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Abstract 

Supervised semantic role labeling (SRL) sys-
tems trained on hand-crafted annotated corpo-
ra have recently achieved state-of-the-art per-
formance. However, creating such corpora is 
tedious and costly, with the resulting corpora 
not sufficiently representative of the language. 
This paper describes a part of an ongoing work 
on applying bootstrapping methods to SRL to 
deal with this problem. Previous work shows 
that, due to the complexity of SRL, this task is 
not straight forward. One major difficulty is 
the propagation of classification noise into the 
successive iterations. We address this problem 
by employing balancing and preselection me-
thods for self-training, as a bootstrapping algo-
rithm. The proposed methods could achieve 
improvement over the base line, which do not 
use these methods. 

1 Introduction 

Semantic role labeling has been an active re-
search field of computational linguistics since its 
introduction by Gildea and Jurafsky (2002). It 
reveals the event structure encoded in the sen-
tence, which is useful for other NLP tasks or ap-
plications such as information extraction, ques-
tion answering, and machine translation (Surdea-
nu et al., 2003). Several CoNLL shared tasks 
(Carreras and Marquez, 2005; Surdeanu et al., 
2008) dedicated to semantic role labeling affirm 
the increasing attention to this field. 

One important supportive factor of studying 
supervised statistical SRL has been the existence 
of hand-annotated semantic corpora for training 
SRL systems. FrameNet (Baker et al., 1998) was 
the first such resource, which made the emer-
gence of this research field possible by the se-
minal work of Gildea and Jurafsky (2002). How-
ever, this corpus only exemplifies the semantic 
role assignment by selecting some illustrative 
examples for annotation. This questions its suita-

bility for statistical learning. Propbank was 
started by Kingsbury and Palmer (2002) aiming 
at developing a more representative resource of 
English, appropriate for statistical SRL study. 

Propbank has been used as the learning 
framework by the majority of SRL work and 
competitions like CoNLL shared tasks. However, 
it only covers the newswire text from a specific 
genre and also deals only with verb predicates. 

All state-of-the-art SRL systems show a dra-
matic drop in performance when tested on a new 
text domain (Punyakanok et al., 2008). This 
evince the infeasibility of building a comprehen-
sive hand-crafted corpus of natural language use-
ful for training a robust semantic role labeler. 

A possible relief for this problem is the utility 
of semi-supervised learning methods along with 
the existence of huge amount of natural language 
text available at a low cost. Semi-supervised me-
thods compensate the scarcity of labeled data by 
utilizing an additional and much larger amount 
of unlabeled data via a variety of algorithms. 

Self-training (Yarowsky, 1995) is a semi-
supervised algorithm which has been well stu-
died in the NLP area and gained promising re-
sult. It iteratively extend its training set by labe-
ling the unlabeled data using a base classifier 
trained on the labeled data. Although the algo-
rithm is theoretically straightforward, it involves 
a large number of parameters, highly influenced 
by the specifications of the underlying task. Thus 
to achieve the best-performing parameter set or 
even to investigate the usefulness of these algo-
rithms for a learning task such as SRL, a tho-
rough experiment is required. This work investi-
gates its application to the SRL problem. 

2 Related Work  

The algorithm proposed by Yarowsky (1995) for 
the problem of word sense disambiguation has 
been cited as the origination of self-training. In 
that work, he bootstrapped a ruleset from a 
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small number of seed words extracted from 
an online dictionary using a corpus of unan-
notated English text and gained a compara-
ble accuracy to fully supervised approaches. 

Subsequently, several studies applied the algo-
rithm to other domains of NLP. Reference reso-
lution (Ng and Cardie 2003), POS tagging (Clark 
et al., 2003), and parsing (McClosky et al., 2006) 
were shown to be benefited from self-training. 
These studies show that the performance of self-
training is tied with its several parameters and 
the specifications of the underlying task. 

In SRL field, He and Gildea (2006) used self-
training to address the problem of unseen frames 
when using FrameNet as the underlying training 
corpus. They generalized FrameNet frame ele-

ments to 15 thematic roles to control the com-
plexity of the process. The improvement gained 
by the progress of self-training was small and 
inconsistent. They reported that the NULL label 
(non-argument) had often dominated other labels 
in the examples added to the training set. 

Lee et al. (2007) attacked another SRL learn-
ing problem using self-training. Using Propbank 
instead of FrameNet, they aimed at increasing 
the performance of supervised SRL system by 
exploiting a large amount of unlabeled data 
(about 7 times more than labeled data). The algo-
rithm variation was similar to that of He and Gil-
dea (2006), but it only dealt with core arguments 
of the Propbank. They achieved a minor im-
provement too and credited it to the relatively 
poor performance of their base classifier and the 
insufficiency of the unlabeled data. 

3 SRL System 

To have enough control over entire the system 
and thus a flexible experimental framework, we 
developed our own SRL system instead of using 
a third-party system. The system works with 
PropBank-style annotation and is described here. 

Syntactic Formalism: A Penn Treebank con-
stituent-based approach for SRL is taken. Syn-
tactic parse trees are produced by the reranking 
parser of Charniak and Johnson (2005). 

Architecture: A two-stage pipeline architec-
ture is used, where in the first stage less-probable 
argument candidates (samples) in the parse tree 
are pruned, and in the next stage, final arguments 
are identified and assigned a semantic role. 
However, for unlabeled data, a preprocessing 
stage identifies the verb predicates based on the 
POS tag assigned by the parser. The joint argu-
ment identification and classification is chosen to 
decrease the complexity of self-training process. 

Features: Features are listed in table 1. We 
tried to avoid features like named entity tags to 
less depend on extra annotation. Features marked 
with * are used in addition to common features 
in the literature, due to their impact on the per-
formance in feature selection process. 

Classifier: We chose a Maximum Entropy 
classifier for its efficient training time and also 
its built-in multi-classification capability. More-
over, the probability score that it assigns to labels 
is useful in selection process in self-training. The 
Maxent Toolkit1 was used for this purpose. 

                                                 
1http://homepages.inf.ed.ac.uk/lzhang10/maxent_tool
kit.html 

Feature Name Description 
Phrase Type Phrase type of the constitu-

ent 
Position+Predicate 
Voice 

Concatenation of constitu-
ent position relative to verb 
and verb voice 

Predicate Lemma  Lemma of the predicate 
Predicate POS POS tag of the predicate 
Path Tree path of non-terminals 

from predicate to constitu-
ent 

Head Word 
Lemma 

Lemma of the head word 
of the constituent 

Content Word  
Lemma 

Lemma of the content 
word of the constituent 

Head Word POS POS tag of the head word 
of the constituent 

Content Word POS POS tag of the head word 
of the constituent 

Governing Category The first VP or S ancestor 
of a NP constituent 

Predicate 
Subcategorization 

Rule expanding the predi-
cate's parent 

Constituent 
Subcategorization * 

Rule expanding the consti-
tuent's parent 

Clause+VP+NP 
Count in Path 

Number of clauses, NPs 
and VPs in the path 

Constituent and  
Predicate Distance 

Number of words between 
constituent and predicate 

Compound Verb 
Identifier 

Verb predicate structure 
type: simple, compound, or 
discontinuous compound 

Head Word Loca-
tion in Constituent * 

Location of head word in-
side the constituent based 
on the number of words in 
its right and left 

Table 1: Features 

92



 

 

4 Self-training  

4.1 The Algorithm  

While the general theme of the self-training algo-
rithm is almost identical in different implementa-
tions, variations of it are developed based on the 
characteristics of the task in hand, mainly by cus-
tomizing several involved parameters. Figure 1 
shows the algorithm with highlighted parameters. 

The size of seed labeled data set L and unla-
beled data U, and their ratio are the fundamental 
parameters in any semi-supervised learning. The 
data used in this work is explained in section 5.1. 

In addition to performance, efficiency of the 
classifier (C) is important for self-training, which 
is computationally expensive. Our classifier is a 
compromise between performance and efficien-
cy. Table 2 shows its performance compared to 
the state-of-the-art (Punyakanok et al. 2008) 
when trained on the whole labeled training set. 

Stop criterion (S) can be set to a pre-
determined number of iterations, finishing all of 
the unlabeled data, or convergence of the process 
in terms of improvement. We use the second op-
tion for all experiments here. 

In each iteration, one can label entire the 
unlabeled data or only a portion of it. In the latter 
case, a number of unlaleled examples (p) are 

selected and loaded into a pool (P). The selection 
can be based on a specific strategy, known as 
preselection (Abney, 2008) or simply done 
according to the original order of the unlabeled 
data. We investigate preselection in this work. 

After labeling the p unlabeled data, training 
set is augmented by adding the newly labeled 
data. Two main parameters are involved in this 
step: selection of labeled examples to be added to 
training set and addition of them to that set. 

Selection is the crucial point of self-training, 
in which the propagation of labeling noise into 
upcoming iterations is the major concern. One 
can select all of labeled examples, but usually 
only a number of them (n), known as growth 
size, based on a quality measure is selected. This 
measure is often the confidence score assigned 
by the classifier. To prevent poor labelings 
diminishing the quality of training set, a 
threshold (t) is set on this confidence score. 
Selection is also influenced by other factors, one 
of which being the balance between selected 
labels, which is explored in this study and 
explained in detail in the section 4.3. 

The selected labeled examples can be retained 
in unlabeled set to be labeled again in next 
iterations (delibility) or moved so that they are 
labeled only once (indelibility). We choose the 
second approach here. 

4.2 Preselection 

While using a pool can improve the efficiency of 
the self-training process, there can be two other 
motivations behind it, concerned with the per-
formance of the process. 

One idea is that when all data is labeled, since 
the growth size is often much smaller than the 
labeled size, a uniform set of examples preferred 
by the classifier is chosen in each iteration. This 
leads to a biased classifier like the one discussed 
in previous section. Limiting the labeling size to 
a pool and at the same time (pre)selecting diver-
gence examples into it can remedy the problem. 

The other motivation is originated from the 
fact that the base classifier is relatively weak due 
to small seed size, thus its predictions, as the 
measure of confidence in selection process, may 
not be reliable. Preselecting a set of unlabeled 
examples more probable to be correctly labeled 
by the classifier in initial steps seems to be a use-
ful strategy against this fact.  

We examine both ideas here, by a random pre-
selection for the first case and a measure of sim-
plicity for the second case. Random preselection 
is built into our system, since we use randomized 

1- Add the seed example set L to currently 
empty training set T. 

2- Train the base classifier C with training 
set T. 

3- Iterate the following steps until the stop 
criterion S is met. 

a- Select p examples from U into pool 
P. 

b- Label pool P with classifier C 
c- Select n labeled examples with the 

highest confidence score whose score 
meets a certain threshold t and add to 
training set T. 

d- Retrain the classifier C with new 
training set. 

Figure 1: Self-training Algorithm 

 WSJ Test Brown Test 
P R F1 P R F1 

Cur 77.43 68.15 72.50 69.14 57.01 62.49
Pun 82.28 76.78 79.44 73.38 62.93 67.75

Table 2: Performances of the current system (Cur) 
and the state-of-the-art (Punyakanok et al., 2008) 
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training data. As the measure of simplicity, we 
propose the number of samples extracted from 
each sentence; that is we sort unlabeled sen-
tences in ascending order based on the number of 
samples and load the pool from the beginning. 

4.3 Selection Balancing 

Most of the previous self-training problems in-
volve a binary classification. Semantic role labe-
ling is a multi-class classification problem with 
an unbalanced distribution of classes in a given 
text. For example, the frequency of A1 as the 
most frequent role in CoNLL training set is 
84,917, while the frequency of 21 roles is less 
than 20. The situation becomes worse when the 
dominant label NULL (for non-arguments) is 
added for argument identification purpose in a 
joint architecture. This biases the classifiers to-
wards the frequent classes, and the impact is 
magnified as self-training proceeds. 

In previous work, although they used a re-
duced set of roles (yet not balanced), He and 
Gildea (2006) and Lee et al. (2007), did not dis-
criminate between roles when selecting high-
confidence labeled samples. The former study 
reports that the majority of labels assigned to 
samples were NULL and argument labels ap-
peared only in last iterations.  

To attack this problem, we propose a natural 
way of balancing, in which instead of labeling 
and selection based on argument samples, we 
perform a sentence-based selection and labeling. 
The idea is that argument roles are distributed 
over the sentences. As the measure for selecting 
a labeled sentence, the average of the probabili-
ties assigned by the classifier to all argument 
samples extracted from the sentence is used. 

5 Experiments and Results  

In these experiments, we target two main prob-
lems addressed by semi-supervised methods: the 
performance of the algorithm in exploiting unla-
beled data when labeled data is scarce and the 
domain-generalizability of the algorithm by us-
ing an out-of-domain unlabeled data. 

We use the CoNLL 2005 shared task data and 
setting for testing and evaluation purpose. The 
evaluation metrics include precision, recall, and 
their harmonic mean, F1. 

5.1 The Data 

The labeled data are selected from Propbank 
corpus prepared for CoNLL 2005 shared task. 
Our learning curve experiments on varying size 

of labeled data shows that the steepest increase in 
F1 is achieved by 1/10th of CoNLL training data. 
Therefore, for training a base classifier as high-
performance as possible, while simulating the 
labeled data scarcity with a reasonably small 
amount of it, 4000 sentence are selected random-
ly from the total 39,832 training sentences as 
seed data (L). These sentences contain 71,400 
argument samples covering 38 semantic roles out 
of 52 roles present in the total training set. 

We use one unlabeled training set (U) for in-
domain and another for out-of-domain experi-
ments. The former is the remaining portion of 
CoNLL training data and contains 35,832 sen-
tences (698,567 samples). The out-of-domain set 
was extracted from Open American National 
Corpus 2  (OANC), a 14-million words multi-
genre corpus of American English. The whole 
corpus was preprocessed to prune some proble-
matic sentences. We also excluded the biomed 
section due to its large size to retain the domain 
balance of the data. Finally, 304,711 sentences 
with the length between 3 and 100 were parsed 
by the syntactic parser. Out of these, 35,832 sen-
tences were randomly selected for the experi-
ments reported here (832,795 samples). 

Two points are worth noting about the results 
in advance. First, we do not exclude the argu-
ment roles not present in seed data when evaluat-
ing the results. Second, we observed that our 
predicate-identification method is not reliable, 
since it is solely based on POS tags assigned by 
parser which is error-prone. Experiments with 
gold predicates confirmed this conclusion. 

5.2 The Effect of Balanced Selection 

Figures 2 and 3 depict the results of using unba-
lanced and balanced selection with WSJ and 
OANC data respectively. To be comparable with 
previous work (He and Gildea, 2006), the growth 
size (n) for unbalanced method is 7000 samples 
and for balanced method is 350 sentences, since 
each sentence roughly contains 20 samples. A 
probability threshold (t) of 0.70 is used for both 
cases. The F1 of base classifier, best-performed 
classifier, and final classifier are marked. 

When trained on WSJ unlabeled set, the ba-
lanced method outperforms the other in both 
WSJ (68.53 vs. 67.96) and Brown test sets (59.62 
vs. 58.95). A two-tail t-test based on different 
random selection of training data confirms the 
statistical significance of this improvement at 
p<=0.05 level. Also, the self-training trend is 
                                                 
2 http://www.americannationalcorpus.org/OANC 
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more promising with both test sets. When trained 
on OANC, the F1 degrades with both methods as 
self-training progress. However, for both test 
sets, the best classifier is achieved by the ba-
lanced selection (68.26 vs. 68.15 and 59.41 vs. 
58.68). Moreover, balanced selection shows a 
more normal behavior, while the other degrades 
the performance sharply in the last iterations 
(due to a swift drop of recall). 

Consistent with previous work, with unba-
lanced selection, non-NULL-labeled unlabeled 
samples are selected only after the middle of the 
process. But, with the balanced method, selection 
is more evenly distributed over the roles.  

A comparison between the results on Brown 
test set with each of unlabeled sets shows that in-
domain data generalizes even better than out-of-
domain data (59.62 vs. 59.41 and also note the 
trend). One apparent reason is that the classifier 
cannot accurately label the out-of-domain unla-
beled data successively used for training. The 
lower quality of our out-of-domain data can be 
another reason for this behavior. Furthermore, 

the parser we used was trained on WSJ, so it ne-
gatively affected the OANC parses and conse-
quently its SRL results. 

5.3 The Effect of Preselection 

Figures 4 and 5 show the results of using pool 
with random and simplicity-based preselection 
with WSJ and OANC data respectively. The pool 
size (p) is 2000, and growth size (n) is 1000 sen-
tences. The probability threshold (t) used is 0.5. 

Comparing these figures with the previous 
figures shows that preselection improves the self-
training trend, so that more unlabeled data can 
still be useful. This observation was consistent 
with various random selection of training data.  

Between the two strategies, simplicity-based 
method outperforms the random method in both 
self-training trend and best classifier F1 (68.45 
vs. 68.25 and 59.77 vs. 59.3 with WSJ and 68.33 
vs. 68 with OANC), though the t-test shows that 
the F1 difference is not significant at p<=0.05. 
This improvement does not apply to the case of 
using OANC data when tested with Brown data 

 

Figure 2: Balanced (B) and Unbalanced (U) Selection 
with WSJ Unlabeled Data 
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Figure 3: Balanced (B) and Unbalanced (U) Selection 
with OANC Unlabeled Data 
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Figure 4: Random (R) and Simplicity (S) Pre-selection 
with WSJ Unlabeled Data 
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Figure 5: Random (R) and Simplicity (S) Pre-selection 
with OANC Unlabeled Data 
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(59.27 vs. 59.38), where, however,  the differ-
ence is not statistically significant. The same 
conclusion to the section 5.2 can be made here. 

6 Conclusion and Future Work  

This work studies the application of self-training 
in learning semantic role labeling with the use of 
unlabeled data. We used a balancing method for 
selecting newly labeled examples for augmenting 
the training set in each iteration of the self-
training process. The idea was to reduce the ef-
fect of unbalanced distribution of semantic roles 
in training data. We also used a pool and ex-
amined two preselection methods for loading 
unlabeled data into it.  

These methods showed improvement in both 
classifier performance and self-training trend. 
However, using out-of-domain unlabeled data for 
increasing the domain generalization ability of 
the system was not more useful than using in-
domain data. Among possible reasons are the 
low quality of the used data and the poor parses 
of the out-of-domain data. 

Another major factor that may affect the self-
training behavior here is the poor performance of 
the base classifier compared to the state-of-the-
art (see Table 2), which exploits more compli-
cated SRL architecture. Due to high computa-
tional cost of self-training approach, bootstrap-
ping experiments with such complex SRL ap-
proaches are difficult and time-consuming. 

Moreover, parameter tuning process shows 
that other parameters such as pool-size, growth 
number and probability threshold are very effec-
tive. Therefore, more comprehensive parameter 
tuning experiments than what was done here is 
required and may yield better results. 

We are currently planning to port this setting 
to co-training, another bootstrapping algorithm. 
One direction for future work can be adapting the 
architecture of the SRL system to better match 
with the bootstrapping process. Another direction 
can be adapting bootstrapping parameters to fit 
the semantic role labeling complexity. 
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