
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 201–210,
Portland, Oregon, June 19-24, 2011. c©2011 Association for Computational Linguistics

A Large Scale Distributed Syntactic, Semantic and Lexical
Language Model for Machine Translation

Ming Tan Wenli Zhou Lei Zheng Shaojun Wang
Kno.e.sis Center

Department of Computer Science and Engineering
Wright State University

Dayton, OH 45435, USA
{tan.6,zhou.23,lei.zheng,shaojun.wang}@wright.edu

Abstract

This paper presents an attempt at building
a large scale distributed composite language
model that simultaneously accounts for local
word lexical information, mid-range sentence
syntactic structure, and long-span document
semantic content under a directed Markov ran-
dom field paradigm. The composite language
model has been trained by performing a con-
vergent N-best list approximate EM algorithm
that has linear time complexity and a follow-
up EM algorithm to improve word prediction
power on corpora with up to a billion tokens
and stored on a supercomputer. The large
scale distributed composite language model
gives drastic perplexity reduction overn-
grams and achieves significantly better trans-
lation quality measured by the BLEU score
and “readability” when applied to the task of
re-ranking the N-best list from a state-of-the-
art parsing-based machine translation system.

1 Introduction

The Markov chain (n-gram) source models, which
predict each word on the basis of previousn-1
words, have been the workhorses of state-of-the-art
speech recognizers and machine translators that help
to resolve acoustic or foreign language ambiguities
by placing higher probability on more likely original
underlying word strings. Research groups (Brants et
al., 2007; Zhang, 2008) have shown that using an
immense distributed computing paradigm, up to 6-
grams can be trained on up to billions and trillions
of words, yielding consistent system improvements,
but Zhang (2008) did not observe much improve-
ment beyond 6-grams. Although the Markov chains

are efficient at encoding local word interactions, the
n-gram model clearly ignores the rich syntactic and
semantic structures that constrain natural languages.
As the machine translation (MT) working groups
stated on page 3 of their final report (Lavie et al.,
2006), “These approaches have resulted in small im-
provements in MT quality, but have not fundamen-
tally solved the problem. There is a dire need for de-
veloping novel approaches to language modeling.”

Wang et al. (2006) integratedn-gram, structured
language model (SLM) (Chelba and Jelinek, 2000)
and probabilistic latent semantic analysis (PLSA)
(Hofmann, 2001) under the directed MRF frame-
work (Wang et al., 2005) and studied the stochas-
tic properties for the composite language model.
They derived ageneralized inside-outsidealgorithm
to train the composite language model from a gen-
eral EM (Dempster et al., 1977) by following Je-
linek’s ingenious definition of the inside and outside
probabilities for SLM (Jelinek, 2004) with 6th order
of sentence length time complexity. Unfortunately,
there are no experimental results reported.

In this paper, we study the same composite lan-
guage model. Instead of using the 6th order general-
ized inside-outside algorithm proposed in (Wang et
al., 2006), we train this composite model by a con-
vergent N-best list approximate EM algorithm that
has linear time complexity and a follow-up EM al-
gorithm to improve word prediction power. We con-
duct comprehensive experiments on corpora with 44
million tokens, 230 million tokens, and 1.3 billion
tokens and compare perplexity results withn-grams
(n=3,4,5 respectively) on these three corpora, we
obtain drastic perplexity reductions. Finally, we ap-

201

ply our language models to the task of re-ranking
the N-best list from Hiero (Chiang, 2005; Chiang,
2007), a state-of-the-art parsing-based MT system,
we achieve significantly better translation quality
measured by the BLEU score and “readability”.

2 Composite language model

The n-gram language model is essentially a word
predictor that given its entire document history it
predicts next wordwk+1 based on the lastn-1 words
with probabilityp(wk+1|w

k
k−n+2) wherewk

k−n+2 =
wk−n+2, · · · , wk.

The SLM (Chelba and Jelinek, 1998; Chelba and
Jelinek, 2000) uses syntactic information beyond
the regularn-gram models to capture sentence level
long range dependencies. The SLM is based on sta-
tistical parsing techniques that allow syntactic anal-
ysis of sentences; it assigns a probabilityp(W,T) to
every sentenceW and every possible binary parse
T . The terminals ofT are the words ofW with POS
tags, and the nodes ofT are annotated with phrase
headwords and non-terminal labels. LetW be a sen-
tence of lengthn words to which we have prepended
the sentence beginning marker<s> and appended
the sentence end marker</s> so thatw0 =<s>
andwn+1 =</s>. Let Wk = w0, · · · , wk be the
word k-prefix of the sentence – the words from the
beginning of the sentence up to the current position
k andWkTk the word-parsek-prefix. A word-parse
k-prefix has a set of exposed headsh−m, · · · , h−1,
with each head being a pair (headword, non-terminal
label), or in the case of a root-only tree (word,
POS tag). Anm-th order SLM (m-SLM) has
three operators to generate a sentence: WORD-
PREDICTOR predicts the next wordwk+1 based
on the m left-most exposed headwordsh−1

−m =
h−m, · · · , h−1 in the word-parsek-prefix with prob-
ability p(wk+1|h

−1
−m), and then passes control to the

TAGGER; the TAGGER predicts the POS tagtk+1

to the next wordwk+1 based on the next wordwk+1

and the POS tags of them left-most exposed head-
words h−1

−m in the word-parsek-prefix with prob-
ability p(tk+1|wk+1, h−m.tag, · · · , h−1.tag); the
CONSTRUCTOR builds the partial parseTk from
Tk−1, wk, andtk in a series of moves ending with
NULL, where a parse movea is made with proba-
bility p(a|h−1

−m); a ∈ A={(unary, NTlabel), (adjoin-
left, NTlabel), (adjoin-right, NTlabel), null}. Once

the CONSTRUCTOR hits NULL, it passes control
to the WORD-PREDICTOR. See detailed descrip-
tion in (Chelba and Jelinek, 2000).

A PLSA model (Hofmann, 2001) is a gener-
ative probabilistic model of word-document co-
occurrences using the bag-of-words assumption de-
scribed as follows: (i) choose a documentd with
probability p(d); (ii) SEMANTIZER: select a se-
mantic classg with probability p(g|d); and (iii)
WORD-PREDICTOR: pick a wordw with proba-
bility p(w|g). Since only one pair of(d,w) is being
observed, as a result, the joint probability model is
a mixture of log-linear model with the expression
p(d,w) = p(d)

∑
g p(w|g)p(g|d). Typically, the

number of documents and vocabulary size are much
larger than the size of latent semantic class variables.
Thus, latent semantic class variables function as bot-
tleneck variables to constrain word occurrences in
documents.

When combiningn-gram, m order SLM and
PLSA models together to build a composite gen-
erative language model under the directed MRF
paradigm (Wang et al., 2005; Wang et al., 2006),
the TAGGER and CONSTRUCTOR in SLM and
SEMANTIZER in PLSA remain unchanged; how-
ever the WORD-PREDICTORs inn-gram,m-SLM
and PLSA are combined to form a stronger WORD-
PREDICTOR that generates the next word,wk+1,
not only depending on them left-most exposed
headwordsh−1

−m in the word-parsek-prefix but also
its n-gram historywk

k−n+2 and its semantic con-
tentgk+1. The parameter for WORD-PREDICTOR
in the compositen-gram/m-SLM/PLSA language
model becomesp(wk+1|w

k
k−n+2h

−1
−mgk+1). The re-

sulting composite language model has an even more
complex dependency structure but with more ex-
pressive power than the original SLM. Figure 1 il-
lustrates the structure of a compositen-gram/m-
SLM/PLSA language model.

The composite n-gram/m-SLM/PLSA lan-
guage model can be formulated as a directed
MRF model (Wang et al., 2006) with lo-
cal normalization constraints for the param-
eters of each model component, WORD-
PREDICTOR, TAGGER, CONSTRUCTOR,
SEMANTIZER, i.e.,

∑
w∈V p(w|w−1

−n+1h
−1
−mg) =

1,
∑

t∈O p(t|wh−1
−m.tag) = 1,

∑
a∈A p(a|h−1

−m) =
1,

∑
g∈G p(g|d) = 1.

202

..................

g

w

g g g......

</s>

d

kk−n+2j+1

......<s> w1 i

i
......

......

g1

wk wk+1

gk+1

h−1h−2

h−m

j+1wwj

gj

......
k−n+2w

......

Figure 1: A compositen-gram/m-SLM/PLSA language
model where the hidden information is the parse tree
T and semantic contentg. The WORD-PREDICTOR
generates the next wordwk+1 with probability
p(wk+1|w

k

k−n+2
h−1

−m
gk+1) instead ofp(wk+1|w

k

k−n+2
),

p(wk+1|h
−1
−m) andp(wk+1|gk+1) respectively.

3 Training algorithm
Under the compositen-gram/m-SLM/PLSA lan-
guage model, the likelihood of a training corpusD,
a collection of documents, can be written as

L(D, p) =
Y

d∈D

Y

l

X

Gl

X

T l

Pp(W
l, T l, Gl|d)

!!!

(1)

where(W l, T l, Gl, d) denote the joint sequence of
the lth sentenceW l with its parse tree structureT l

and semantic annotation stringGl in documentd.
This sequence is produced by a unique sequence
of model actions: WORD-PREDICTOR, TAGGER,
CONSTRUCTOR, SEMANTIZER moves, its prob-
ability is obtained by chaining the probabilities of
these moves

Pp(W l, T l, Gl|d)

=
Y

g∈G

0

@p(g|d)#(g,W l,Gl,d)
Y

h−1,··· ,h−m∈H

Y

w,w−1 ,··· ,w−n+1∈V

p(w|w−1
−n+1h

−1
−mg)#(w−

1

−n+1
wh

−1

−m
g,W l,T l,Gl,d)

Y

t∈O

p(t|wh−1
−m.tag)#(t,wh

−1

−m
.tag,W l,T l,d)

Y

a∈A

p(a|h−1
−m)#(a,h

−1

−m
,W l,T l,d)

!

where #(g,W l, Gl, d) is the count of seman-
tic content g in semantic annotation string
Gl of the lth sentenceW l in document d,
#(w−1

−n+1wh−1
−mg,W l, T l, Gl, d) is the count

of n-grams, itsm most recent exposed headwords
and semantic contentg in parseT l and semantic
annotation stringGl of the lth sentenceW l in
documentd, #(twh−1

−m.tag,W l, T l, d) is the count

of tag t predicted by wordw and the tags ofm
most recent exposed headwords in parse treeT l

of the lth sentenceW l in documentd, and finally
#(ah−1

−m,W l, T l, d) is the count of constructor
movea conditioning onm exposed headwordsh−1

−m

in parse treeT l of the lth sentenceW l in document
d.

The objective of maximum likelihood estimation
is to maximize the likelihoodL(D, p) respect to
model parameters. For a given sentence, its parse
tree and semantic content are hidden and the num-
ber of parse trees grows faster than exponential with
sentence length, Wang et al. (2006) have derived a
generalized inside-outside algorithm by applying the
standard EM algorithm. However, the complexity of
this algorithm is 6th order of sentence length, thus it
is computationally too expensive to be practical for
a large corpus even with the use of pruning on charts
(Jelinek and Chelba, 1999; Jelinek, 2004).

3.1 N-best list approximate EM
Similar to SLM (Chelba and Jelinek, 2000), we
adopt anN -best list approximate EM re-estimation
with modular modifications to seamlessly incorpo-
rate the effect ofn-gram and PLSA components.
Instead of maximizing the likelihoodL(D, p), we
maximize theN -best list likelihood,

max
T ′

N

L(D, p, T ′
N) =

Y

d∈D

Y

l

max
T ′l

N
∈T ′

N

X

Gl

0

@

X

T l∈T ′l
N

,||T ′l
N
||=N

Pp(W
l, T l, Gl|d)

1

A

1

A

1

A

whereT ′l
N is a set ofN parse trees for sentenceW l

in documentd and|| · || denotes the cardinality and
T ′

N is a collection ofT ′l
N for sentences over entire

corpusD.
The N-best list approximate EM involves two

steps:

1. N-best list search: For each sentenceW in doc-
umentd, find N -best parse trees,

T l
N = arg max

T ′l
N

n

X

Gl

X

T l∈T ′l
N

Pp(W
l, T l, Gl|d), ||T ′l

N || = N
o

and denoteTN as the collection ofN -best list
parse trees for sentences over entire corpusD
under model parameterp.

2. EM update: Perform one iteration (or several
iterations) of EM algorithm to estimate model

203

parameters that maximizesN -best-list likeli-
hood of the training corpusD,

L̃(D, p,TN) =
Y

d∈D

(
Y

l

(
X

Gl

(
X

T l∈T l
N
∈TN

Pp(W l, T l, Gl|d))))

That is,

(a) E-step: Compute the auxiliary function of
theN -best-list likelihood

Q̃(p′, p, TN) =
X

d∈D

X

l

X

Gl

X

T l∈T l
N
∈TN

Pp(T
l, Gl|W l, d)

log Pp′(W
l, T l, Gl|d)

(b) M-step: MaximizeQ̃(p′, p,TN) with re-
spect top′ to get new update forp.

Iterate steps (1) and (2) until the convergence of the
N -best-list likelihood. Due to space constraints, we
omit the proof of the convergence of the N-best list
approximate EM algorithm which uses Zangwill’s
global convergence theorem (Zangwill, 1969).
N -best list search strategy: To extract theN -
best parse trees, we adopt a synchronous, multi-
stack search strategy that is similar to the one in
(Chelba and Jelinek, 2000), which involves a set
of stacks storing partial parses of the most likely
ones for a given prefixWk and the less probable
parses are purged. Each stack contains hypotheses
(partial parses) that have been constructed by the
same number of WORD-PREDICTOR and the same
number of CONSTRUCTOR operations. The hy-
potheses in each stack are ranked according to the
log(

∑
Gk

Pp(Wk, Tk, Gk|d)) score with the highest
on top, wherePp(Wk, Tk, Gk|d) is the joint prob-
ability of prefix Wk = w0, · · · , wk with its parse
structureTk and semantic annotation stringGk =
g1, · · · , gk in a documentd. A stack vector consists
of the ordered set of stacks containing partial parses
with the same number of WORD-PREDICTOR op-
erations but different number of CONSTRUCTOR
operations. In WORD-PREDICTOR and TAGGER
operations, some hypotheses are discarded due to
the maximum number of hypotheses the stack can
contain at any given time. In CONSTRUCTOR
operation, the resulting hypotheses are discarded
due to either finite stack size or the log-probability
threshold: the maximum tolerable difference be-
tween the log-probability score of the top-most hy-
pothesis and the bottom-most hypothesis at any
given state of the stack.

EM update: Once we have theN -best parse trees
for each sentence in documentd andN -best topics
for documentd, we derive the EM algorithm to esti-
mate model parameters.

In E-step, we compute the expected count of
each model parameter over sentenceW l in docu-
mentd in the training corpusD. For the WORD-
PREDICTOR and the SEMANTIZER, the number
of possible semantic annotation sequences is expo-
nential, we use forward-backward recursive formu-
las that are similar to those in hidden Markov mod-
els to compute the expected counts. We define the
forward vectorαl(g|d) to be

αl
k+1(g|d) =

X

Gl
k

Pp(W
l
k, T l

k, wk
k−n+2wk+1h

−1
−mg,Gl

k|d)

that can be recursively computed in a forward man-
ner, whereW l

k is the wordk-prefix for sentenceW l,
T l

k is the parse fork-prefix. We define backward
vectorβl(g|d) to be

βl
k+1(g|d)

=
X

Gl
k+1,·

Pp(W
l
k+1,·, T

l
k+1,·, G

l
k+1,·|w

k
k−n+2wk+1h

−1
−mg, d)

that can be computed in a backward manner, here
W l

k+1,· is the subsequence afterk+1th word in sen-

tence W l, T l
k+1,· is the incremental parse struc-

ture after the parse structureT l
k+1 of word k+1-

prefix W l
k+1 that generates parse treeT l, Gl

k+1,· is

the semantic subsequence inGl relevant toW l
k+1,·.

Then, the expected count ofw−1
−n+1wh−1

−mg for the
WORD-PREDICTOR on sentenceW l in document
d is
X

Gl

Pp(T
l, Gl|W l, d)#(w−1

−n+1wh−1
−mg,W l, T l, Gl, d)

=
X

l

X

k

αl
k+1(g|d)βl

k+1(g|d)p(g|d)

δ(wk
k−n+2wk+1h

−1
−mgk+1 = w−1

−n+1wh−1
−mg)/Pp(W

l|d)

whereδ(·) is an indicator function and the expected
count ofg for the SEMANTIZER on sentenceW l

in documentd is
X

Gl

Pp(T
l, Gl|W l, d)#(g,W l, Gl, d)

=

j−1
X

k=0

αl
k+1(g|d)βl

k+1(g|d)p(g|d)/Pp(W
l|d)

For the TAGGER and the CONSTRUCTOR,
the expected count of each event oftwh−1

−m.tag
and ah−1

−m over parse T l of sentenceW l in
204

documentd is the real count appeared in parse
tree T l of sentenceW l in document d times
the conditional distribution Pp(T

l|W l, d) =
Pp(T

l,W l|d)/
∑

T l∈T l Pp(T
l,W l|d) respectively.

In M-step, the recursive linear interpolation
scheme (Jelinek and Mercer, 1981) is used
to obtain a smooth probability estimate for
each model component, WORD-PREDICTOR,
TAGGER, and CONSTRUCTOR. The TAGGER
and CONSTRUCTOR are conditional probabilis-
tic models of the typep(u|z1, · · · , zn) where
u, z1, · · · , zn belong to a mixed set of words, POS
tags, NTtags, CONSTRUCTOR actions (u only),
andz1, · · · , zn form a linear Markov chain. The re-
cursive mixing scheme is the standard one among
relative frequency estimates of different ordersk =
0, · · · , n as explained in (Chelba and Jelinek, 2000).
The WORD-PREDICTOR is, however, a condi-
tional probabilistic modelp(w|w−1

−n+1h
−1
−mg) where

there are three kinds of contextw−1
−n+1, h−1

−m andg,
each forms a linear Markov chain. The model has
a combinatorial number of relative frequency esti-
mates of different orders among three linear Markov
chains. We generalize Jelinek and Mercer’s original
recursive mixing scheme (Jelinek and Mercer, 1981)
and form a lattice to handle the situation where the
context is a mixture of Markov chains.

3.2 Follow-up EM
As explained in (Chelba and Jelinek, 2000), for the
SLM component, a large fraction of the partial parse
trees that can be used for assigning probability to the
next word do not survive in the synchronous, multi-
stack search strategy, thus they are not used in the
N-best approximate EM algorithm for the estima-
tion of WORD-PREDICTOR to improve its predic-
tive power. To remedy this weakness, we estimate
WORD-PREDICTOR using the algorithm below.

The language modelprobability assignment for
the word at positionk+1 in the input sentence of
documentd can be computed as

Pp(wk+1|Wk, d) =
X

h
−1

−m
∈Tk;Tk∈Zk,gk+1∈Gd

p(wk+1|w
k
k−n+2h

−1
−mgk+1)

Pp(Tk|Wk, d)p(gk+1|d) (2)

where Pp(Tk|Wk, d) =

P

Gk
Pp(Wk,Tk,Gk|d)

P

Tk∈Zk

P

Gk
Pp(Wk,Tk,Gk|d)

andZk is the set of all parses present in the stacks
at the current stagek during the synchronous multi-

stack pruning strategy and it is a function of the word
k-prefix Wk.

The likelihood of a training corpusD under this
language model probability assignment that uses
partial parse trees generated during the process of
the synchronous, multi-stack search strategy can be
written as

L̃(D, p) =
Y

d∈D

Y

l

“

X

k

Pp(w
(l)
k+1|W

l
k, d)

”

(3)

We employ a second stage of parameter re-
estimation for p(wk+1|w

k
k−n+2h

−1
−mgk+1) and

p(gk+1|d) by using EM again to maximize
Equation (3) to improve the predictive power of
WORD-PREDICTOR.

3.3 Distributed architecture
When using very large corpora to train our compos-
ite language model, both the data and the parameters
can’t be stored in a single machine, so we have to
resort to distributed computing. The topic of large
scale distributed language models is relatively new,
and existing works are restricted ton-grams only
(Brants et al., 2007; Emami et al., 2007; Zhang et
al., 2006). Even though all use distributed archi-
tectures that follow the client-server paradigm, the
real implementations are in fact different. Zhang
et al. (2006) and Emami et al. (2007) store train-
ing corpora in suffix arrays such that one sub-corpus
per server serves raw counts and test sentences are
loaded in a client. This implies that when comput-
ing the language model probability of a sentence in
a client, all servers need to be contacted for eachn-
gram request. The approach by Brants et al. (2007)
follows a standard MapReduce paradigm (Dean and
Ghemawat, 2004): the corpus is first divided and
loaded into a number of clients, andn-gram counts
are collected at each client, then then-gram counts
mapped and stored in a number of servers, result-
ing in exactly one server being contacted pern-gram
when computing the language model probability of
a sentence. We adopt a similar approach to Brants
et al. and make it suitable to perform iterations
of N -best list approximate EM algorithm, see Fig-
ure 2. The corpus is divided and loaded into a num-
ber of clients. We use a public available parser to
parse the sentences in each client to get the initial
counts forw−1

−n+1wh−1
−mg etc., finish the Map part,

and then the counts for a particularw−1
−n+1wh−1

−mg
at different clients are summed up and stored in one

205

Server 2Server 1 Server L

Client 1 Client 2 Client M

Figure 2:Distributed architecture is essentially a MapRe-
duce paradigm: clients store partitioned data and per-
form E-step: compute expected counts, this is Map;
servers store parameters (counts) for M-step where
counts ofw−1

−n+1wh−1
−mg are hashed by wordw

−1 (or
h
−1) and its topicg to evenly distribute these model pa-

rameters into servers as much as possible, this is Reduce.

of the servers by hashing through the wordw−1 (or
h−1) and its topicg, finish the Reduce part. This
is the initialization of theN -best list approximate
EM step. Each client then calls the servers for pa-
rameters to perform synchronous multi-stack search
for each sentence to get theN -best list parse trees.
Again, the expected count for a particular parameter
of w−1

−n+1wh−1
−mg at the clients are computed, thus

we finish a Map part, then summed up and stored in
one of the servers by hashing through the wordw−1

(or h−1) and its topicg, thus we finish the Reduce
part. We repeat this procedure until convergence.

Similarly, we use a distributed architecture as in
Figure 2 to perform the follow-up EM algorithm to
re-estimate WORD-PREDICTOR.

4 Experimental results

We have trained our language models using three
different training sets: one has 44 million tokens,
another has 230 million tokens, and the other has
1.3 billion tokens. An independent test set which
has 354 k tokens is chosen. The independent check
data set used to determine the linear interpolation
coefficients has 1.7 million tokens for the 44 mil-
lion tokens training corpus, 13.7 million tokens for
both 230 million and 1.3 billion tokens training cor-
pora. All these data sets are taken from the LDC
English Gigaword corpus with non-verbalized punc-
tuation and we remove all punctuation. Table 1 gives
the detailed information on how these data sets are
chosen from the LDC English Gigaword corpus.

The vocabulary sizes in all three cases are:

• word (also WORD-PREDICTOR operation)

1.3 BILLION TOKENS TRAINING CORPUS

AFP 19940512.0003∼ 19961015.0568
AFW 19941111.0001∼ 19960414.0652
NYT 19940701.0001∼ 19950131.0483
NYT 19950401.0001∼ 20040909.0063
XIN 19970901.0001∼ 20041125.0119

230 MILLION TOKENS TRAINING CORPUS

AFP 19940622.0336∼ 19961031.0797
APW 19941111.0001∼ 19960419.0765
NYT 19940701.0001∼ 19941130.0405

44 MILLION TOKENS TRAINING CORPUS

AFP 19940601.0001∼ 19950721.0137

13.7MILLION TOKENS CHECK CORPUS

NYT 19950201.0001∼ 19950331.0494

1.7 MILLION TOKENS CHECK CORPUS

AFP 19940512.0003∼ 19940531.0197

354K TOKENS TEST CORPUS

CNA 20041101.0006∼ 20041217.0009

Table 1: The corpora used in our experiments are selected
from the LDC English Gigaword corpus and specified in
this table, AFP, AFW, NYT, XIN and CNA denote the
sections of the LDC English Gigaword corpus.

vocabulary: 60 k, open - all words outside the
vocabulary are mapped to the<unk> token,
these 60 k words are chosen from the most fre-
quently occurred words in 44 millions tokens
corpus;

• POS tag (also TAGGER operation) vocabulary:
69, closed;

• non-terminal tag vocabulary: 54, closed;
• CONSTRUCTOR operation vocabulary: 157,

closed.
Similar to SLM (Chelba and Jelinek, 2000), af-

ter the parses undergo headword percolation and
binarization, each model component of WORD-
PREDICTOR, TAGGER, and CONSTRUCTOR is
initialized from a set of parsed sentences. We use
the “openNLP” software (Northedge, 2005) to parse
a large amount of sentences in the LDC English Gi-
gaword corpus to generate an automatic treebank,
which has a slightly different word-tokenization
than that of the manual treebank such as the Upenn
Treebank used in (Chelba and Jelinek, 2000). For
the 44 and 230 million tokens corpora, all sentences
are automatically parsed and used to initialize model
parameters, while for 1.3 billion tokens corpus, we
parse the sentences from a portion of the corpus that

206

contain 230 million tokens, then use them to initial-
ize model parameters. The parser at ”openNLP” is
trained by Upenn treebank with 1 million tokens and
there is a mismatch between Upenn treebank and
LDC English Gigaword corpus. Nevertheless, ex-
perimental results show that this approach is effec-
tive to provide initial values of model parameters.

As we have explained, the proposed EM algo-
rithms can be naturally cast into a MapReduce
framework, see more discussion in (Lin and Dyer,
2010). If we have access to a large cluster of
machines with Hadoop installed that are powerful
enough to process a billion tokens level corpus,
we just need to specify a map function and a re-
duce function etc., Hadoop will automatically par-
allelize and execute programs written in this func-
tional style. Unfortunately, we don’t have this kind
of resources available. Instead, we have access to a
supercomputer at a supercomputer center with MPI
installed that has more than 1000 core processors us-
able. Thus we implement our algorithms using C++
under MPI on the supercomputer, where we have to
write C++ codes for Map part and Reduce part, and
the MPI is used to take care of massage passing,
scheduling, synchronization, etc. between clients
and servers. This involves a fair amount of pro-
gramming work, even though our implementation
under MPI is not as reliable as under Hadoop but
it is more efficient. We use up to 1000 core proces-
sors to train the composite language models for 1.3
billion tokens corpus where 900 core processors are
used to store the parameters alone. We decide to use
linearly smoothed trigram as the baseline model for
44 million token corpus, linearly smoothed 4-gram
as the baseline model for 230 million token corpus,
and linearly smoothed 5-gram as the baseline model
for 1.3 billion token corpus. Model size is a big is-
sue, we have to keep only a small set of topics due to
the consideration in both computational time and re-
source demand. Table 2 shows the perplexity results
and computation time of compositen-gram/PLSA
language models that are trained on three corpora
when the pre-defined number of total topics is 200
but different numbers of most likely topics are kept
for each document in PLSA, the rest are pruned. For
composite 5-gram/PLSA model trained on 1.3 bil-
lion tokens corpus, 400 cores have to be used to
keep top 5 most likely topics. For composite tri-

gram/PLSA model trained on 44M tokens corpus,
the computation time increases drastically with less
than 5% percent perplexity improvement. So in the
following experiments, we keep top 5 topics for each
document from total 200 topics and all other 195
topics are pruned.

All composite language models are first trained
by performing N-best list approximate EM algo-
rithm until convergence, then EM algorithm for a
second stage of parameter re-estimation for WORD-
PREDICTOR and SEMANTIZER until conver-
gence. We fix the size of topics in PLSA to be 200
and then prune to 5 in the experiments, where the
unpruned 5 topics in general account for 70% prob-
ability in p(g|d). Table 3 shows comprehensive per-
plexity results for a variety of different models such
as compositen-gram/m-SLM, n-gram/PLSA,m-
SLM/PLSA, their linear combinations, etc., where
we use online EM with fixed learning rate to re-
estimate the parameters of the SEMANTIZER of
test document. Them-SLM performs competitively
with its counterpartn-gram (n=m+1) on large scale
corpus. In Table 3, for compositen-gram/m-SLM
model (n = 3,m = 2 andn = 4,m = 3) trained
on 44 million tokens and 230 million tokens, we cut
off its fractional expected counts that are less than a
threshold 0.005, this significantly reduces the num-
ber of predictor’s types by 85%. When we train
the composite language on 1.3 billion tokens cor-
pus, we have to both aggressively prune the param-
eters of WORD-PREDICTOR and shrink the order
of n-gram andm-SLM in order to store them in a
supercomputer having 1000 cores. In particular, for
composite 5-gram/4-SLM model, its size is too big
to store, thus we use its approximation, a linear com-
bination of 5-gram/2-SLM and 2-gram/4-SLM, and
for 5-gram/2-SLM or 2-gram/4-SLM, again we cut
off its fractional expected counts that are less than a
threshold 0.005, this significantly reduces the num-
ber of predictor’s types by 85%. For composite 4-
SLM/PLSA model, we cut off its fractional expected
counts that are less than a threshold 0.002, again this
significantly reduces the number of predictor’s types
by 85%. For composite 4-SLM/PLSA model or its
linear combination with models, we ignore all the
tags and use only the words in the 4 head words.
In this table, we have three items missing (marked
by —), since the size of corresponding model is

207

CORPUS n # OF PPL TIME # OF # OF # OF TYPES

TOPICS (HOURS) SERVERS CLIENTS OF ww−1

−n+1g

44M 3 5 196 0.5 40 100 120.1M
3 10 194 1.0 40 100 218.6M
3 20 190 2.7 80 100 537.8M
3 50 189 6.3 80 100 1.123B
3 100 189 11.2 80 100 1.616B
3 200 188 19.3 80 100 2.280B

230M 4 5 146 25.6 280 100 0.681B
1.3B 5 2 111 26.5 400 100 1.790B

5 5 102 75.0 400 100 4.391B

Table 2: Perplexity (ppl) results and time consumed of composite n-gram/PLSA language model trained on three
corpora when different numbers of most likely topics are kept for each document in PLSA.

LANGUAGE MODEL 44M REDUC- 230M REDUC- 1.3B REDUC-
n=3,m=2 TION n=4,m=3 TION n=5,m=4 TION

BASELINE n-GRAM (LINEAR) 262 200 138
n-GRAM (KNESER-NEY) 244 6.9% 183 8.5% — —
m-SLM 279 -6.5% 190 5.0% 137 0.0%
PLSA 825 -214.9% 812 -306.0% 773 -460.0%
n-GRAM+m-SLM 247 5.7% 184 8.0% 129 6.5%
n-GRAM+PLSA 235 10.3% 179 10.5% 128 7.2%
n-GRAM+m-SLM+PLSA 222 15.3% 175 12.5% 123 10.9%
n-GRAM/m-SLM 243 7.3% 171 14.5% (125) 9.4%
n-GRAM/PLSA 196 25.2% 146 27.0% 102 26.1%
m-SLM/PLSA 198 24.4% 140 30.0% (103) 25.4%
n-GRAM/PLSA+m-SLM/PLSA 183 30.2% 140 30.0% (93) 32.6%
n-GRAM/m-SLM+m-SLM/PLSA 183 30.2% 139 30.5% (94) 31.9%
n-GRAM/m-SLM+n-GRAM/PLSA 184 29.8% 137 31.5% (91) 34.1%
n-GRAM/m-SLM+n-GRAM/PLSA 180 31.3% 130 35.0% — —
+m-SLM/PLSA
n-GRAM/m-SLM/PLSA 176 32.8% — — — —

Table 3: Perplexity results for various language models on test corpus, where + denotes linear combination, / denotes
composite model;n denotes the order ofn-gram andm denotes the order of SLM; the topic nodes are pruned from
200 to 5.

too big to store in the supercomputer. The com-
posite n-gram/m-SLM/PLSA model gives signifi-
cant perplexity reductions over baselinen-grams,
n = 3, 4, 5 andm-SLMs, m = 2, 3, 4. The major-
ity of gains comes from PLSA component, but when
adding SLM component inton-gram/PLSA, there is
a further 10% relative perplexity reduction.

We have applied our composite 5-gram/2-
SLM+2-gram/4-SLM+5-gram/PLSA language
model that is trained by 1.3 billion word corpus for
the task of re-ranking theN -best list in statistical
machine translation. We used the same 1000-best
list that is used by Zhang et al. (2006). This

list was generated on 919 sentences from the
MT03 Chinese-English evaluation set by Hiero
(Chiang, 2005; Chiang, 2007), a state-of-the-art
parsing-based translation model. Its decoder uses
a trigram language model trained with modified
Kneser-Ney smoothing (Kneser and Ney, 1995) on
a 200 million tokens corpus. Each translation has
11 features and language model is one of them.
We substitute our language model and use MERT
(Och, 2003) to optimize the BLEU score (Papineni
et al., 2002). We partition the data into ten pieces,
9 pieces are used as training data to optimize the
BLEU score (Papineni et al., 2002) by MERT (Och,

208

2003), a remaining single piece is used to re-rank
the 1000-best list and obtain the BLEU score. The
cross-validation process is then repeated 10 times
(the folds), with each of the 10 pieces used exactly
once as the validation data. The 10 results from the
folds then can be averaged (or otherwise combined)
to produce a single estimation for BLEU score.
Table 4 shows the BLEU scores through 10-fold
cross-validation. The composite 5-gram/2-SLM+2-
gram/4-SLM+5-gram/PLSA language model gives
1.57% BLEU score improvement over the baseline
and 0.79% BLEU score improvement over the
5-gram. This is because there is not much diversity
on the 1000-best list, and essentially only 20∼ 30
distinct sentences are there in the 1000-best list.
Chiang (2007) studied the performance of machine
translation on Hiero, the BLEU score is 33.31%
whenn-gram is used to re-rank theN -best list, how-
ever, the BLEU score becomes significantly higher
37.09% when then-gram is embedded directly into
Hiero’s one pass decoder, this is because there is not
much diversity in theN -best list. It is expected that
putting the our composite language into a one pass
decoder of both phrase-based (Koehn et al., 2003)
and parsing-based (Chiang, 2005; Chiang, 2007)
MT systems should result in much improved BLEU
scores.

SYSTEM MODEL MEAN (%)
BASELINE 31.75
5-GRAM 32.53
5-GRAM/2-SLM+2-GRAM/4-SLM 32.87
5-GRAM/PLSA 33.01
5-GRAM/2-SLM+2-GRAM/4-SLM 33.32
+5-GRAM/PLSA

Table 4: 10-fold cross-validation BLEU score results for
the task of re-ranking theN -best list.

Besides reporting the BLEU scores, we look at the
“readability” of translations similar to the study con-
ducted by Charniak et al. (2003). The translations
are sorted into four groups: good/bad syntax crossed
with good/bad meaning by human judges, see Ta-
ble 5. We find that many more sentences are perfect,
many more are grammatically correct, and many
more are semantically correct. The syntactic lan-
guage model (Charniak, 2001; Charniak, 2003) only
improves translations to have good grammar, but
does not improve translations to preserve meaning.

The composite 5-gram/2-SLM+2-gram/4-SLM+5-
gram/PLSA language model improves both signif-
icantly. Bear in mind that Charniak et al. (2003) in-
tegrated Charniak’s language model with the syntax-
based translation model Yamada and Knight pro-
posed (2001) to rescore a tree-to-string translation
forest, whereas we use only our language model
for N -best list re-ranking. Also, in the same study
in (Charniak, 2003), they found that the outputs
produced using then-grams received higher scores
from BLEU; ours did not. The difference between
human judgments and BLEU scores indicate that
closer agreement may be possible by incorporating
syntactic structure and semantic information into the
BLEU score evaluation. For example, semantically
similar words like “insure” and “ensure” in the ex-
ample of BLEU paper (Papineni et al., 2002) should
be substituted in the formula, and there is a weight
to measure the goodness of syntactic structure. This
modification will lead to a better metric and such
information can be provided by our composite lan-
guage models.

SYSTEM MODEL P S G W
BASELINE 95 398 20 406
5-GRAM 122 406 24 367
5-GRAM/2-SLM 151 425 33 310
+2-GRAM/4-SLM
+5-GRAM/PLSA

Table 5: Results of “readability” evaluation on 919 trans-
lated sentences, P: perfect, S: only semantically correct,
G: only grammatically correct, W: wrong.

5 Conclusion

As far as we know, this is the first work of building a
complex large scale distributed language model with
a principled approach that is more powerful thann-
grams when both trained on a very large corpus with
up to a billion tokens. We believe our results still
hold on web scale corpora that have trillion tokens,
since the composite language model effectively en-
codes long range dependencies of natural language
that n-gram is not viable to consider. Of course,
this implies that we have to take a huge amount of
resources to perform the computation, nevertheless
this becomes feasible, affordable, and cheap in the
era of cloud computing.

209

References

L. Bahl and J. Baker,F. Jelinek and R. Mercer. 1977. Per-
plexityła measure of difficulty of speech recognition
tasks.94th Meeting of the Acoustical Society of Amer-
ica, 62:S63, Supplement 1.

T. Brants et al.. 2007. Large language models in ma-
chine translation.The 2007 Conference on Empirical
Methods in Natural Language Processing(EMNLP),
858-867.

E. Charniak. 2001. Immediate-head parsing for language
models. The 39th Annual Conference on Association
of Computational Linguistics(ACL), 124-131.

E. Charniak, K. Knight and K. Yamada. 2003. Syntax-
based language models for statistical machine transla-
tion. MT Summit IX., Intl. Assoc. for Machine Trans-
lation.

C. Chelba and F. Jelinek. 1998. Exploiting syntactic
structure for language modeling.The 36th Annual
Conference on Association of Computational Linguis-
tics (ACL), 225-231.

C. Chelba and F. Jelinek. 2000. Structured lan-
guage modeling. Computer Speech and Language,
14(4):283-332.

D. Chiang. 2005. A hierarchical phrase-based model for
statistical machine translation.The 43th Annual Con-
ference on Association of Computational Linguistics
(ACL), 263-270.

D. Chiang. 2007. Hierarchical phrase-based translation.
Computational Linguistics, 33(2):201-228.

J. Dean and S. Ghemawat. 2004. MapReduce: Simpli-
fied data processing on large clusters.Operating Sys-
tems Design and Implementation(OSDI), 137-150.

A. Dempster, N. Laird and D. Rubin. 1977. Maximum
likelihood estimation from incomplete data via the EM
algorithm. Journal of Royal Statistical Society, 39:1-
38.

A. Emami, K. Papineni and J. Sorensen. 2007. Large-
scale distributed language modeling.The 32nd IEEE
International Conference on Acoustics, Speech, and
Signal Processing(ICASSP), IV:37-40.

T. Hofmann. 2001. Unsupervised learning by proba-
bilistic latent semantic analysis.Machine Learning,
42(1):177-196.

F. Jelinek and R. Mercer. 1981. Interpolated estimation
of Markov source parameters from sparse data.Pat-
tern Recognition in Practice, 381-397.

F. Jelinek and C. Chelba. 1999. Putting language
into language modeling. Sixth European Confer-
ence on Speech Communication and Technology(EU-
ROSPEECH), Keynote Paper 1.

F. Jelinek. 2004. Stochastic analysis of structured lan-
guage modeling.Mathematical Foundations of Speech
and Language Processing, 37-72, Springer-Verlag.

D. Jurafsky and J. Martin. 2008.Speech and Language
Processing, 2nd Edition, Prentice Hall.

R. Kneser and H. Ney. 1995. Improved backing-off for
m-gram language modeling.The 20th IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing(ICASSP), 181-184.

P. Koehn, F. Och and D. Marcu. 2003. Statistical phrase-
based translation.The Human Language Technology
Conference(HLT), 48-54.

S. Khudanpur and J. Wu. 2000. Maximum entropy tech-
niques for exploiting syntactic, semantic and colloca-
tional dependencies in language modeling.Computer
Speech and Language, 14(4):355-372.

A. Lavie et al. 2006. MINDS Workshops Machine
Translation Working Group Final Report. http://www-
nlpir.nist.gov/MINDS/FINAL/MT.web.pdf

J. Lin and C. Dyer. 2010.Data-Intensive Text Processing
with MapReduce. Morgan and Claypool Publishers.

R. Northedge. 2005. OpenNLP software
http://www.codeproject.com/KB/recipes/englishpar
sing.aspx

F. Och. 2003. Minimum error rate training in statisti-
cal machine translation.The 41th Annual meeting of
the Association for Computational Linguistics(ACL),
311-318.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. 2002.
Bleu: a method for automatic evaluation of machine
translation.The 40th Annual meeting of the Associa-
tion for Computational Linguistics(ACL), 311-318.

B. Roark. 2001. Probabilistic top-down parsing
and language modeling.Computational Linguistics,
27(2):249-276.

S. Wang et al. 2005. Exploiting syntactic, semantic and
lexical regularities in language modeling via directed
Markov random fields.The 22nd International Con-
ference on Machine Learning(ICML), 953-960.

S. Wang et al. 2006. Stochastic analysis of lexical and
semantic enhanced structural language model.The 8th
International Colloquium on Grammatical Inference
(ICGI), 97-111.

K. Yamada and K. Knight. 2001. A syntax-based statis-
tical translation model.The 39th Annual Conference
on Association of Computational Linguistics(ACL),
1067-1074.

W. Zangwill. 1969.Nonlinear Programming: A Unified
Approach. Prentice-Hall.

Y. Zhang, A. Hildebrand and S. Vogel. 2006. Dis-
tributed language modeling for N-best list re-ranking.
The 2006 Conference on Empirical Methods in Natu-
ral Language Processing(EMNLP), 216-223.

Y. Zhang, 2008. Structured language models for statisti-
cal machine translation.Ph.D. dissertation, CMU.

210

