Exact Decoding of Syntactic Translation Models
through Lagrangian Relaxation

Alexander M. Rush Michael Collins
MIT CSAIL, Department of Computer Science,
Cambridge, MA 02139, USA Columbia University,
srush@sail.mt.edu New York, NY 10027, USA

ncol i ns@s. col unbi a. edu

Abstract et al., 1964) by using.agrangian relaxatiorto de-

We describe an exact decoding algorithm for compose the decoding problem into the following
syntax-based statistical translation. The ap- sub-problems:
proach uses Lagrangian relaxation to decom-

pose the decoding problem into tractable sub- 1. Dynamic programming over the weighted hy-

problems, thereby avoiding exhaustive dy- pergraph. This step does not require language

namic programming. The method recovers ex- model integration, and hence is highly efficient.

act solutions, with certificates of optimality,

on over 97% of test examples; it has compa- 2. Application of an all-pairs shortest path al-

rable speed to state-of-the-art decoders. gorithm to a directed graph derived from the
1 Introduction weighted hypergraph. The size of the derived

Recent work has seen widespread use of syn- directed graphis linear in the size of the hyper-
chronous probabilistic grammars in statistical ma- 9raph, hence this step is again efficient.

chine translation (SMT). The decoding problem for

a broad range of these systems (e.g., (Chiang, 20d

Marcu et al., 2006; Shen et al., 2008)) corresponc}

to the intersection of a (weighted) hypergraph witl])))
an n-gram language model The hypergraph rep- ing algorithm is used to_ mtegrate language model

resents a large set of possible translations, and J§0res. Lagrange multipliers are used to enforce
created by applying a synchronous grammar to thaegreement between the structures produced by the

source language string. The language model is th&f{© decoding algorithms.

used to rescore the translations in the hypergraph. In this paper we fir;t give background on hyper-
graphs and the decoding problem. We then describe

Decoding with these models is challenging; ; laorith he alaorith
largely because of the cost of integrating an n-grafi"" decoding algorithm. The algorithm uses a sub-

language model into the search process. Exact d radient method to minimize a dual function. The

namic programming algorithms for the problem aréjual corresppnds toa partit_:ular Iinear'programming
well known (Bar-Hillel et al., 1964), but are too ex- (LP) relaxatlon_ of the original deCOd'”9 prob!em.
pensive to be used in practigePrevious work on The method will recover an exact solution, with a

decoding for syntax-based SMT has therefore beé:rgrtificate of optimality, if the underlying LP relax-

focused primarily on approximate search rnethods_atlon has an integral solution. In some cases, how-

This paper describes an efficient algorithm for exS’e" the underlying LP will have a fractional solu-

act decoding of synchronous grammar models f(ﬂon, in which case the method will not be exact. The

translation. We avoid the construction of (Bar—HiIIelseC,ond technical con_trlbutilon Of_ this paper is to de-
scribe a method that iteratively tightens the underly-

1This problem is also relevant to other areas of statisticqhg LP relaxation until an exact solution is produced.

NLP, for example NL generation (Langkilde, 2000).
2E g., with a trigram language model they runi| £|w°) We do this by gradually introducing constraints to

time, wherel E| is the number of edges in the hypergraph, andtep 1 (dynamic programming over the hypergraph),
w is the number of distinct lexical items in the hypergraph. while still maintaining efficiency.

formally, the first decoding algorithm incorporates
e weights and hard constraints on translations from
e synchronous grammar, while the second decod-

72

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 72—82,
Portland, Oregon, June 19-24, 2011. (©2011 Association for Computational Linguistics

We report experiments using the tree-to-strin@ Background: Hypergraphs

model of (Huang and Mi, 2010). Our method givesTranslation with many syntax-based systems (e.g.,
exact solutions on over 97% of test examples. Th(i:hiang, 2005; Marcu et al., 2006; Shen et al., 2008;
method is comparable in speed to state-of-the-art detuang and Mi, 2010)) can be implemented as a
coding algorithms; for example, over 70% of the tesfyo-step process. The first step is to take an in-
examples are decoded in 2 seconds or less. We copiit sentence in the source language, and from this
pare our method to cube pruning (Chiang, 2007}o create a hypergraph (sometimes called a transla-
and find that our method gives improved modefion forest) that represents the set of possible trans-
scores on a significant number of examples. Ongtions (strings in the target language) and deriva-
consequence of our work is that we give accuratgons under the grammar. The second step is to
estimates of the number of search errors for cubitegrate an n-gram language model with this hy-
pruning. pergraph. For example, in the system of (Chiang,
2 Related Work 2005), the hypergraph is created as foIIows; first, the
source side of the synchronous grammar is used to
A variety of approximate decoding algorithms haveyeate a parse forest over the source language string.
been explored for syntax-based translation systemSecond, transduction operations derived from syn-
including cube-pruning (Chiang, 2007; Huang an@hronous rules in the grammar are used to create the
Chiang, 2007), left-to-right decoding with beamisrget-language hypergraph. Chiang’s method uses
search (Watanabe et al., 2006; Huang and Mi, 2010},synchronous context-free grammar, but the hyper-
and coarse-to-fine methods (Petrov et al., 2008). graph formalism is applicable to a broad range of
Recent work has developed decoding algorithmsther grammatical formalisms, for example depen-

based on finite state transducers (FSTs). Iglesias @ncy grammars (e.g., (Shen et al., 2008)).
al. (2009) show that exact FST decoding is feasible A hypergraph is a pair(V, E) where V. =

for a phrase-based system with limited reorderinng, ...,|V|} is a set of vertices, an8l is a set of

(the MJ1 model (Kumar and Byrne, 2005)), and d@yperedges. A single distinguished vertex is taken

Gispert et al. (2010) show that exact FST decodings the root of the hypergraph; without loss of gener-

is feasible for a specific class of hierarchical gramality we take this vertex to be = 1. Each hyper-

mars (shallow-1 grammars). Approximate searcBdgee € E is a tuple((vi,va, ..., vk), vo) Where

methods are used for more complex reordering mogy, ¢ Vv, andv; € {2...|V|} fori = 1...k. The

els or grammars. The FST algorithms are shown tgertexy, is referred to as theeadof the edge. The

produce higher scoring solutions than cube-pruningrdered sequencé, vy, ..., v;) is referred to as

on a large proportion of examples. thetail of the edge; in addition, we sometimes refer
Lagrangian relaxation is a classical techniquq)vhv%“_vk as thechildrenin the edge. The num-

in combinatorial optimization (Korte and Vygen,ber of childrenk may vary across different edges,

2008). Lagrange multipliers are used to add linput % > 1 for all edges (i.e., each edge has at least

ear constraints to an existing problem that can bgne child). We will usei(e) to refer to the head of

solved using a combinatorial algorithm; the resultan edge:, andt(e) to refer to the tail.

ing dual function is then minimized, for example e will assume that the hypergraph is acyclic: in-

using subgradient methods. In recent woddal tuitively this will mean that no derivation (as defined

decomposition-a special case of Lagrangian relaxnelow) contains the same vertex more than once (see

ation, where the linear constraints enforce agregmartin et al., 1990) for a formal definition).

ment between two or more models—has been ap- Each vertexw € V is either anon-terminalin the

pIied to inference in Markov random fields (Wain hypergraph, or éeaf. The set of non-terminals is

wright et al., 2005; Komodakis et al., 2007; Sontag

et al., 2008), and also to inference problems in NLP Vv = {v € V': Je € E suchthat h(e) = v}

(Rush et al., 2010; Koo et al., 2010). There are Closéonversely

connections between dual decomposition and work ’

on belief propagation (Smith and Eisner, 2008). Vi ={veV:Bee€ E suchthat h(e) = v}

the set of leaves is defined as

73

Finally, we assume that eache V has a label Assumption 3.1 (Bigram start/end assump-
[(v). The labels for leaves will bevords and will tion.) For any derivation y, with leaves
be important in defining strings and language model(y) = wvy,v2,...,v,, it is the case that: (1)
scores for those strings. The labels for non-terminat, = 2 andv,, = 3; (2) the leave< and 3 cannot
nodes will not be important for results in this paper. appear at any other position in the stringsy) for

We now turn to derivations. Define andex set y €); (3) [(2) = <s> where<s> is the start
7 =V U E. Aderivation is represented by a vectorsymbol in the language model; (4)3) = </ s>
y = {y, : r € Z} wherey, = 1 if vertexvis used in where</ s> is the end symbol.
the derivationy, = 0 otherwise (similarlyy, = 1 if
edgee is used in the derivation;. = 0 otherwise).
Thusy is a vector in{0,1}%I. A valid derivation
satisfies the following constraints:

This assumption allows us to incorporate lan-
guage model terms that depend on the start and end
symbols. It also allows a clean solution for boundary
conditions (the start/end of string5).

e y; = 1 (the root must be in the derivation). 4 A Simple Lagrangian Relaxation

e Forallv e Vi, yo = X c.p(e)—y Ye- Algon_thm | | |
We now give a Lagrangian relaxation algorithm for
o Forallv e 2...[V],yo = e per(e) Ye- integration of a hypergraph with a bigram language

model, in cases where the hypergraph satisfies the

We use) to refer to the set of valid derivations. i s -
following simplifying assumption:

The sety is a subset of0, 1}1%! (not all members of

{0, 11121 will correspond to valid derivations). Assumption 4.1 (The strict ordering assumptign.
Each derivationy in the hypergraph will imply an For any two leaves) and w, it is either the case

ordered sequence of leaves. . . v,. We uses(y) to that: 1) for all derivationsy such thatv andw are

refer to this sequence. Tlsentencassociated with both in the sequendéy), v precedesu; or 2) for all

the derivation is thet(vy) ... [(vy,). derivationsy such thatv andw are both inl(y), w
In a weighted hypergraph problem, we assume frecedes.

parameter vectof = {6, : r € Z}. The score for 15 under this assumption, the relative ordering
any derivation isf(y) = 0 -y = >_.cz0ryr- SIM- ot any two leaves is fixed. This assumption is overly
ple bottom-up dynamic programming—essentiallyestrictive® the next section describes an algorithm
the CKY algorithm—can be used to fing" = 4t does not require this assumption. However de-

arg masycy f (?fJ)hU_nder thesﬁldtfﬁ”itionls- bl Ving the simple algorithm will be useful in devel-
__The focus of this paper will be to solve problems, iy ition, and will lead directly to the algo-
involving the integration of &'th order language . :

gthm for the unrestricted case.

model with a hypergraph. In these problems, th
score for a derivation is modified to be 4.1 A Sketch of the Algorithm
n At a high level, the algorithm is as follows. We in-
F@W) =Y 0myr + Y 0(viks1,vikya,---,v:) (1) troduce Lagrange multipliers(v) for all v € V7,
rez i=k with initial values set to zero. The algorithm then
wherev;...v, = s(y). The 0(vi_py1,...,v;) Involves the following steps: (1) For each leaf
parameters score n-grams of length These find the previous leafy that maximizes the score
parameters are typically defined by a languag&(w,v) — u(w) (call this leafa*(v), and define
model, for example withk = 3 we would have o, = 0(a*(v),v) — u(a*(v))). (2) find the high-

O(vi_o,vi_1,v;) = logp(l(v;)|l(vi_2),l(v;_1)). €stscoring derivation using dynamic programming
The proplem Is .then to fing” = argmaxycy f(y) “The assumption generalizes in the obvious waj 't or-
under this definition. der language models: e.g., for trigram models we assume that
Throughout this paper we make the following as#: = 2, v2 = 3, v, = 4,1(2) = I(3) = <s>,1(4) = </ $>.
sumption when using a bigram language model: ®It is easy to come up with examples that violate this as-

sumption: for example a hypergraph with edgés 5), 1) and
3They might for example be non-terminal symbols from the((5, 4), 1) violates the assumption. The hypergraphs found in
grammar used to generate the hypergraph. translation frequently contain alternative orderings such as this.

74

over the original (non-intersected) hypergraph, withinitialization: Setu®(v) = 0 forallv € V7,
leaf nodes having weight®, + «, + u(v). (3) If |Algorithm: Fort=1...T":
the output derivation from step 2 has the same set of
bigrams as those from step 1, then we have an exact
solution to the problem. Otherwise, the Lagrange
multipliers u(v) are modified in a way that encour- s "y .
ages agreement of the two steps, and we returnjto “ () =0 (¥'(V) = XuitwyenY (”’w))'
step 1.
Steps 1 and 2 can be performed efficiently; in patjgure 1: A simple Lagrangian relaxation algorithm.
ticular, we avoid the classical dynamic programming* > 0 is the step size at iteratian
intersection, instead relying on dynamic program-
ming over the original, simple hypergraph.

oy = argmax,ey L(u'L,y)

o If y! satisfies constraints2, return v,
Else Vv € Vi, u'(v) =

Next, define)’ as

4.2 A Formal Description

We now give a formal description of the algorithm.)’ = {y : y satisfies constraintS80 andC1}
DefineB C V, x V7, to be the set of all ordered pairs) o

(v, w) such that there is at least one derivatjomitn " this definition we have dropped the2 con-

v directly precedingo in s(y). Extend the bit-vector straints.' To incorporate. these constraints, We 'use
y to include variables(v, w) for (v, w) € B where Lagrangian relaxation, with one Lagrange multiplier

y(v,w) = 1 if leaf v is followed byw in s(y), 0 u(v) for each constraint i€2. The Lagrangian is
otherwise. We redefine the index set tobe- V' U
E U B, and definey C {0, 1}/ to be the set of all L(u,y))+ Z) =2 y(v,w))

possible derivations. Under assumptions 3.1 and 4.1 wilvw) B

above,y = {y : y satisfies constrains0, C1, C2} = By
where the constraint definitions are: where, = 6, + u(v), Be = 6., and B(v, w) =
e (CO) They, andy,. variables form a derivation (v, w) — u(v). _ o
in the hypergraph, as defined in section 3. The dual problem is to finchin, L(u) where
e (C1)For allv € V; such thaty # 2, y, = L(u) = max L(u, y)

yey’

Zw:(w,v)EB y(w’ U)'
Figure 1 shows aubgradientmethod for solving
e (C)Forallv € Vi suchthatv # 3, y» = hig problem. At each point the algorithm finds
2w (vw)eB Y (U, W). y! = argmaxycy L(uf~!,y), whereu!~! are the

C1 states that each leaf in a derivation has exactiyagrange multipliers from the previous iteration. |f
derlvatlon hag) |ncom|ng bigramsC2 states that C1. then it is r'eturned as t_hQ output from the algo-
each leaf in a derivation has exactly one out-goin§jthm. Otherwise, the multipliers(v) are updated.
bigram, and that each leaf not in the derivation hias Intuitively, these updates encourage the valueg, of
outgoing bigramé. andz (wwyes Y(v, w) to be equal; formally, these
The score of a derivation is nofi(y) = 6y, i.e., updates correspond to subgradient steps.
The main computational step at each iteration is to
ZGUyUJFZ Oeye+ > O(v,w)y(v,w) computearg max,ey L(u!~!,y) This step is easily
(v,w)eB solved, as follows (we again ugg, 5. ands(vy, v2)
to refer to the parameter values that incorporate La-

wheref (v, w) are scores from the language modelgrange multipliers):

Our goal is to computg* = arg maxycy f(y).

e — H * _
Recall that according to the bigram start/end assumption o For all v < Vi, define o (U) -

the leaves2/3 are reserved for the start/end of the sequence — ArgMaXy,. (v v)eB Blw,v) and ay

s(y), and hence do not have an incoming/outgoing bigram. B(a*(v),v). Forallv € Vy definea, = 0.

75

e Using dynamic programming, find values forPreviously, for each derivationy, we had de-

they, andy. variables that form a valid deriva- fined s(y) = wv1,v2,...,v, to be the sequence
tion, and that maximize of leaves iny. In addition, we will define
f/(y) = Zv(ﬂv +)Yy + Ze BeYe- 9(y) = po,v1,P1,V2,P2,V3,P3; - -+, Pn—1,Vn, Pn
_ where eaclp; is a path in the derivation between
e Sety(v,w) = 1iff y(w) = 1anda™(w) = v. |eavesy; andv;, ;. The path traces through the non-

. terminals that are between the two leaves in the tree.
The critical point here is that through our definition

of)/, which ignores th&€2 constraints, we are able As an example, consider the following derivation
to do efficient search as just described. In the firdwith hyperedges(2, 5), 1) and((3,4), 2)):

step we compute the highest scoring incoming bi- 1
gram for each leab. In the second step we use o~
conventional dynamic programming over the hyper- 2 5
graph to find an optimal derivation that incorporates N
weights from the first step. Finally, we fill in the 3 4

y(v,w) values. Each iteration of the algorithm runs _ .
in(O(];E 1)) time. For this exampley(y) is (1 [,2 [) (2 [,3 |)

There are close connections between Lagrangifi ,3BNETLANM), 4N MET121)

relaxation and linear programming relaxations. Th 27,51)(1),5 (1) (1,11). States of the

most important formal results are: 1) for any value2'™m {a |) and <a.) wherea is a leaf appear in
of u, L(u) > f(y*) (hence the dual value provi deSthe paths respectively before/after the leafStates

an upper bound on the optimal primal value); 2) ungf the form(a, b) correspond to the steps taken in a

der an appropriate choice of the step sigsthe top-down, left-to-right, traversal of the tree, where

subgradient algorithm is guaranteed to converge %own in?j ?p ?rr]ro:ystmdlcate w;?ther gahnc:de N bel-
the minimum of L(u) (i.e., we will minimize the Ing visited for the first or second time (the traversa

upper bound, making it as tight as possible); 3) it this case would bé, 2,3, 4,2,5,1).

at any point the algorithm in figure 1 findsyathat The mapping from a derivation to a pathg(y)

satisfies theC2 constraints, then this is guaranteedcan be performed using the algorithm in figure 2.

to be the optimal primal solution. For a given derivationy, defineE(y) = {y : y. =
Unfortunately, this algorithm may fail to producel}, and useE(y) as the set of input edges to this

a good solution for hypergraphs where the strict oalgorithm. The output from the algorithm will be a

dering constraint does not hold. In this case it iset of states, and a set of directed edg#s which

possible to find derivationg that satisfy constraints together fully define the patj(y).

CO0, C1, C2, but which are invalid. As one exam-

ple, consider a derivation with(y) = 2,4,5,3 and predict the previous leaf for each leaf under

y(2,3) = y(4,5) = y(5,4) = 1. The constraints go0 that combined a language model score
are gll sa_ltlsfled in this case, but the bigram varlablgﬁith a Lagrange multiplier score (i.e., compute
are invalid (e.g., they contain a cycle). arg max,, B(w,v) where B(w,v) — 8w,v) +
5 The Full Algorithm u(w)). In this sec_tion we describe an algorithm th_at
for each leab again predicts the previous leaf, but in

We now describe our full algorithm, which does notaddition predicts the fulpath back to that leaf. For
require the strict ordering constraint. In addition, thexample, rather than making a prediction for |&af
full algorithm allows a trigram language model. Wethat it should be preceded by leafwe would also
first give a sketch, and then give a formal definitionpredict the path4 7)(4 1,2 1) (2 1,5 |){(5 |) be-

_ tween these two leaves. Lagrange multipliers will
5.1 A Sketch of the Algorithm be used to enforce consistency between these pre-
A crucial idea in the new algorithm is that of dictions (both paths and previous words) and a valid
paths between leaves in hypergraph derivationsderivation.

In the simple algorithm, the first step was to

76

Input: A setFE of hyperedgesOutput: A directed graph|e DO. They, andy. variables form a valid derivation
S, T whereS is a set of vertices, arifl is a set of edges.| | in the original hypergraph.
Step 1: Creating S: DefineS = U.cgS(e) whereS(e) || e D1. Foralls € Sy, ys = Zmes(e) ye (see figure 2
is defined as follows. Assume= ((v1,v2,...,vx),vo). | | for the definition ofS(e)).

Include the following states i§'(e): (1) (vo |,v1 |) and||e D2. Forallv € Vi, y, = 2 prvs(p)=v Yp
(ol 001). () (v T, vy) forg=1...k = 1(f k=1l e D3. Forallv € Vi, yu = 3.0 (50 ¥

then there are no such states). (3) In addition, for@any o p4. For allv ¢ Viiye =3 y.

forj = 1...k such that; € Vi, add the statesv; 1) ||, b5 Foralls ¢ S = Zp:me(p)(:q); y:
) 1 IS8 pis€Ep1(p

and(v;). e D6.Foralls € Sn,ys =3, cpo(p) Yo

Step 2: CreatingT: T is formed by including the folr
lowing directed arcs: (1) Add an arc frofa,b) € S || Lagrangian with Lagrange multipliers f&3-D6:
to (c¢,d) € S wheneverb = c¢. (2) Add an arc from Ly, Ay, u,0) =0 -y

{(a,b |y € Sto{(c |) € S wheneverb = c. (3) Add \
an arc from{a 1) € Sto (b 1,¢) € S whenever = b. +20 A (y” = 2 pva(p)=v yp)

+2 0 Yo Yo — w1 (p)=v Y
Figure 2: Algorithm for constructing a directed graph 2 2pin o) p)
(S,T) from a set of hyperedges. 205 us (Us = Lpisepi (o) yp)

=+ Zs Vg (ys - Zp:SGZD(Z’) yp> '

5.2 A Formal Description

We first use the algorithm in figure 2 with the en- Figure 3: Constraint®0-D6, and the Lagrangian.

tire set of hyperedgesy, as its input. The result

is a directed grapliS, T') that containsll possible p(ws|wi, ws) is a trigram probability.

pathsfor valid derivations inV, E (it also contains ~ The setp is large (typically exponential in size):
additional, ill-formed paths). We then introduce the,gwever, we will see that we do not need to represent

following definition: the y,, variables explicitly. Instead we will be able
Definition 5.1 A trigram path p is p = to leverage the underlying structure of a path as a
(v1,p1,v2,p2,v3) Where: a)wvi,ve,v3 € Vp; sequence of states.

b) p; is a path (sequence of states) between nodesThe set of valid derivations iY = {y

(v T) and (ve |) in the graph(S,T); c) pe is a y satisfies constrainf30-D6} where the constraints
path between nodg®s 1) and (vs |) in the graph are shown in figure 3D1 simply states thag, = 1

(S,T). We definéP to be the set of all trigram paths iff there is exactly one edgein the derivation such
in (S, 7). thats € S(e). Constraintd2-D4 enforce consis-

The setP of trigram paths plays an analogous rold€ncy between leaves in the trigram paths, andjthe
to the set of bigrams in our previous algorithm. values. Constraint®5 andD6 enforce consistency

We usev: (p), p1(p), v2(p), p2(p), v3(p) to refer between states_seen in thg paths, gnd/;hmlues.
to the individual components of a pagh In addi- The Lagrangian relaxation algorithm is then de-
tion, defineSy to be the set of states ifi of the rived in asimilar way to before. Define
form (a, b) (as opposed to the fore |) or (¢ 1) Y’ = {y : y satisfies constrain@0-D2}
wherec € V1).

We now define a new index sef, = V U F U We have dropped thB3-D6 constraints, but these
Sy U P, adding variableg;, for s € Sy, andy, for will be introduced using Lagrange multipliers. The
p € P. If we take) c {0,1}% to be the set of resulting Lagrangian is shown in figure 3, and can
valid derivations, the optimization problem is to findbe written asL(y, A\, y,u,v) = [-y whereg, =
y* = argmaxycy f(y), wheref(y) = 6 -y, thatis, 0,+ 4+, Bs = Os+us+vs, B, = Op,—A(v2(p)) —

Y(1(P)) = 2 sepr (p) U(S) = Dsepa(p) V(S)-
FW = 0o+ Oy +D Oys+D 0¥ The dual — is Lh~y.av) _
v e S p

maxyey L(y, A, v,u,v); figure 4 shows a sub-
In particular, we might defind, = 0 for all s, gradient method that minimizes this dual. The key
and 6, = logp(l(vs(p))|l(vi(p)),I(v2(p))) wWhere step in the algorithm at each iteration is to compute

77

is vastly more efficient than computing an exact in-
tersection of the hypergraph with a language model.

Exact solutions. By usual guarantees for La-
grangian relaxation, if at any point the algorithm re-
turns a solution,’ that satisfies constrain®3-D6,
theny! exactly solves the problem in Eq. 1.

Upper bounds. At each point in the algorithm,
L\, At ut,ot) is an upper bound on the score of
the optimal primal solutionf(y*). Upper bounds
can be useful in evaluating the quality of primal so-
lutions from either our algorithm or other methods
such as cube pruning.

Simplicity of implementation. Construction of
the (S,T) graph is straightforward. The other
steps—hypergraph dynamic programming, and all-
argmaxyey L(y, A, v, u,v) = argmaxycy -y pairs shortest path—are widely known algorithms
where 3 is defined above. Again, our definitionthat are simple to implement.
of)’ allows this maximization to be performed
efficiently, as follows:

Initialization: SetA\’ = 0,7° =0,u° =0,0"=0
Algorithm: Fort=1...T":

o y' = argmax,cy L(y, N1 4071 w1 i)
o If 3! satisfies the constrainB3-D6, returny?, else:
Vo e Vi, AL = X — 6t (yf — >

t
p:va(p)=v yp)
Yo € VLu ’Yf; = 7571 - 5t (yf} - Zp:vl (p)=v yItJ)
Vs € Sy, ul =ul™t —§(yl —

6t (yt —

1
- Zp:sepl(p) y;)
1 _

Vs € SN! Uf; = lei Zp:sEpQ(p) y;)

Figure 4: The full Lagrangian relaxation algortihii. >
0 is the step size at iteration

6 Tightening the Relaxation

1. For eachv € Vi, define o The algorithm that we have described minimizes
arg Max,,, ;)= 3(p), and a, Blak). the dual functionL (), v, u, v). By usual results for
(i.e., for eachv, compute the highest scoringlLagrangian relaxation (e.g., see (Korte and Vygen,
trigram path ending im.) 2008)), L is the dual function for a particular LP re-

laxation arising from the definition @¢” and the ad-

ditional constaintdD3-D6. In some cases the LP
relaxation has an integral solution, in which case
the algorithm will return an optimal solutiogt.”

In other cases, when the LP relaxation has a frac-

tional solution, the subgradient algorithm will still

converge to the minimum of, but the primal solu-

2. Find values for the,, y. andy, variables that
form a valid derivation, and that maximize

f/(y) = Zv(ﬂv +av)yv + Ze Beye + Zs Bsys

3. Sety, = 1iff y,,(,) = 1andp = oz:g(p).

The first step involves finding the highest scoring in Rt _
coming trigram path for each leaf This step can be 1ONSy" will move between a number of solutions.
performed efficiently using the Floyd-Warshall all- W& now describe a method that incrementally
pairs shortest path algorithm (Floyd, 1962) over th@dds hard constraints to the S&t until the method
graph(S,T); the details are given in the appendixJé{Uns an exact solution. For a given < Y, _
The second step involves simple dynamic progranfor any v with y, = 1, we can recover the previ-
ming over the hypergraptV, E) (it is simple to in- ©0US two leaves (Fhe trigram ending i) from ei-
tegrate thed, terms into this algorithm). In the third ther the path variables,, or the hypergraph vari-

step, the path variableg are filled in. abIeSye_. Sp(_acificallyj define_1 (v, y_) to be the leaf
precedingu in the trigram pathp with y, = 1 and
v3(p) = v, andv_o(v,y) to be the leaf two posi-
tions beforev in the trigram pattp with y, = 1 and
v3(p) = v. Similarly, definev’ (v, y) andv’ (v, y)

to be the preceding two leaves under thevari-
ables. If the method has not converged, these two
frigram definitions may not be consistent. For a con-

5.3 Properties

We now describe some important properties of th

algorithm:
Efficiency. The main steps of the algorithm are
1) construction of the graphS,T); 2) at each it-

eration, dynamic programming over the hypergrap

(V, E); 3) at each iteration, all-pairs shortest path al- 7proyided that the algorithm is run for enough iterations for

gorithms over the graphsS, T'). Each of these steps

78

convergence.

sistent solution, we require_(v,y) = v' {(v,9) Time %age | %age | %age| %age
andv_z(v,y) = v’ 4(v,y) for all v with y, = 1. (LR) | ©P) | (ILP) | (LP)

2% : 0.5s 375 102 | 88 | 21.0
Unfgrtunately, epr!C|tIy enforqlng all of these con- 1.0s 570 | 116 | 139 | 31.1
straints would require exhaustive dynamic program- 2.0s 722 | 151 | 21.1 | 45.9
ming over the hypergraph using the (Bar-Hillel et 4.0s 825 | 20.7 | 30.7 | 63.7
al., 1964) method, something we wish to avoid. 8.0s 88.9 1 252 | 41.8 | 78.3

16.0s 944 | 33.3 | 546 | 889
32.0s 97.8 | 42.8 | 68,5 | 95.2

| Mediantime| 0.79s| 77.5s| 12.1s| 2.4s |

Instead, we enforce a weaker set of constraints,
which require far less computation. Assume some
functionn : Vi, — {1,2,...q} that partitions the
set of leaves 'r_‘tq d'ﬁerenF partitions. Then we will Figure 5:Results showing percentage of examples that are de-
add the following constraints p’: coded in less thanseconds, fot = 0.5,1.0,2.0, ..., 32.0. LR

_ / = Lagrangian relaxation; DP = exhaustive dynamic program-
W(Ufl(v’ y)) - ﬂ-(v_l(v’ y)) ming; ILP = integer linear programming; LP = linear program-
m(v_o(v,y)) = 7w 5(v,y)) ming (LP does not recover an exact solution). The (I)LP ex-
for all v such thaty, = 1. Findingarg max,cyr 0. perlments_, were carried out using Gurobi, a high-performance
. " , : commercial-grade solver.
y under this new definition 0}’ can be performed

using the construction of (Bar-Hillel et al., 1964),in (Huang and Mi, 2010). We use an identical
with ¢ different lexical items (for brevity we omit model, and identical development and test data, to
the details). This is efficient if is small® that used by Huang and MiThe translation model
The remaining question concerns how to choosg trained on 1.5M sentence pairs of Chinese-English
a partitionw that is effective in tlghtenlng the relax- data; a trigram |anguage model is used. The de-
ation. To do this we implement the following stepsielopment data is the newswire portion of the 2006
1) run the subgradient algorithm unfilis close to N|ST MT evaluation test set (616 sentences). The
convergence; 2) then run the subgradient algorithfigst set is the newswire portion of the 2008 NIST
for m further iterations, keeping track of all pairspmT evaluation test set (691 sentences).
of leaf nodes that violate the constraints (i.e., pairs we ran the full algorithm with the tightening
a = v_1(v,y)lb = v_(v,y) ora = v_2(v,y)lb = method described in section 6. We ran the method
v’ o(v,y) such thata # b); 3) use a graph color- for a limit of 200 iterations, hence some exam-
ing algorithm to find a small partition that places allples may not terminate with an exact solution. Our
pairs(a, b) into separate partitions; 4) continue runmethod gives exact solutions on 598/616 develop-
ning Lagrangian relaxation, with the new constraintghent set sentences (97.1%), and 675/691 test set
added. We expand at each iteration to take into ac- sentences (97.7%).
count new pairga, b) that violate the constraints. In cases where the method does not converge
In related work, Sontag et al. (2008) describgyithin 200 iterations, we can return the best primal
a method for inference in Markov random fieldsso|utionyt found by the algorithm during those it-
where additional constraints are chosen to tightegrations. We can also get an upper bound on the
an underlying relaxation. Other relevant work ingifferencef (y*) — f(y') usingmin, L(u;) as an up-
NLP includes (Tromble and Eisner, 2006; Riedeber bound Onf(y*) Of the examples that did not
and Clarke, 2006). Our use of partitionss related converge, the worst example had a bound that was
to previous work on coarse-to-fine inference for mag 49, of f(y*) (more specificallyf (y') was -24.74,
chine translation (Petrov et al., 2008). and the upper bound of(y*) — f(y*) was 0.34).
7 Experiments Figure 5 gives information on decoding time for

We report experiments on translation from Chines8Ur Mmethod and two other exact decoding methods:

to English, using the tree-to-string model describelfite9er linéar programming (using constraibie-
- - D6), and exhaustive dynamic programming using

8In fact in our experiments we use the original hypergraphhe construction of (Bar-Hillel et al., 1964). Our
to compute admissible outside scores for an exact A* search

algorithm for this problem. We have found the resulting search °We thank Liang Huang and Haitao Mi for providing us with
algorithm to be very efficient. their model and data.

79

method is clearly the most efficient, and is comparae-string models. There are a number of possible
ble in speed to state-of-the-art decoding algorithmsvays to extend this work. Our experiments have

We also compare our method to cube pruninfpcused on tree-to-string models, but the method
(Chiang, 2007; Huang and Chiang, 2007). We reinmshould also apply to Hiero-style syntactic transla-
plemented cube pruning in C++, to give a fair comtion models (Chiang, 2007). Additionally, our ex-
parison to our method. Cube pruning has a paramperiments used a trigram language model, however
ter, b, dictating the maximum number of items storedhe constraints in figure 3 generalize to higher-order
at each chart entry. With = 50, our decoder language models. Finally, our algorithm recovers
finds higher scoring solutions on 50.5% of all examthe 1-best translation for a given input sentence; it
ples (349 examples), the cube-pruning method getsshould be possible to extend the method to find k-
strictly higher score on only 1 example (this was onéest solutions.
of the examples that did not converge within 200 it-p Computing the Optimal Trigram Paths
ergtlons). Withh = 500, our decoder finds better so- For eachy € V., definea, = maxy.,(,)—. 4(p), where
Iutlops on 18.5% of the examples (128 cases), cub%(p) — h(v1(p), va(p), v3(p)) = A1 (v1 (p)) — Ao (va(p)) —
pruning finds a better solution on 3 examples. Thg:sepl(p) u(5) =3 s pu(p) ¥(5)- Herehis a function that
median decoding time for our method is 0.79 seczomputes language model scores, and the other terms in-
onds; the median times for cube pruning wite: 50 volve Lagrange mulipliers. Our task is to compufgfor
andb = 500 are 0.06 and 1.2 seconds respectively.all v € Vr. .

Our results give a very good estimate of the per- 't iS straightforward to show that the, T' graph is

. yclic This will allow us to apply shortest path algo-
centage of search errors for cube pruning. A natura .
i fithms to the graph, even though the weights) and

question is how largé must be before exact solu-v(s) can be positive or negative.
tions are returned on almost all examples. Even at For any pairv;, v, € Vi, defineP(vy,v2) to be the
b = 1000, we find that our method gives a betterset of paths betweefy; 1) and (v, |) in the graphS, T
solution on 95 test examples (13.7%). Each pathp gets a scorescore,(p) = — > ¢, u(s).

Figure 5 also gives a speed comparison of odXext, definep;(vi, v2) = argmaxpep (v, v,) sc0rew(p),
method to a linear programming (LP) solver thaf"dscores(vi,va) = score,(p). We assume similar

solves the LP relaxation defined by constrainés- definitions forp;, (vy, vz) andscore;, (v1, v2). Thep;, and
. . . score’, values can be calculated using an all-pairs short-
D6. We still see speed-ups, in spite of the fac

) -) Lst path algorithm, with weights(s) on nodes in the
that our method is solving a harder problem (it prograph. Similarly,p andscore’ can be computed using
vides integral solutions). The Lagrangian relaxatioall-pairs shortest path with weighigs) on the nodes.
method, when run without the tightening method Having calculated these values, defifi¢v) for any

of section 6, is solving a dual of the problem beleaf v to be the set of trigramsx, y,v) such that: 1)
ing solved by the LP solver. Hence we can meal:¥ € Vz:2)thereis a path fromu 1) to (y |) and from
sure how often the tightening procedure is absg¥) 1 (v 1) inthe graphs, 7. Then we can calculate
lutely necessary, by seeing how often the LP solver o, = o (h(z,y,v) = M (z) — Xa(y)
provides a fractional solution. We find that this is (2 y) + (1, 0))

the case on 54.0% of the test examples: the tighten- . v v

. . . . in O(|7 (v)|) time, by brute force search through the set
ing procedure is clearly important. Inspection of theT

tightening procedure shows that the number of par- ().
titions required (the paramete) is generally quite Acknowledgments Alexander Rush and Michael
small: 59% of examples that require tightening re€ollins were supported under the GALE program of the
quireq < 6; 97.2% require; < 10. Defense Advanced Research Projects Agency, Contract
No. HR0011-06-C-0022. Michael Collins was also sup-
ported by NSF grant 11S-0915176. We also thank the
We have described a Lagrangian relaxation alg@monymous reviewers for very helpful comments; we
rithm for exact decoding of syntactic translatiomope to fully address these in an extended version of the
models, and shown that it is significantly more effipaper.

cient than other exact algorithms for decoding tree-

8 Conclusion

80

References
Y. Bar-Hillel, M. Perles, and E. Shamir. 1964. On formal

properties of simple phrase structure grammars. In

In Proceedings of Human Language Technology Con-
ference and Conference on Empirical Methods in Nat-
ural Language Processingages 161-168, Vancou-

ver, British Columbia, Canada, October. Association

Language and Information: Selected Essays on their ¢, Computational Linguistics.

Theory and Applicationpages 116-150.

for statistical machine translation. Proceedings of
the 43rd Annual Meeting on Association for Compu-
tational Linguistics pages 263-270. Association for
Computational Linguistics.

computational linguistics33(2):201-228.

Adria de Gispert, Gonzalo Iglesias, Graeme Blackwood,

Eduardo R. Banga, and William Byrne. 2010. Hierar-

chical Phrase-Based Translation with Weighted Finite-

State Transducers and Shallow-n GrammarsCom-
putational linguisticsvolume 36, pages 505-533.

Robert W. Floyd. 1962. Algorithm 97: Shortest path.
Commun. ACM5:345.

Liang Huang and David Chiang. 2007. Forest rescoringlav Petrov, Aria Haghighi, and Dan Klein.

R.K. Martin, R.L. Rardin, and B.A. Campbell.

i ’] I. Langkilde. 2000. Forest-based statistical sentence gen
D. Chiang. 2005. A hierarchical phrase-based model g ation.

InProceedings of the 1st North American
chapter of the Association for Computational Linguis-
tics conferencepages 170-177. Morgan Kaufmann
Publishers Inc.

i)) _ Daniel Marcu, Wei Wang, Abdessamad Echihabi, and
D. Chiang. 2007. Hierarchical phrase-based translation.

Kevin Knight. 2006. Spmt: Statistical machine
translation with syntactified target language phrases.
In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processjmpges 44—
52, Sydney, Australia, July. Association for Computa-
tional Linguistics.

1990.
Polyhedral characterization of discrete dynamic pro-
gramming.Operations researci8(1):127-138.

2008.

Faster decoding with integrated language models. In Coarse-to-fine syntactic machine translation using lan-
Proceedings of the 45th Annual Meeting of the Asso- guage projections. IRroceedings of the 2008 Confer-

ciation of Computational Linguisticpages 144-151,

Prague, Czech Republic, June. Association for Com-

putational Linguistics.

ence on Empirical Methods in Natural Language Pro-
cessing pages 108-116, Honolulu, Hawaii, October.
Association for Computational Linguistics.

Liang Huang and Haitao Mi. 2010. EfficientincrementalSebastian Riedel and James Clarke. 2006. Incremental

decoding for tree-to-string translation. Pioceedings

of the 2010 Conference on Empirical Methods in Natu-
ral Language Processingages 273-283, Cambridge,
MA, October. Association for Computational Linguis-
tics.

integer linear programming for non-projective depen-
dency parsing. IfProceedings of the 2006 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP ’06, pages 129-137, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Gonzalo Iglesias, Ada de Gispert, Eduardo R. Banga,Alexander M Rush, David Sontag, Michael Collins, and

and William Byrne. 2009. Rule filtering by pattern
for efficient hierarchical translation. Proceedings of

Tommi Jaakkola. 2010. On dual decomposition and
linear programming relaxations for natural language

the 12th Conference of the European Chapter of the processing. IfProceedings of the 2010 Conference on

ACL (EACL 2009) pages 380-388, Athens, Greece,
March. Association for Computational Linguistics.

N. Komodakis, N. Paragios, and G. Tziritas. 2007.

Empirical Methods in Natural Language Processing
pages 1-11, Cambridge, MA, October. Association for
Computational Linguistics.

MRF optimization via dual decomposition: Messagedibin Shen, Jinxi Xu, and Ralph Weischedel. 2008. A

passing revisited. Idnternational Conference on
Computer Vision

Terry Koo, Alexander M. Rush, Michael Collins, Tommi

Jaakkola, and David Sontag. 2010. Dual decompo-

sition for parsing with non-projective head automata.

new string-to-dependency machine translation algo-
rithm with a target dependency language model. In
Proceedings of ACL-08: HL,pages 577-585, Colum-
bus, Ohio, June. Association for Computational Lin-
guistics.

In Proceedings of the 2010 Conference on EmpiriD.A. Smith and J. Eisner. 2008. Dependency parsing by

cal Methods in Natural Language Processirmgages

belief propagation. IfProc. EMNLR pages 145-156.

1288-1298, Cambridge, MA, October. Association foy, Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and

Computational Linguistics.

B.H. Korte and J. Vygen. 200& ombinatorial optimiza-
tion: theory and algorithmsSpringer Verlag.

Roy W. Tromble and Jason Eisner.

Y. Weiss. 2008. Tightening LP relaxations for MAP
using message passing. Rnoc. UAL

2006. A fast

Shankar Kumar and William Byrne. 2005. Local phrase finite-state relaxation method for enforcing global con-
reordering models for statistical machine translation. straints on sequence decoding. MPmoceedings of

81

the main conference on Human Language Technology
Conference of the North American Chapter of the As-
sociation of Computational LinguisticBlLT-NAACL

‘06, pages 423-430, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

M. Wainwright, T. Jaakkola, and A. Willsky. 2005. MAP
estimation via agreement on trees: message-passing
and linear programming. IlEEE Transactions on In-
formation Theoryvolume 51, pages 3697-3717.

Taro Watanabe, Hajime Tsukada, and Hideki Isozaki.
2006. Left-to-right target generation for hierarchical
phrase-based translation. Rroceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th annual meeting of the Association for
Computational LinguisticsACL-44, pages 777—784,
Morristown, NJ, USA. Association for Computational
Linguistics.

82

