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Abstract

We propose to directly measure the impor-
tance of queries in the source domain to the
target domain where no rank labels of doc-
uments are available, which is referred to
as query weighting. Query weighting is a
key step in ranking model adaptation. As
the learning object of ranking algorithms is
divided by query instances, we argue that
it’s more reasonable to conduct importance
weighting at query level than document level.
We present two query weighting schemes.
The first compresses the query into a query
feature vector, which aggregates all document
instances in the same query, and then con-
ducts query weighting based on the query fea-
ture vector. This method can efficiently esti-
mate query importance by compressing query
data, but the potential risk is information loss
resulted from the compression. The second
measures the similarity between the source
query and each target query, and then com-
bines these fine-grained similarity values for
its importance estimation. Adaptation exper-
iments on LETOR3.0 data set demonstrate
that query weighting significantly outperforms
document instance weighting methods.

1 Introduction

Learning to rank, which aims at ranking documents
in terms of their relevance to user’s query, has been
widely studied in machine learning and information
retrieval communities (Herbrich et al., 2000; Fre-
und et al., 2004; Burges et al., 2005; Yue et al.,
2007; Cao et al., 2007; Liu, 2009). In general,
large amount of training data need to be annotated

by domain experts for achieving better ranking per-
formance. In real applications, however, it is time
consuming and expensive to annotate training data
for each search domain. To alleviate the lack of
training data in the target domain, many researchers
have proposed to transfer ranking knowledge from
the source domain with plenty of labeled data to the
target domain where only a few or no labeled data is
available, which is known as ranking model adapta-
tion (Chen et al., 2008a; Chen et al., 2010; Chen et
al., 2008b; Geng et al., 2009; Gao et al., 2009).

Intuitively, the more similar an source instance
is to the target instances, it is expected to be more
useful for cross-domain knowledge transfer. This
motivated the popular domain adaptation solution
based on instance weighting, which assigns larger
weights to those transferable instances so that the
model trained on the source domain can adapt more
effectively to the target domain (Jiang and Zhai,
2007). Existing instance weighting schemes mainly
focus on the adaptation problem for classification
(Zadrozny, 2004; Huang et al., 2007; Jiang and Zhai,
2007; Sugiyama et al., 2008).

Although instance weighting scheme may be ap-
plied to documents for ranking model adaptation,
the difference between classification and learning to
rank should be highlighted to take careful consider-
ation. Compared to classification, the learning ob-
ject for ranking is essentially a query, which con-
tains a list of document instances each with a rel-
evance judgement. Recently, researchers proposed
listwise ranking algorithms (Yue et al., 2007; Cao
et al., 2007) to take the whole query as a learning
object. The benchmark evaluation showed that list-
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Figure 1: The information about which document instances belong to the same query is lost in document instance
weighting scheme. To avoid losing this information, query weighting takes the query as a whole and directly measures
its importance.

wise approach significantly outperformed pointwise
approach, which takes each document instance as in-
dependent learning object, as well as pairwise ap-
proach, which concentrates learning on the order of
a pair of documents (Liu, 2009). Inspired by the
principle of listwise approach, we hypothesize that
the importance weighting for ranking model adapta-
tion could be done better at query level rather than
document level.

Figure 1 demonstrates the difference between in-
stance weighting and query weighting, where there
are two queries qs1 and qs2 in the source domain
and qt1 and qt2 in the target domain, respectively,
and each query has three retrieved documents. In
Figure 1(a), source and target domains are repre-
sented as a bag of document instances. It is worth
noting that the information about which document
instances belong to the same query is lost. To
avoid this information loss, query weighting scheme
shown as Figure 1(b) directly measures importance
weight at query level.

Instance weighting makes the importance estima-
tion of document instances inaccurate when docu-
ments of the same source query are similar to the
documents from different target queries. Take Fig-
ure 2 as a toy example, where the document in-
stance is represented as a feature vector with four
features. No matter what weighting schemes are
used, it makes sense to assign high weights to source
queries qs1 and qs2 because they are similar to tar-
get queries qt1 and qt2, respectively. Meanwhile, the
source query qs3 should be weighted lower because
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Figure 2: A toy example showing the problem of docu-
ment instance weighting scheme.

it’s not quite similar to any of qt1 and qt2 at query
level, meaning that the ranking knowledge from qs3

is different from that of qt1 and qt2 and thus less
useful for the transfer to the target domain. Unfor-
tunately, the three source queries qs1, qs2 and qs3

would be weighted equally by document instance
weighting scheme. The reason is that all of their
documents are similar to the two document instances
in target domain despite the fact that the documents
of qs3 correspond to their counterparts from different
target queries.

Therefore, we should consider the source query
as a whole and directly measure the query impor-
tance. However, it’s not trivial to directly estimate
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a query’s weight because a query is essentially pro-
vided as a matrix where each row represents a vector
of document features. In this work, we present two
simple but very effective approaches attempting to
resolve the problem from distinct perspectives: (1)
we compress each query into a query feature vec-
tor by aggregating all of its document instances, and
then conduct query weighting on these query feature
vectors; (2) we measure the similarity between the
source query and each target query one by one, and
then combine these fine-grained similarity values to
calculate its importance to the target domain.

2 Instance Weighting Scheme Review

The basic idea of instance weighting is to put larger
weights on source instances which are more simi-
lar to target domain. As a result, the key problem
is how to accurately estimate the instance’s weight
indicating its importance to target domain. (Jiang
and Zhai, 2007) used a small number of labeled data
from target domain to weight source instances. Re-
cently, some researchers proposed to weight source
instance only using unlabeled target instances (Shi-
modaira, 2000; Sugiyama et al., 2008; Huang et al.,
2007; Zadrozny, 2004; Gao et al., 2010). In this
work, we also focus on weighting source queries
only using unlabeled target queries.

(Gao et al., 2010; Ben-David et al., 2010) pro-
posed to use a classification hyperplane to separate
source instances from target instances. With the do-
main separator, the probability that a source instance
is classified to target domain can be used as the im-
portance weight. Other instance weighting methods
were proposed for the sample selection bias or co-
variate shift in the more general setting of classifier
learning (Shimodaira, 2000; Sugiyama et al., 2008;
Huang et al., 2007; Zadrozny, 2004). (Sugiyama et
al., 2008) used a natural model selection procedure,
referred to as Kullback-Leibler divergence Impor-
tance Estimation Procedure (KLIEP), for automat-
ically tuning parameters, and showed that its impor-
tance estimation was more accurate. The main idea
is to directly estimate the density function ratio of
target distribution pt(x) to source distribution ps(x),
i.e. w(x) = pt(x)

ps(x) . Then model w(x) can be used to
estimate the importance of source instances. Model
parameters were computed with a linear model by

minimizing the KL-divergence from pt(x) to its esti-
mator p̂t(x). Since p̂t(x) = ŵ(x)ps(x), the ultimate
objective only contains model ŵ(x).

For using instance weighting in pairwise rank-
ing algorithms, the weights of document instances
should be transformed into those of document
pairs (Gao et al., 2010). Given a pair of documents
⟨xi, xj⟩ and their weights wi and wj , the pairwise
weight wij could be estimated probabilistically as
wi ∗wj . To consider query factor, query weight was
further estimated as the average value of the weights
over all the pairs, i.e., wq = 1

M

∑
i,j wij , where M

is the number of pairs in query q. Additionally, to
take the advantage of both query and document in-
formation, a probabilistic weighting for ⟨xi, xj⟩ was
modeled by wq ∗ wij . Through the transformation,
instance weighting schemes for classification can be
applied to ranking model adaptation.

3 Query Weighting

In this section, we extend instance weighting to di-
rectly estimate query importance for more effec-
tive ranking model adaptation. We present two
query weighting methods from different perspec-
tives. Note that although our methods are based on
domain separator scheme, other instance weighting
schemes such as KLIEP (Sugiyama et al., 2008) can
also be extended similarly.

3.1 Query Weighting by Document Feature
Aggregation

Our first query weighting method is inspired by the
recent work on local learning for ranking (Geng et
al., 2008; Banerjee et al., 2009). The query can be
compressed into a query feature vector, where each
feature value is obtained by the aggregate of its cor-
responding features of all documents in the query.
We concatenate two types of aggregates to construct
the query feature vector: the mean µ⃗ = 1

|q|
∑|q|

i=1 f⃗i

and the variance σ⃗ = 1
|q|

∑|q|
i=1(f⃗i − µ⃗)2, where f⃗i

is the feature vector of document i and |q| denotes
the number of documents in q . Based on the ag-
gregation of documents within each query, we can
use a domain separator to directly weight the source
queries with the set of queries from both domains.

Given query data sets Ds = {qi
s}m

i=1 and Dt =

{qj
t }n

j=1 respectively from the source and target do-
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Algorithm 1 Query Weighting Based on Document Feature Aggregation in the Query
Input:

Queries in the source domain, Ds = {qi
s}m

i=1;
Queries in the target domain, Dt = {qj

t }n
j=1;

Output:
Importance weights of queries in the source domain, IWs = {Wi}m

i=1;
1: ys = −1, yt = +1;
2: for i = 1; i ≤ m; i + + do
3: Calculate the mean vector µ⃗i and variance vector σ⃗i for qi

s;
4: Add query feature vector q⃗i

s = (µ⃗i, σ⃗i, ys) to D′
s ;

5: end for
6: for j = 1; j ≤ n; j + + do
7: Calculate the mean vector µ⃗j and variance vector σ⃗j for qj

t ;
8: Add query feature vector q⃗j

t = (µ⃗j , σ⃗j , yt) to D′
t;

9: end for
10: Find classification hyperplane Hst which separates D′

s from D′
t;

11: for i = 1; i ≤ m; i + + do
12: Calculate the distance of q⃗i

s to Hst, denoted as L(q⃗i
s);

13: Wi = P (qi
s ∈ Dt) = 1

1+exp(α∗L(q⃗i
s)+β)

14: Add Wi to IWs;
15: end for
16: return IWs;

mains, we use algorithm 1 to estimate the proba-
bility that the query qi

s can be classified to Dt, i.e.
P (qi

s ∈ Dt), which can be used as the importance of
qi
s relative to the target domain. From step 1 to 9, D′

s

and D′
t are constructed using query feature vectors

from source and target domains. Then, a classifi-
cation hyperplane Hst is used to separate D′

s from
D′

t in step 10. The distance of the query feature
vector q⃗i

s from Hst are transformed to the probabil-
ity P (qi

s ∈ Dt) using a sigmoid function (Platt and
Platt, 1999).

3.2 Query Weighting by Comparing Queries
across Domains

Although the query feature vector in algorithm 1 can
approximate a query by aggregating its documents’
features, it potentially fails to capture important fea-
ture information due to the averaging effect during
the aggregation. For example, the merit of features
in some influential documents may be canceled out
in the mean-variance calculation, resulting in many
distorted feature values in the query feature vector
that hurts the accuracy of query classification hy-
perplane. This urges us to propose another query

weighting method from a different perspective of
query similarity.

Intuitively, the importance of a source query to
the target domain is determined by its overall sim-
ilarity to every target query. Based on this intu-
ition, we leverage domain separator to measure the
similarity between a source query and each one of
the target queries, where an individual domain sep-
arator is created for each pair of queries. We esti-
mate the weight of a source query using algorithm 2.
Note that we assume document instances in the same
query are conditionally independent and all queries
are independent of each other. In step 3, D′

qi
s

is con-
structed by all the document instances {x⃗k} in query
qi
s with the domain label ys. For each target query

qj
t , we use the classification hyperplane Hij to es-

timate P (x⃗k ∈ D′
qj
t

), i.e. the probability that each

document x⃗k of qi
s is classified into the document set

of qj
t (step 8). Then the similarity between qi

s and qj
t

is measured by the probability P (qi
s ∼ qj

t ) at step 9.
Finally, the probability of qi

s belonging to the target
domain P (qi

s ∈ Dt) is calculated at step 11.

It can be expected that algorithm 2 will generate
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Algorithm 2 Query Weighting by Comparing Source and Target Queries
Input:

Queries in source domain, Ds = {qi
s}m

i=1;
Queries in target domain, Dt = {qj

t }n
j=1;

Output:
Importance weights of queries in source domain, IWs = {Wi}m

i=1;
1: ys = −1, yt = +1;
2: for i = 1; i ≤ m; i + + do
3: Set D′

qi
s
={x⃗k, ys)}|q

i
s|

k=1;
4: for j = 1; j ≤ n; j + + do
5: Set D′

qj
t

={x⃗k′ , yt)}
|qj

t |
k′=1;

6: Find a classification hyperplane Hij which separates D′
qi
s

from D′
qj
t

;

7: For each k, calculate the distance of x⃗k to Hij , denoted as L(x⃗k);
8: For each k, calculate P (x⃗k ∈ D′

qj
t

) = 1
1+exp(α∗L(x⃗k)+β) ;

9: Calculate P (qi
s ∼ qj

t ) = 1
|qi

s|
∑|qi

s|
k=1 P (x⃗k ∈ D′

qj
t

);

10: end for
11: Add Wi = P (qi

s ∈ Dt) = 1
n

∑n
j=1 P (qi

s ∼ qj
t ) to IWs;

12: end for
13: return IWs;

more precise measures of query similarity by utiliz-
ing the more fine-grained classification hyperplane
for separating the queries of two domains.

4 Ranking Model Adaptation via Query
Weighting

To adapt the source ranking model to the target do-
main, we need to incorporate query weights into ex-
isting ranking algorithms. Note that query weights
can be integrated with either pairwise or listwise al-
gorithms. For pairwise algorithms, a straightforward
way is to assign the query weight to all the document
pairs associated with this query. However, document
instance weighting cannot be appropriately utilized
in listwise approach. In order to compare query
weighting with document instance weighting, we
need to fairly apply them for the same approach of
ranking. Therefore, we choose pairwise approach to
incorporate query weighting. In this section, we ex-
tend Ranking SVM (RSVM) (Herbrich et al., 2000;
Joachims, 2002) — one of the typical pairwise algo-
rithms for this.

Let’s assume there are m queries in the data set
of source domain, and for each query qi there are
ℓ(qi) number of meaningful document pairs that can

be constructed based on the ground truth rank labels.
Given ranking function f , the objective of RSVM is
presented as follows:

min
1

2
||w⃗||2 + C

m∑
i=1

ℓ(qi)∑
j=1

ξij (1)

subject to zij ∗ f(w⃗, x⃗j(1)
qi

− x⃗j(2)
qi

) ≥ 1− ξij

ξij ≥ 0, i = 1, . . . ,m; j = 1, . . . , ℓ(qi)

where x⃗
j(1)
qi and x⃗

j(2)
qi are two documents with dif-

ferent rank label, and zij = +1 if x⃗
j(1)
qi is labeled

more relevant than x⃗
j(2)
qi ; or zij = −1 otherwise.

Let λ = 1
2C and replace ξij with Hinge Loss func-

tion (.)+, Equation 1 can be turned to the following
form:

min λ||w⃗||2+
m∑

i=1

ℓ(qi)∑
j=1

(
1− zij ∗ f(w⃗, x⃗j(1)

qi
− x⃗j(2)

qi
)
)+

(2)
Let IW (qi) represent the importance weight of

source query qi. Equation 2 is extended for inte-
grating the query weight into the loss function in a
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straightforward way:

min λ||w⃗||2+
m∑

i=1

IW (qi) ∗
ℓ(qi)∑
j=1

(
1− zij ∗ f(w⃗, x⃗j(1)

qi
− x⃗j(2)

qi
)
)+

where IW (.) takes any one of the weighting
schemes given by algorithm 1 and algorithm 2.

5 Evaluation

We evaluated the proposed two query weighting
methods on TREC-2003 and TREC-2004 web track
datasets, which were released through LETOR3.0 as
a benchmark collection for learning to rank by (Qin
et al., 2010). Originally, different query tasks were
defined on different parts of data in the collection,
which can be considered as different domains for us.
Adaptation takes place when ranking tasks are per-
formed by using the models trained on the domains
in which they were originally defined to rank the
documents in other domains. Our goal is to demon-
strate that query weighting can be more effective
than the state-of-the-art document instance weight-
ing.

5.1 Datasets and Setup
Three query tasks were defined in TREC-2003 and
TREC-2004 web track, which are home page finding
(HP), named page finding (NP) and topic distilla-
tion (TD) (Voorhees, 2003; Voorhees, 2004). In this
dataset, each document instance is represented by 64
features, including low-level features such as term
frequency, inverse document frequency and docu-
ment length, and high-level features such as BM25,
language-modeling, PageRank and HITS. The num-
ber of queries of each task is given in Table 1.

The baseline ranking model is an RSVM directly
trained on the source domain without using any
weighting methods, denoted as no-weight. We im-
plemented two weighting measures based on do-
main separator and Kullback-Leibler divergence, re-
ferred to DS and KL, respectively. In DS measure,
three document instance weighting methods based
on probability principle (Gao et al., 2010) were
implemented for comparison, denoted as doc-pair,
doc-avg and doc-comb (see Section 2). In KL mea-
sure, there is no probabilistic meaning for KL weight

Query Task TREC 2003 TREC 2004
Topic Distillation 50 75
Home Page finding 150 75
Named Page finding 150 75

Table 1: The number of queries in TREC-2003 and
TREC-2004 web track

and the doc-comb based on KL is not interpretable,
and we only present the results of doc-pair and doc-
avg for KL measure. Our proposed query weight-
ing methods are denoted by query-aggr and query-
comp, corresponding to document feature aggrega-
tion in query and query comparison across domains,
respectively. All ranking models above were trained
only on source domain training data and the labeled
data of target domain was just used for testing.

For training the models efficiently, we imple-
mented RSVM with Stochastic Gradient Descent
(SGD) optimizer (Shalev-Shwartz et al., 2007). The
reported performance is obtained by five-fold cross
validation.

5.2 Experimental Results

The task of HP and NP are more similar to
each other whereas HP/NP is rather different from
TD (Voorhees, 2003; Voorhees, 2004). Thus,
we carried out HP/NP to TD and TD to HP/NP
ranking adaptation tasks. Mean Average Precision
(MAP) (Baeza-Yates and Ribeiro-Neto, 1999) is
used as the ranking performance measure.

5.2.1 Adaptation from HP/NP to TD
The first set of experiments performed adaptation

from HP to TD and NP to TD. The results of MAP
are shown in Table 2.

For the DS-based measure, as shown in the table,
query-aggr works mostly better than no-weight,doc-
pair, doc-avg and doc-comb, and query-comp per-
forms the best among the five weighting methods.
T-test on MAP indicates that the improvement of
query-aggr over no-weight is statistically significant
on two adaptation tasks while the improvement of
document instance weighting over no-weight is sta-
tistically significant only on one task. All of the
improvement of query-comp over no-weight, doc-
pair,doc-avg and doc-comb are statistically signifi-
cant. This demonstrates the effectiveness of query
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Model Weighting method HP03 to TD03 HP04 to TD04 NP03 to TD03 NP04 to TD04
no-weight 0.2508 0.2086 0.1936 0.1756

DS

doc-pair 0.2505 0.2042 0.1982† 0.1708
doc-avg 0.2514 0.2019 0.2122†‡ 0.1716
doc-comb 0.2562 0.2051 0.2224†‡♯ 0.1793
query-aggr 0.2573 0.2106†‡♯ 0.2088 0.1808†‡♯

query-comp 0.2816†‡♯ 0.2147†‡♯ 0.2392†‡♯ 0.1861†‡♯

KL

doc-pair 0.2521 0.2048 0.1901 0.1761
doc-avg 0.2534 0.2127† 0.1904 0.1777
doc-comb - - - -
query-aggr 0.1890 0.1901 0.1870 0.1643
query-comp 0.2548† 0.2142† 0.2313†‡♯ 0.1807†

Table 2: Results of MAP for HP/NP to TD adaptation. †, ‡, ♯ and boldface indicate significantly better than no-weight,
doc-pair, doc-avg and doc-comb, respectively. Confidence level is set at 95%

weighting compared to document instance weight-
ing.

Furthermore, query-comp can perform better than
query-aggr. The reason is that although document
feature aggregation might be a reasonable represen-
tation for a set of document instances, it is possible
that some information could be lost or distorted in
the process of compression. By contrast, more ac-
curate query weights can be achieved by the more
fine-grained similarity measure between the source
query and all target queries in algorithm 2.

For the KL-based measure, similar observation
can be obtained. However, it’s obvious that DS-
based models can work better than the KL-based.
The reason is that KL conducts weighting by density
function ratio which is sensitive to the data scale.
Specifically, after document feature aggregation, the
number of query feature vectors in all adaptation
tasks is no more than 150 in source and target do-
mains. It renders the density estimation in query-
aggr is very inaccurate since the set of samples is
too small. As each query contains 1000 documents,
they seemed to provide query-comp enough samples
for achieving reasonable estimation of the density
functions in both domains.

5.2.2 Adaptation from TD to HP/NP
To further validate the effectiveness of query

weighting, we also conducted adaptation from TD
to HP and TD to NP . MAP results with significant
test are shown in Table 3.

We can see that document instance weighting

schemes including doc-pair, doc-avg and doc-comb
can not outperform no-weight based on MAP mea-
sure. The reason is that each query in TD has 1000
retrieved documents in which 10-15 documents are
relevant whereas each query in HP or NP only con-
sists 1-2 relevant documents. Thus, when TD serves
as the source domain, it leads to the problem that
too many document pairs were generated for train-
ing the RSVM model. In this case, a small number
of documents that were weighted inaccurately can
make significant impact on many number of docu-
ment pairs. Since query weighting method directly
estimates the query importance instead of document
instance importance, both query-aggr and query-
comp can avoid such kind of negative influence that
is inevitable in the three document instance weight-
ing methods.

5.2.3 The Analysis on Source Query Weights
An interesting problem is which queries in the

source domain are assigned high weights and why
it’s the case. Query weighting assigns each source
query with a weight value. Note that it’s not mean-
ingful to directly compare absolute weight values
between query-aggr and query-comp because source
query weights from distinct weighting methods have
different range and scale. However, it is feasible
to compare the weights with the same weighting
method. Intuitively, if the ranking model learned
from a source query can work well in target do-
main, it should get high weight. According to this
intuition, if ranking models fq1

s
and fq2

s
are learned
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model weighting scheme TD03 to HP03 TD04 to HP04 TD03 to NP03 TD04 to NP04
no-weight 0.6986 0.6158 0.5053 0.5427

DS

doc-pair 0.6588 0.6235† 0.4878 0.5212
doc-avg 0.6654 0.6200 0.4736 0.5035
doc-comb 0.6932 0.6214† 0.4974 0.5077
query-aggr 0.7179†‡♯ 0.6292†‡♯ 0.5198†‡♯ 0.5551†‡♯

query-comp 0.7297†‡♯ 0.6499†‡♯ 0.5203†‡♯ 0.6541†‡♯

KL

doc-pair 0.6480 0.6107 0.4633 0.5413
doc-avg 0.6472 0.6132 0.4626 0.5406
doc-comb – – – –
query-aggr 0.6263 0.5929 0.4597 0.4673
query-comp 0.6530‡♯ 0.6358†‡♯ 0.4726 0.5559†‡♯

Table 3: Results of MAP for TD to HP/NP adaptation. †, ‡, ♯ and boldface indicate significantly better than no-weight,
doc-pair, doc-avg and doc-comb, respectively. Confidence level is set as 95%.

from queries q1
s and q2

s respectively, and fq1
s

per-
forms better than fq2

s
, then the source query weight

of q1
s should be higher than that of q2

s .

For further analysis, we compare the weight val-
ues between each source query pair, for which we
trained RSVM on each source query and evaluated
the learned model on test data from target domain.
Then, the source queries are ranked according to the
MAP values obtained by their corresponding rank-
ing models. The order is denoted as Rmap. Mean-
while, the source queries are also ranked with re-
spect to their weights estimated by DS-based mea-
sure, and the order is denoted as Rweight. We hope
Rweight is correlated as positively as possible with
Rmap. For comparison, we also ranked these queries
according to randomly generated query weights,
which is denoted as query-rand in addition to query-
aggr and query-comp. The Kendall’s τ = P−Q

P+Q
is used to measure the correlation (Kendall, 1970),
where P is the number of concordant query pairs
and Q is the number of discordant pairs. It’s
noted that τ ’s range is from -1 to 1, and the larger
value means the two ranking is better correlated.
The Kendall’s τ by different weighting methods are
given in Table 4 and 5.

We find that Rweight produced by query-aggr and
query-comp are all positively correlated with Rmap

and clearly the orders generated by query-comp are
more positive than those by query-aggr. This is
another explanation why query-comp outperforms
query-aggr. Furthermore, both are far better than

weighting TD03 to HP03 TD04 to HP04
doc-pair 28,835 secs 21,640 secs
query-aggr 182 secs 123 secs
query-comp 15,056 secs 10,081 secs

Table 6: The efficiency of weighting in seconds.

query-rand because the Rweight by query-rand is ac-
tually independent of Rmap.

5.2.4 Efficiency
In the situation where there are large scale data in

source and target domains, how to efficiently weight
a source query is another interesting problem. With-
out the loss of generality, we reported the weighting
time of doc-pair, query-aggr and query-comp from
adaptation from TD to HP using DS measure. As
doc-avg and doc-comb are derived from doc-pair,
their efficiency is equivalent to doc-pair.

As shown in table 6, query-aggr can efficiently
weight query using query feature vector. The reason
is two-fold: one is the operation of query document
aggregation can be done very fast, and the other is
there are 1000 documents in each query of TD or HP,
which means that the compression ratio is 1000:1.
Thus, the domain separator can be found quickly. In
addition, query-comp is more efficient than doc-pair
because doc-pair needs too much time to find the
separator using all instances from source and target
domain. And query-comp uses a divide-and-conquer
method to measure the similarity of source query to
each target query, and then efficiently combine these
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Weighting method HP03 to TD03 HP04 to TD04 NP03 to TD03 NP04 to TD04
query-aggr 0.0906 0.0280 0.0247 0.0525
query-comp 0.1001 0.0804 0.0711 0.1737

query-rand 0.0041 0.0008 -0.0127 0.0163

Table 4: The Kendall’s τ of Rweight and Rmap in HP/NP to TD adaptation.

Weighting method TD03 to HP03 TD04 to HP04 TD03 to NP03 TD04 to NP04
query-aggr 0.1172 0.0121 0.0574 0.0464
query-comp 0.1304 0.1393 0.1586 0.0545
query-rand −0.0291 0.0022 0.0161 -0.0262

Table 5: The Kendall’s τ of Rweight and Rmap in TD to HP/NP adaptation.

fine-grained similarity values.

6 Related Work

Cross-domain knowledge transfer has became an
important topic in machine learning and natural lan-
guage processing (Ben-David et al., 2010; Jiang
and Zhai, 2007; Blitzer et al., 2006; Daumé III
and Marcu, 2006). (Blitzer et al., 2006) pro-
posed model adaptation using pivot features to build
structural feature correspondence in two domains.
(Pan et al., 2009) proposed to seek a common fea-
tures space to reduce the distribution difference be-
tween the source and target domain. (Daumé III and
Marcu, 2006) assumed training instances were gen-
erated from source domain, target domain and cross-
domain distributions, and estimated the parameter
for the mixture distribution.

Recently, domain adaptation in learning to rank
received more and more attentions due to the lack
of training data in new search domains. Existing
ranking adaptation approaches can be grouped into
feature-based (Geng et al., 2009; Chen et al., 2008b;
Wang et al., 2009; Gao et al., 2009) and instance-
based (Chen et al., 2010; Chen et al., 2008a; Gao et
al., 2010) approaches. In (Geng et al., 2009; Chen et
al., 2008b), the parameters of ranking model trained
on the source domain was adjusted with the small
set of labeled data in the target domain. (Wang et al.,
2009) aimed at ranking adaptation in heterogeneous
domains. (Gao et al., 2009) learned ranking mod-
els on the source and target domains independently,
and then constructed a stronger model by interpo-
lating the two models. (Chen et al., 2010; Chen et

al., 2008a) weighted source instances by using small
amount of labeled data in the target domain. (Gao et
al., 2010) studied instance weighting based on do-
main separator for learning to rank by only using
training data from source domain. In this work, we
propose to directly measure the query importance in-
stead of document instance importance by consider-
ing information at both levels.

7 Conclusion

We introduced two simple yet effective query
weighting methods for ranking model adaptation.
The first represents a set of document instances
within the same query as a query feature vector,
and then directly measure the source query impor-
tance to the target domain. The second measures
the similarity between a source query and each tar-
get query, and then combine the fine-grained simi-
larity values to estimate its importance to target do-
main. We evaluated our approaches on LETOR3.0
dataset for ranking adaptation and found that: (1)
the first method efficiently estimate query weights,
and can outperform the document instance weight-
ing but some information is lost during the aggrega-
tion; (2) the second method consistently and signifi-
cantly outperforms document instance weighting.
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