comparison of Results 

       
Figure 1. Accuracy vs. Weight of Unlabeled Data                Figure 2. Accuracy vs. Amount of Unlabeled Data 
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5.4 Adding Pseudo-Parallel Labeled Data 

In this section, we investigate how adding 

automatically translated labeled data might 

influence the performance as mentioned in Section 

3.4. We use only the translated labeled data to train 

classifiers, and then directly classify the test data. 

The average accuracies in setting 1 are 66.61% and 

63.11% on English and Chinese, respectively; 

while the accuracies in setting 2 are 58.43% and 

54.07% on English and Chinese, respectively. This 

result is reasonable because of the language gap 

between the original language and the translated 

language. In addition, the class distributions of the 

English labeled data and the Chinese are quite 

different (30% vs. 55% for positive as shown in 

Table 1).  

Figures 5 and 6 show the accuracies when 

varying the weight of the translated labeled data vs. 

the labeled data, with and without the unlabeled 

parallel data. From Figure 5 for setting 1, we can 

see that the translated data can be helpful given the 

labeled data and even the unlabeled data, as long as 

   is small; while in Figure 6, the translated data 

decreases the performance in most cases for setting 

2. One possible reason is that in the first data 

setting, the NTCIR English data covers the same 

topics as the NTCIR Chinese data and thus direct 

translation is helpful, while the English and 

Chinese topics are quite different in the second 

data setting, and thus direct translation hurts the 

performance given the existing labeled data in each 

language. 

5.5 Discussion 

To further understand what contributions our 

proposed approach makes to the performance gain, 

we look inside the parameters in the MaxEnt 

models learned before and after adding the parallel 

unlabeled data. Table 3 shows the features in the 

model learned from the labeled data that have the 

largest weight change after adding the parallel data;  

     
Figure 3. Accuracy with Pseudo-Parallel Unlabeled           Figure 4. Accuracy with Pseudo-Parallel Unlabeled 

 Data in Setting 1                                                         Data in Setting 2 

        

Figure 5. Accuracy with Pseudo-Parallel Labeled              Figure 6. Accuracy with Pseudo-Parallel Labeled  

Data in Setting 1                                                      Data in Setting 2 
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Positive Negative 

Word Weight Word Weight 

friendly 0.701 german 0.783 

principles 0.684 arduous 0.531 

hopes 0.630 oppose 0.511 

hoped 0.553 administrations 0.431 

cooperative 0.552 oau9 0.408 

Table 4. New Features Learned from Unlabeled Data 

and Table 4 shows the newly learned features from 

the unlabeled data with the largest weights. 

From Table 3
10

 we can see that the weight 

changes of the original features are quite 

reasonable, e.g. the top words in the positive class 

are obviously positive and the proposed approach 

gives them higher weights. The new features also 

seem reasonable given the knowledge that the 

labeled and unlabeled data includes negative news 

about for specific topics (e.g. Germany, Taiwan),. 

We also examine the process of joint training by 

checking the performance on test data and the 

agreement of the two monolingual models on the 

unlabeled parallel data in both settings. The 

average agreement across 5 folds is 85.06% and 

73.87% in settings 1 and 2, respectively, before the 

joint training, and increases to 100% and 99.89%, 

respectively, after 100 iterations of joint training. 

Although the average agreement has already 

increased to 99.50% and 99.02% in settings 1 and 

2, respectively, after 30 iterations, the performance 

on the test set steadily improves in both settings 

until around 50-60 iterations, and then becomes 

relatively stable after that. 

Examination of those sentence pairs in setting 2 

for which the two monolingual models still 

                                                           
9
This is an abbreviation for the Organization of African Unity. 

10The features and weights in Tables 3 and 4 are extracted 

from the English model in the first fold of setting 1. 

disagree after 100 iterations of joint training often 

produces sentences that are not quite parallel, e.g.: 
English: The two sides attach great importance to 

international cooperation on protection and promotion of 

human rights. 

Chinese: 双方认为,在人权问题上不能采取―双重标准‖,反对在

国际关系中利用人权问题施压。(Both sides agree that double 

standards on the issue of human rights are to be avoided, and 

are opposed to using pressure on human rights issues in 

international relations.) 

Since the two sentences discuss human rights 

from very different perspectives, it is reasonable 

that the two monolingual models will classify them 

with different polarities (i.e. positive for the 

English sentence and negative for the Chinese 

sentence) even after joint training.  

6 Conclusion 

In this paper, we study bilingual sentiment 

classification and propose a joint model to 

simultaneously learn better monolingual sentiment 

classifiers for each language by exploiting an 

unlabeled parallel corpus together with the labeled 

data available for each language. Our experiments 

show that the proposed approach can significantly 

improve sentiment classification for both 

languages. Moreover, the proposed approach 

continues to produce (albeit smaller) performance 

gains when employing pseudo-parallel data from 

machine translation engines. 

In future work, we would like to apply the joint 

learning idea to other learning frameworks (e.g. 

SVMs), and to extend the proposed model to 

handle word-level parallel information, e.g. 

bilingual dictionaries or word alignment 

information. Another issue is to investigate how to 

improve multilingual sentiment analysis by 

exploiting comparable corpora. 
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 Word 
Weight 

Before After Change 

Positive 

important 0.452 1.659 1.207 

cooperation 0.325 1.492 1.167 

support 0.533 1.483 0.950 

importance 0.450 1.193 0.742 

agreed 0.347 1.061 0.714 

Negative 

difficulties 0.018 0.663 0.645 

not 0.202 0.844 0.641 

never 0.245 0.879 0.634 

germany 0.035 0.664 0.629 

taiwan 0.590 1.216 0.626 

Table 3. Original Features with Largest Weight Change 
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Appendix A. Equation Deduction 

In this appendix, we derive the gradient for the objective 

function in Equation 3, which is used in parameter 

estimation. As mentioned in Section 3.3, the parameters 

can be learned by finding: 

   
    

         
       

                 

       
       

                    

       
       

                           

         
  

   
  

   
  

   
  

        
        

Since the first term on the right-hand side is just the 

expression for the standard MaxEnt problem, we will 

focus on the gradient for the second term, and denote 
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Let         denote    or   , and   
  be the  th weight 

in the vector   . For brevity, we drop the   in the above 

notation, and write   
  to denote   

  
. Then the partial 

derivative of (*) based on Equation 4 with respect to   
  

is as follows: 
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Further, we obtain: 
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Merge (2) into (1), we get: 
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