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Abstract

We present cdec, an open source frame-
work for decoding, aligning with, and
training a number of statistical machine
translation models, including word-based
models, phrase-based models, and models
based on synchronous context-free gram-
mars. Using a single unified internal
representation for translation forests, the
decoder strictly separates model-specific
translation logic from general rescoring,
pruning, and inference algorithms. From
this unified representation, the decoder can
extract not only the 1- or k-best transla-
tions, but also alignments to a reference,
or the quantities necessary to drive dis-
criminative training using gradient-based
or gradient-free optimization techniques.
Its efficient C++ implementation means
that memory use and runtime performance
are significantly better than comparable
decoders.

1 Introduction

The dominant models used in machine transla-
tion and sequence tagging are formally based
on either weighted finite-state transducers (FSTs)
or weighted synchronous context-free grammars
(SCFGs) (Lopez, 2008). Phrase-based models
(Koehn et al., 2003), lexical translation models
(Brown et al., 1993), and finite-state conditional
random fields (Sha and Pereira, 2003) exemplify
the former, and hierarchical phrase-based models
the latter (Chiang, 2007). We introduce a soft-
ware package called cdec that manipulates both
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classes in a unified way.!

Although open source decoders for both phrase-
based and hierarchical translation models have
been available for several years (Koehn et al.,
2007; Li et al., 2009), their extensibility to new
models and algorithms is limited by two sig-
nificant design flaws that we have avoided with
cdec. First, their implementations tightly couple
the translation, language model integration (which
we call rescoring), and pruning algorithms. This
makes it difficult to explore alternative transla-
tion models without also re-implementing rescor-
ing and pruning logic. In cdec, model-specific
code is only required to construct a translation for-
est (§3). General rescoring (with language models
or other models), pruning, inference, and align-
ment algorithms then apply to the unified data
structure (§4). Hence all model types benefit im-
mediately from new algorithms (for rescoring, in-
ference, etc.); new models can be more easily pro-
totyped; and controlled comparison of models is
made easier.

Second, existing open source decoders were de-
signed with the traditional phrase-based parame-
terization using a very small number of dense fea-
tures (typically less than 10). cdec has been de-
signed from the ground up to support any parame-
terization, from those with a handful of dense fea-
tures up to models with millions of sparse features
(Blunsom et al., 2008; Chiang et al., 2009). Since
the inference algorithms necessary to compute a
training objective (e.g. conditional likelihood or
expected BLEU) and its gradient operate on the
unified data structure (§5), any model type can be
trained using with any of the supported training

"The software is released under the Apache License, ver-
sion 2.0, and is available from http://cdec-decoder.org/ .
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criteria. The software package includes general
function optimization utilities that can be used for
discriminative training (§6).

These features are implemented without com-
promising on performance. We show experimen-
tally that cdec uses less memory and time than
comparable decoders on a controlled translation
task (§7).

2 Decoder workflow

The decoding pipeline consists of two phases. The
first (Figure 1) transforms input, which may be
represented as a source language sentence, lattice
(Dyer et al., 2008), or context-free forest (Dyer
and Resnik, 2010), into a translation forest that has
been rescored with all applicable models.

In cdec, the only model-specific logic is con-
fined to the first step in the process where an
input string (or lattice, etc.) is transduced into
the unified hypergraph representation. Since the
model-specific code need not worry about integra-
tion with rescoring models, it can be made quite
simple and efficient. Furthermore, prior to lan-
guage model integration (and distortion model in-
tegration, in the case of phrase based translation),
pruning is unnecessary for most kinds of mod-
els, further simplifying the model-specific code.
Once this unscored translation forest has been
generated, any non-coaccessible states (i.e., states
that are not reachable from the goal node) are re-
moved and the resulting structure is rescored with
language models using a user-specified intersec-
tion/pruning strategy (§4) resulting in a rescored
translation forest and completing phase 1.

The second phase of the decoding pipeline (de-
picted in Figure 2) computes a value from the
rescored forest: 1- or k-best derivations, feature
expectations, or intersection with a target language
reference (sentence or lattice). The last option
generates an alignment forest, from which a word
alignment or feature expectations can be extracted.
Most of these values are computed in a time com-
plexity that is linear in the number of edges and
nodes in the translation hypergraph using cdec’s
semiring framework (§5).

2.1 Alignment forests and alignment

Alignment is the process of determining if and
how a translation model generates a (source, tar-
get) string pair. To compute an alignment under
a translation model, the phase 1 translation hyper-
graph is reinterpreted as a synchronous context-

free grammar and then used to parse the rarget
sentence.” This results in an alignment forest,
which is a compact representation of all the deriva-
tions of the sentence pair under the translation
model. From this forest, the Viterbi or maximum a
posteriori word alignment can be generated. This
alignment algorithm is explored in depth by Dyer
(2010). Note that if the phase 1 forest has been
pruned in some way, or the grammar does not de-
rive the sentence pair, the target intersection parse
may fail, meaning that an alignment will not be
recoverable.

3 Translation hypergraphs

Recent research has proposed a unified repre-
sentation for the various translation and tagging
formalisms that is based on weighted logic pro-
gramming (Lopez, 2009). In this view, trans-
lation (or tagging) deductions have the structure
of a context-free forest, or directed hypergraph,
where edges have a single head and 0 or more tail
nodes (Nederhof, 2003). Once a forest has been
constructed representing the possible translations,
general inference algorithms can be applied.

In cdec’s translation hypergraph, a node rep-
resents a contiguous sequence of target language
words. For SCFG models and sequential tag-
ging models, a node also corresponds to a source
span and non-terminal type, but for word-based
and phrase-based models, the relationship to the
source string (or lattice) may be more compli-
cated. In a phrase-based translation hypergraph,
the node will correspond to a source coverage vec-
tor (Koehn et al., 2003). In word-based models, a
single node may derive multiple different source
language coverages since word based models im-
pose no requirements on covering all words in the
input. Figure 3 illustrates two example hyper-
graphs, one generated using a SCFG model and
other from a phrase-based model.

Edges are associated with exactly one syn-
chronous production in the source and target lan-
guage, and alternative translation possibilities are
expressed as alternative edges. Edges are further
annotated with feature values, and are annotated
with the source span vector the edge corresponds
to. An edge’s output label may contain mixtures
of terminal symbol yields and positions indicating
where a child node’s yield should be substituted.

>The parser is smart enough to detect the left-branching
grammars generated by lexical translation and tagging mod-
els, and use a more efficient intersection algorithm.
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Figure 1: Forest generation workflow (first half of decoding pipeline). The decoder’s configuration
specifies what path is taken from the input (one of the bold ovals) to a unified translation hypergraph.
The highlighted path is the workflow used in the test reported in §7.
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Figure 2: Output generation workflow (second half of decoding pipeline). Possible output types are

designated with a double box.

In the case of SCFG grammars, the edges corre-
spond simply to rules in the synchronous gram-
mar. For non-SCFG translation models, there are
two kinds of edges. The first have zero tail nodes
(i.e., an arity of 0), and correspond to word or
phrase translation pairs (with all translation op-
tions existing on edges deriving the same head
node), or glue rules that glue phrases together.
For tagging, word-based, and phrase-based mod-
els, these are strictly arranged in a monotone, left-
branching structure.

4 Rescoring with weighted FSTs

The design of cdec separates the creation of a
translation forest from its rescoring with a lan-
guage models or similar models.> Since the struc-
ture of the unified search space is context free (§3),
we use the logic for language model rescoring de-
scribed by Chiang (2007), although any weighted
intersection algorithm can be applied. The rescor-

3Other rescoring models that depend on sequential con-

text include distance-based reordering models or Markov fea-
tures in tagging models.

ing models need not be explicitly represented as
FSTs—the state space can be inferred.

Although intersection using the Chiang algo-
rithm runs in polynomial time and space, the re-
sulting rescored forest may still be too large to rep-
resent completely. cdec therefore supports three
pruning strategies that can be used during intersec-
tion: full unpruned intersection (useful for tagging
models to incorporate, e.g., Markov features, but
not generally practical for translation), cube prun-
ing, and cube growing (Huang and Chiang, 2007).

S Semiring framework

Semirings are a useful mathematical abstraction
for dealing with translation forests since many
useful quantities can be computed using a single
linear-time algorithm but with different semirings.
A semiring is a 5-tuple (K, @, ®,0,1) that indi-
cates the set from which the values will be drawn,
K, a generic addition and multiplication operation,
@ and ®, and their identities 0 and 1. Multipli-
cation and addition must be associative. Multi-
plication must distribute over addition, and v ® 0
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Figure 3: Example unrescored translation hypergraphs generated for the German input ein (a) kleines
(small/little) Haus (house/shell) using a SCFG-based model (left) and phrase-based model with a distor-

tion limit of 1 (right).

must equal 0. Values that can be computed using
the semirings include the number of derivations,
the expected translation length, the entropy of the
translation posterior distribution, and the expected
values of feature functions (Li and Eisner, 2009).
Since semirings are such a useful abstraction,
cdec has been designed to facilitate implementa-
tion of new semirings. Table 1 shows the C++ rep-
resentation used for semirings. Note that because
of our representation, built-in types like double,
int, and bool (together with their default op-
erators) are semirings. Beyond these, the type
prob._t is provided which stores the logarithm of
the value it represents, which helps avoid under-
flow and overflow problems that may otherwise
be encountered. A generic first-order expectation
semiring is also provided (Li and Eisner, 2009).

Table 1: Semiring representation. T is a C++ type
name.

Element | C++ representation
K T
S T::operator+=
& T::operator*=
0 T ()
1 T (1)

Three standard algorithms parameterized with
semirings are provided: INSIDE, OUTSIDE, and
INSIDEOUTSIDE, and the semiring is specified us-
ing C++ generics (templates). Additionally, each
algorithm takes a weight function that maps from
hypergraph edges to a value in K, making it possi-
ble to use many different semirings without alter-
ing the underlying hypergraph.

5.1 Viterbi and k-best extraction

Although Viterbi and k-best extraction algorithms
are often expressed as INSIDE algorithms with
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the tropical semiring, cdec provides a separate
derivation extraction framework that makes use of
a < operator (Huang and Chiang, 2005). Thus,
many of the semiring types define not only the el-
ements shown in Table 1 but T: : operator< as
well. The k-best extraction algorithm is also pa-
rameterized by an optional predicate that can filter
out derivations at each node, enabling extraction
of only derivations that yield different strings as in
Huang et al. (2006).

6 Model training

Two training pipelines are provided with cdec.
The first, called Viterbi envelope semiring train-
ing, VEST, implements the minimum error rate
training (MERT) algorithm, a gradient-free opti-
mization technique capable of maximizing arbi-
trary loss functions (Och, 2003).

6.1 VEST

Rather than computing an error surface using k-
best approximations of the decoder search space,
cdec’s implementation performs inference over
the full hypergraph structure (Kumar et al., 2009).
In particular, by defining a semiring whose values
are sets of line segments, having an addition op-
eration equivalent to union, and a multiplication
operation equivalent to a linear transformation of
the line segments, Och’s line search can be com-
puted simply using the INSIDE algorithm. Since
the translation hypergraphs generated by cdec
may be quite large making inference expensive,
the logic for constructing error surfaces is fac-
tored according to the MapReduce programming
paradigm (Dean and Ghemawat, 2004), enabling
parallelization across a cluster of machines. Im-
plementations of the BLEU and TER loss functions
are provided (Papineni et al., 2002; Snover et al.,
2006).



6.2 Large-scale discriminative training

In addition to the widely used MERT algo-
rithm, cdec also provides a training pipeline for
discriminatively trained probabilistic translation
models (Blunsom et al., 2008; Blunsom and Os-
borne, 2008). In these models, the translation
model is trained to maximize conditional log like-
lihood of the training data under a specified gram-
mar. Since log likelihood is differentiable with
respect to the feature weights in an exponential
model, it is possible to use gradient-based opti-
mization techniques to train the system, enabling
the parameterization of the model using millions
of sparse features. While this training approach
was originally proposed for SCFG-based transla-
tion models, it can be used to train any model
type in cdec. When used with sequential tagging
models, this pipeline is identical to traditional se-
quential CRF training (Sha and Pereira, 2003).

Both the objective (conditional log likelihood)
and its gradient have the form of a difference in
two quantities: each has one term that is com-
puted over the translation hypergraph which is
subtracted from the result of the same computa-
tion over the alignment hypergraph (refer to Fig-
ures 1 and 2). The conditional log likelihood is
the difference in the log partition of the translation
and alignment hypergraph, and is computed using
the INSIDE algorithm. The gradient with respect
to a particular feature is the difference in this fea-
ture’s expected value in the translation and align-
ment hypergraphs, and can be computed using ei-
ther INSIDEOUTSIDE or the expectation semiring
and INSIDE. Since a translation forest is generated
as an intermediate step in generating an alignment
forest (§2) this computation is straightforward.

Since gradient-based optimization techniques
may require thousands of evaluations to converge,
the batch training pipeline is split into map and
reduce components, facilitating distribution over
very large clusters. Briefly, the cdec is run as the
map function, and sentence pairs are mapped over.
The reduce function aggregates the results and per-
forms the optimization using standard algorithms,
including LBFGS (Liu et al., 1989), RPROP (Ried-
miller and Braun, 1993), and stochastic gradient
descent.

7 Experiments

Table 2 compares the performance of cdec, Hi-
ero, and Joshua 1.3 (running with 1 or 8 threads)
decoding using a hierarchical phrase-based trans-
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lation grammar and identical pruning settings.*
Figure 4 shows the cdec configuration and
weights file used for this test.

The workstation used has two 2GHz quad-core
Intel Xenon processors, 32GB RAM, is running
Linux kernel version 2.6.18 and gcc version 4.1.2.
All decoders use SRI’s language model toolkit,
version 1.5.9 (Stolcke, 2002). Joshua was run on
the Sun HotSpot JVM, version 1.6.0_12. A hierar-
chical phrase-based translation grammar was ex-
tracted for the NIST MT03 Chinese-English trans-
lation using a suffix array rule extractor (Lopez,
2007). A non-terminal span limit of 15 was used,
and all decoders were configured to use cube prun-
ing with a limit of 30 candidates at each node and
no further pruning. All decoders produced a BLEU
score between 31.4 and 31.6 (small differences are
accounted for by different tie-breaking behavior
and OOV handling).

Table 2: Memory usage and average per-sentence
running time, in seconds, for decoding a Chinese-
English test set.

Decoder | Lang. | Time (s) | Memory
cdec C++ 0.37 1.0Gb
Joshua (1x) | Java 0.98 1.5Gb
Joshua (8x) | Java 0.35 2.5Gb
Hiero Python 4.04 1.1Gb

formalism=scfg
grammar=grammar.mt03.scfg.gz
add_pass_-through_rules=true
scfgmax_span_-1limit=15
feature_function=LanguageModel \
en.3gram.pruned.lm.gz -o 3
feature_function=WordPenalty
intersection_strategy=cube_pruning

cubepruning pop-1imit=30

LanguageModel 1.12
WordPenalty -4.26
PhraseModel 0 0.963
PhraseModel_1 0.654
PhraseModel_2 0.773
PassThroughRule -20

Figure 4: Configuration file (above) and feature
weights file (below) used for the decoding test de-
scribed in §7.

*http://sourceforge.net/projects/joshua/



8 Future work

cdec continues to be under active development.
We are taking advantage of its modular design to
study alternative algorithms for language model
integration. Further training pipelines are un-
der development, including minimum risk train-
ing using a linearly decomposable approximation
of BLEU (Li and Eisner, 2009), and MIRA train-
ing (Chiang et al., 2009). All of these will be
made publicly available as the projects progress.
We are also improving support for parallel training
using Hadoop (an open-source implementation of
MapReduce).
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