
Proceedings of the ACL 2010 Conference Short Papers, pages 359–364,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Distributional Similarity vs. PU Learning for Entity Set Expansion

Xiao-Li Li
Institute for Infocomm Research,

1 Fusionopolis Way #21-01 Connexis
Singapore 138632

xlli@i2r.a-star.edu.sg

Lei Zhang
University of Illinois at Chicago,

851 South Morgan Street, Chicago,
Chicago, IL 60607-7053, USA
zhang3@cs.uic.edu

Bing Liu

University of Illinois at Chicago,
851 South Morgan Street, Chicago,

Chicago, IL 60607-7053, USA
liub@cs.uic.edu

See-Kiong Ng
Institute for Infocomm Research,

1 Fusionopolis Way #21-01 Connexis
Singapore 138632

skng@i2r.a-star.edu.sg

Abstract

Distributional similarity is a classic tech-
nique for entity set expansion, where the
system is given a set of seed entities of a
particular class, and is asked to expand the
set using a corpus to obtain more entities
of the same class as represented by the
seeds. This paper shows that a machine
learning model called positive and unla-
beled learning (PU learning) can model
the set expansion problem better. Based
on the test results of 10 corpora, we show
that a PU learning technique outperformed
distributional similarity significantly.

1 Introduction

The entity set expansion problem is defined as
follows: Given a set S of seed entities of a partic-
ular class, and a set D of candidate entities (e.g.,
extracted from a text corpus), we wish to deter-
mine which of the entities in D belong to S. In
other words, we “expand” the set S based on the
given seeds. This is clearly a classification prob-
lem which requires arriving at a binary decision
for each entity in D (belonging to S or not).
However, in practice, the problem is often solved
as a ranking problem, i.e., ranking the entities in
D based on their likelihoods of belonging to S.

The classic method for solving this problem is
based on distributional similarity (Pantel et al.
2009; Lee, 1998). The approach works by com-
paring the similarity of the surrounding word
distributions of each candidate entity with the
seed entities, and then ranking the candidate enti-
ties using their similarity scores.

In machine learning, there is a class of semi-
supervised learning algorithms that learns from
positive and unlabeled examples (PU learning for
short). The key characteristic of PU learning is
that there is no negative training example availa-
ble for learning. This class of algorithms is less
known to the natural language processing (NLP)
community compared to some other semi-
supervised learning models and algorithms.

PU learning is a two-class classification mod-
el. It is stated as follows (Liu et al. 2002): Given
a set P of positive examples of a particular class
and a set U of unlabeled examples (containing
hidden positive and negative cases), a classifier
is built using P and U for classifying the data in
U or future test cases. The results can be either
binary decisions (whether each test case belongs
to the positive class or not), or a ranking based
on how likely each test case belongs to the posi-
tive class represented by P. Clearly, the set ex-
pansion problem can be mapped into PU learning
exactly, with S and D as P and U respectively.

This paper shows that a PU learning method
called S-EM (Liu et al. 2002) outperforms distri-
butional similarity considerably based on the
results from 10 corpora. The experiments in-
volved extracting named entities (e.g., product
and organization names) of the same type or
class as the given seeds. Additionally, we also
compared S-EM with a recent method, called
Bayesian Sets (Ghahramani and Heller, 2005),
which was designed specifically for set expan-
sion. It also does not perform as well as PU
learning. We will explain why PU learning per-
forms better than both methods in Section 5. We
believe that this finding is of interest to the NLP
community.

359

There is another approach used in the Web
environment for entity set expansion. It exploits
Web page structures to identify lists of items us-
ing wrapper induction or other techniques. The
idea is that items in the same list are often of the
same type. This approach is used by Google Sets
(Google, 2008) and Boo!Wa! (Wang and Cohen,
2008). However, as it relies on Web page struc-
tures, it is not applicable to general free texts.

2 Three Different Techniques

2.1 Distributional Similarity

Distributional similarity is a classic technique for
the entity set expansion problem. It is based on
the hypothesis that words with similar meanings
tend to appear in similar contexts (Harris, 1985).
As such, a method based on distributional simi-
larity typically fetches the surrounding contexts
for each term (i.e. both seeds and candidates) and
represents them as vectors by using TF-IDF or
PMI (Pointwise Mutual Information) values (Lin,
1998; Gorman and Curran, 2006; Paşca et al.
2006; Agirre et al. 2009; Pantel et al. 2009). Si-
milarity measures such as Cosine, Jaccard, Dice,
etc, can then be employed to compute the simi-
larities between each candidate vector and the
seeds centroid vector (one centroid vector for all
seeds). Lee (1998) surveyed and discussed vari-
ous distribution similarity measures.

2.2 PU Learning and S-EM

PU learning is a semi-supervised or partially su-
pervised learning model. It learns from positive
and unlabeled examples as opposed to the model
of learning from a small set of labeled examples
of every class and a large set of unlabeled exam-
ples, which we call LU learning (L and U stand
for labeled and unlabeled respectively) (Blum
and Mitchell, 1998; Nigam et al. 2000)

There are several PU learning algorithms (Liu
et al. 2002; Yu et al. 2002; Lee and Liu, 2003; Li
et al. 2003; Elkan and Noto, 2008). In this work,
we used the S-EM algorithm given in (Liu et al.
2002). S-EM is efficient as it is based on naïve
Bayesian (NB) classification and also performs
well. The main idea of S-EM is to use a spy
technique to identify some reliable negatives
(RN) from the unlabeled set U, and then use an
EM algorithm to learn from P, RN and U–RN.

The spy technique in S-EM works as follows
(Figure 1): First, a small set of positive examples
(denoted by SP) from P is randomly sampled
(line 2). The default sampling ratio in S-EM is s
= 15%, which we also used in our experiments.

The positive examples in SP are called “spies”.
Then, a NB classifier is built using the set P– SP
as positive and the set U∪SP as negative (line 3,
4, and 5). The NB classifier is applied to classify
each u ∈ U∪SP, i.e., to assign a probabilistic
class label p(+|u) (+ means positive). The proba-
bilistic labels of the spies are then used to decide
reliable negatives (RN). In particular, a probabili-
ty threshold t is determined using the probabilis-
tic labels of spies in SP and the input parameter l
(noise level). Due to space constraints, we are
unable to explain l. Details can be found in (Liu
et al. 2002). t is then used to find RN from U
(lines 8-10). The idea of the spy technique is
clear. Since spy examples are from P and are put
into U in building the NB classifier, they should
behave similarly to the hidden positive cases in
U. Thus, they can help us find the set RN.
Algorithm Spy(P, U, s, l)
1. RN ← ∅; // Reliable negative set
2. SP ← Sample(P, s%);
3. Assign each example in P – SP the class label +1;
4. Assign each example in U ∪ SP the class label -1;
5. C ←NB(P – S, U∪SP); // Produce a NB classifier
6. Classify each u ∈U∪SP using C;
7. Decide a probability threshold t using SP and l;
8. for each u ∈U do
9. if its probability p(+|u) < t then
10. RN ← RN ∪ {u};

Figure 1. Spy technique for extracting reliable
negatives (RN) from U.

Given the positive set P, the reliable negative
set RN and the remaining unlabeled set U–RN, an
Expectation-Maximization (EM) algorithm is
run. In S-EM, EM uses the naïve Bayesian clas-
sification as its base method. The detailed algo-
rithm is given in (Liu et al. 2002).

2.3 Bayesian Sets

Bayesian Sets, as its name suggests, is based on
Bayesian inference, and was designed specifical-
ly for the set expansion problem (Ghahramani
and Heller, 2005). The algorithm learns from a
seeds set (i.e., a positive set P) and an unlabeled
candidate set U. Although it was not designed as
a PU learning method, it has similar characteris-
tics and produces similar results as PU learning.
However, there is a major difference. PU learn-
ing is a classification model, while Bayesian Sets
is a ranking method. This difference has a major
implication on the results that they produce as we
will discuss in Section 5.3.

In essence, Bayesian Sets learns a score func-

360

tion using P and U to generate a score for each
unlabeled case u ∈ U. The function is as follows:

)(

)|()(
up

Pupuscore = (1)

where p(u|P) represents how probable u belongs
to the positive class represented by P. p(u) is the
prior probability of u. Using the Bayes’ rule, eq-
uation (1) can be re-written as:

)()(
),()(
Ppup

Pupuscore = (2)

Following the idea, Ghahramani and Heller
(2005) proposed a computable score function.
The scores can be used to rank the unlabeled
candidates in U to reflect how likely each u ∈ U
belongs to P. The mathematics for computing the
score is involved. Due to the limited space, we
cannot discuss it here. See (Ghahramani and Hel-
ler, 2005) for details. In (Heller and Ghahramani,
2006), Bayesian Sets was also applied to an im-
age retrieval application.

3 Data Generation for Distributional
Similarity, Bayesian Sets and S-EM

Preparing the data for distributional similarity is
fairly straightforward. Given the seeds set S, a
seeds centroid vector is produced using the sur-
rounding word contexts (see below) of all occur-
rences of all the seeds in the corpus (Pantel et al,
2009). In a similar way, a centroid is also pro-
duced for each candidate (or unlabeled) entity.
Candidate entities: Since we are interested in
named entities, we select single words or phrases
as candidate entities based on their correspond-
ing part-of-speech (POS) tags. In particular, we
choose the following POS tags as entity indica-
tors — NNP (proper noun), NNPS (plural proper
noun), and CD (cardinal number). We regard a
phrase (could be one word) with a sequence of
NNP, NNPS and CD POS tags as one candidate
entity (CD cannot be the first word unless it
starts with a letter), e.g., “Windows/NNP 7/CD”
and “Nokia/NNP N97/CD” are regarded as two
candidates “Windows 7” and “Nokia N97”.
Context: For each seed or candidate occurrence,
the context is its set of surrounding words within
a window of size w, i.e. we use w words right
before the seed or the candidate and w words
right after it. Stop words are removed.

For S-EM and Bayesian Sets, both the posi-
tive set P (based on the seeds set S) and the unla-
beled candidate set U are generated differently.
They are not represented as centroids.

Positive and unlabeled sets: For each seed si ∈S,
each occurrence in the corpus forms a vector as a
positive example in P. The vector is formed
based on the surrounding words context (see
above) of the seed mention. Similarly, for each
candidate d ∈ D (see above; D denotes the set of
all candidates), each occurrence also forms a
vector as an unlabeled example in U. Thus, each
unique seed or candidate entity may produce
multiple feature vectors, depending on the num-
ber of times that it appears in the corpus.

The components in the feature vectors are
term frequencies for S-EM as S-EM uses naïve
Bayesian classification as its base classifier. For
Bayesian Sets, they are 1’s and 0’s as Bayesian
Sets only takes binary vectors based on whether
a term occurs in the context or not.

4 Candidate Ranking
For distributional similarity, ranking is done us-
ing the similarity value of each candidate’s cen-
troid and the seeds’ centroid (one centroid vector
for all seeds). Rankings for S-EM and Bayesian
Sets are more involved. We discuss them below.

After it ends, S-EM produces a Bayesian clas-
sifier C, which is used to classify each vector u ∈
U and to assign a probability p(+|u) to indicate
the likelihood that u belongs to the positive class.
Similarly, Bayesian Sets produces a score
score(u) for each u (not a probability).

Recall that for both S-EM and Bayesian Sets,
each unique candidate entity may generate mul-
tiple feature vectors, depending on the number of
times that the candidate entity occurs in the cor-
pus. As such, the rankings produced by S-EM
and Bayesian Sets are not the rankings of the
entities, but rather the rankings of the entities’
occurrences. Since different vectors representing
the same candidate entity can have very different
probabilities (for S-EM) or scores (for Bayesian
Sets), we need to combine them and compute a
single score for each unique candidate entity for
ranking.

To this end, we also take the entity frequency
into consideration. Typically, it is highly desira-
ble to rank those correct and frequent entities at
the top because they are more important than the
infrequent ones in applications. With this in
mind, we define a ranking method.

Let the probabilities (or scores) of a candidate
entity d ∈ D be Vd = {v1 , v2 …, vn} for the n fea-
ture vectors of the candidate. Let Md be the me-
dian of Vd. The final score (fs) for d is defined as:
)1log()(nMdfs d +×= (3)

361

The use of the median of Vd can be justified
based on the statistical skewness (Neter et al.
1993). If the values in Vd are skewed towards the
high side (negative skew), it means that the can-
didate entity is very likely to be a true entity, and
we should take the median as it is also high
(higher than the mean). However, if the skew is
towards the low side (positive skew), it means
that the candidate entity is unlikely to be a true
entity and we should again use the median as it is
low (lower than the mean) under this condition.

Note that here n is the frequency count of
candidate entity d in the corpus. The constant 1 is
added to smooth the value. The idea is to push
the frequent candidate entities up by multiplying
the logarithm of frequency. log is taken in order
to reduce the effect of big frequency counts.

The final score fs(d) indicates candidate d’s
overall likelihood to be a relevant entity. A high
fs(d) implies a high likelihood that d is in the
expanded entity set. We can then rank all the
candidates based on their fs(d) values.

5 Experimental Evaluation

We empirically evaluate the three techniques in
this section. We implemented distribution simi-
larity and Bayesian Sets. S-EM was downloaded
from http://www.cs.uic.edu/~liub/S-EM/S-EM-
download.html. For both Bayesian Sets and S-
EM, we used their default parameters. EM in S-
EM ran only two iterations. For distributional
similarity, we tested TF-IDF and PMI as feature
values of vectors, and Cosine and Jaccard as si-
milarity measures. Due to space limitations, we
only show the results of the PMI and Cosine
combination as it performed the best. This com-
bination was also used in (Pantel et al., 2009).

5.1 Corpora and Evaluation Metrics

We used 10 diverse corpora to evaluate the tech-
niques. They were obtained from a commercial
company. The data were crawled and extracted
from multiple online message boards and blogs
discussing different products and services. We
split each message into sentences, and the sen-
tences were POS-tagged using Brill’s tagger
(Brill, 1995). The tagged sentences were used to
extract candidate entities and their contexts. Ta-
ble 1 shows the domains and the number of sen-
tences in each corpus, as well as the three seed
entities used in our experiments for each corpus.
The three seeds for each corpus were randomly
selected from a set of common entities in the ap-
plication domain.

Table 1. Descriptions of the 10 corpora

Domains # Sentences Seed Entities
 Bank 17394 Citi, Chase, Wesabe
 Blu-ray 7093 S300, Sony, Samsung
 Car 2095 Honda, A3, Toyota
 Drug 1504 Enbrel, Hurmia, Methotrexate
 Insurance 12419 Cobra, Cigna, Kaiser
 LCD 1733 PZ77U, Samsung, Sony
 Mattress 13191 Simmons, Serta, Heavenly
 Phone 14884 Motorola, Nokia, N95
 Stove 25060 Kenmore, Frigidaire, GE
 Vacuum 13491 Dc17, Hoover, Roomba

The regular evaluation metrics for named enti-
ty recognition such as precision and recall are not
suitable for our purpose as we do not have the
complete sets of gold standard entities to com-
pare with. We adopt rank precision, which is
commonly used for evaluation of entity set ex-
pansion techniques (Pantel et al., 2009):

Precision @ N: The percentage of correct enti-
ties among the top N entities in the ranked list.

5.2 Experimental Results

The detailed experimental results for window
size 3 (w=3) are shown in Table 2 for the 10 cor-
pora. We present the precisions at the top 15-,
30- and 45-ranked positions (i.e., precisions
@15, 30 and 45) for each corpus, with the aver-
age given in the last column. For distributional
similarity, to save space Table 2 only shows the
results of Distr-Sim-freq, which is the distribu-
tional similarity method with term frequency
considered in the same way as for Bayesian Sets
and S-EM, instead of the original distributional
similarity, which is denoted by Distr-Sim. This
is because on average, Distr-Sim-freq performs
better than Distr-Sim. However, the summary
results of both Distr-Sim-freq and Distr-Sim are
given in Table 3.

From Table 2, we observe that on average S-
EM outperforms Distr-Sim-freq by about 12 –
20% in terms of Precision @ N. Bayesian-Sets
is also more accurate than Distr-Sim-freq, but S-
EM outperforms Bayesian-Sets by 9 – 10%.

To test the sensitivity of window size w, we
also experimented with w = 6 and w = 9. Due to
space constraints, we present only their average
results in Table 3. Again, we can see the same
performance pattern as in Table 2 (w = 3): S-EM
performs the best, Bayesian-Sets the second, and
the two distributional similarity methods the
third and the fourth, with Distr-Sim-freq slightly
better than Distr-Sim.

362

5.3 Why does S-EM Perform Better?

From the tables, we can see that both S-EM and
Bayesian Sets performed better than distribution-
al similarity. S-EM is better than Bayesian Sets.
We believe that the reason is as follows: Distri-
butional similarity does not use any information
in the candidate set (or the unlabeled set U). It
tries to rank the candidates solely through simi-
larity comparisons with the given seeds (or posi-
tive cases). Bayesian Sets is better because it
considers U. Its learning method produces a
weight vector for features based on their occur-
rence differences in the positive set P and the
unlabeled set U (Ghahramani and Heller 2005).
This weight vector is then used to compute the
final scores used in ranking. In this way, Baye-
sian Sets is able to exploit the useful information
in U that was ignored by distributional similarity.
S-EM also considers these differences in its NB
classification; in addition, it uses the reliable
negative set (RN) to help distinguish negative
and positive cases, which both Bayesian Sets and
distributional similarity do not do. We believe
this balanced attempt by S-EM to distinguish the
positive and negative cases is the reason for the
better performance of S-EM. This raises an inter-
esting question. Since Bayesian Sets is a ranking
method and S-EM is a classification method, can
we say even for ranking (our evaluation is based

on ranking) classification methods produce better
results than ranking methods? Clearly, our single
experiment cannot answer this question. But in-
tuitively, classification, which separates positive
and negative cases by pulling them towards two
opposite directions, should perform better than
ranking which only pulls the data in one direc-
tion. Further research on this issue is needed.

6 Conclusions and Future Work

Although distributional similarity is a classic
technique for entity set expansion, this paper
showed that PU learning performs considerably
better on our diverse corpora. In addition, PU
learning also outperforms Bayesian Sets (de-
signed specifically for the task). In our future
work, we plan to experiment with various other
PU learning methods (Liu et al. 2003; Lee and
Liu, 2003; Li et al. 2007; Elkan and Noto, 2008)
on this entity set expansion task, as well as other
tasks that were tackled using distributional simi-
larity. In addition, we also plan to combine some
syntactic patterns (Etzioni et al. 2005; Sarmento
et al. 2007) to further improve the results.

Acknowledgements: Bing Liu and Lei Zhang
acknowledge the support of HP Labs Innovation
Research Grant 2009-1062-1-A, and would like
to thank Suk Hwan Lim and Eamonn O'Brien-
Strain for many helpful discussions.

Table 2. Precision @ top N (with 3 seeds, and window size w = 3)

 Bank Blu-ray Car Drug Insurance LCD Mattress Phone Stove Vacuum Avg.
 Top 15
Distr-Sim-freq 0.466 0.333 0.800 0.666 0.666 0.400 0.666 0.533 0.666 0.733 0.592
Bayesian-Sets 0.533 0.266 0.600 0.666 0.600 0.733 0.666 0.533 0.800 0.800 0.617

S-EM 0.600 0.733 0.733 0.733 0.533 0.666 0.933 0.533 0.800 0.933 0.720
 Top 30

Distr-Sim-freq 0.466 0.266 0.700 0.600 0.500 0.333 0.500 0.466 0.600 0.566 0.499
Bayesian-Sets 0.433 0.300 0.633 0.666 0.400 0.566 0.700 0.333 0.833 0.700 0.556

S-EM 0.500 0.700 0.666 0.666 0.566 0.566 0.733 0.600 0.600 0.833 0.643
 Top 45

Distr-Sim-freq 0.377 0.288 0.555 0.500 0.377 0.355 0.444 0.400 0.533 0.400 0.422
Bayesian-Sets 0.377 0.333 0.666 0.555 0.377 0.511 0.644 0.355 0.733 0.600 0.515

S-EM 0.466 0.688 0.644 0.733 0.533 0.600 0.644 0.555 0.644 0.688 0.620

Table 3. Average precisions over the 10 corpora of different window size (3 seeds)

Window-size w = 3 Window-size w = 6 Window-size w = 9
Top Results Top 15 Top 30 Top 45 Top 15 Top 30 Top 45 Top 15 Top 30 Top 45
Distr-Sim 0.579 0.466 0.410 0.553 0.483 0.439 0.519 0.473 0.412

Distr-Sim-freq 0.592 0.499 0.422 0.553 0.492 0.441 0.559 0.476 0.410
Bayesian-Sets 0.617 0.556 0.515 0.593 0.539 0.524 0.539 0.522 0.497

S-EM 0.720 0.643 0.620 0.666 0.606 0.597 0.666 0.620 0.604

363

References
Agirre, E., Alfonseca, E., Hall, K., Kravalova, J.,

Pasca, M., and Soroa, A. 2009. A study on si-
milarity and relatedness using distributional
and WordNet-based approaches. NAACL
HLT.

Blum, A. and Mitchell, T. 1998. Combining la-
beled and unlabeled data with co-training. In
Proc. of Computational Learning Theory, pp.
92–100, 1998.

Brill, E. 1995. Transformation-Based error-
Driven learning and natural language
processing: a case study in part of speech
tagging. Computational Linguistics.

Bunescu, R. and Mooney, R. 2004. Collective
information extraction with relational Markov
Networks. ACL.

Cheng T., Yan X. and Chang C. K. 2007. Entity-
Rank: searching entities directly and holisti-
cally. VLDB.

Chieu, H.L. and Ng, H. Tou. 2002. Name entity
recognition: a maximum entropy approach
using global information. In The 6th Work-
shop on Very Large Corpora.

Downey, D., Broadhead, M. and Etzioni, O.
2007. Locating complex named entities in
Web Text. IJCAI.

Elkan, C. and Noto, K. 2008. Learning classifi-
ers from only positive and unlabeled data.
KDD, 213-220.

Etzioni, O., Cafarella, M., Downey. D., Popescu,
A., Shaked, T., Soderland, S., Weld, D. Yates.
2005. A. Unsupervised named-entity extrac-
tion from the Web: An Experimental Study.
Artificial Intelligence, 165(1):91-134.

Ghahramani, Z and Heller, K.A. 2005. Bayesian
sets. NIPS.

Google Sets. 2008. System and methods for au-
tomatically creating lists. US Patent:
US7350187, March 25.

Gorman, J. and Curran, J. R. 2006. Scaling dis-
tributional similarity to large corpora. ACL.

Harris, Z. Distributional Structure. 1985. In:
Katz, J. J. (ed.), The philosophy of linguistics.
Oxford University Press.

Heller, K. and Ghahramani, Z. 2006. A simple
Bayesian framework for content-based image
retrieval. CVPR.

Isozaki, H. and Kazawa, H. 2002. Efficient sup-

port vector classifiers for named entity recog-
nition. COLING.

Jiang, J. and Zhai, C. 2006. Exploiting domain
structure for named entity recognition. HLT-
NAACL.

Lafferty J., McCallum A., and Pereira F. 2001.
Conditional random fields: probabilistic
models for segmenting and labeling sequence
data. ICML.

Lee, L. 1999. Measures of distributional similar-
ity. ACL.

Lee, W-S. and Liu, B. 2003. Learning with Posi-
tive and Unlabeled Examples Using Weighted
Logistic Regression. ICML.

Li, X., Liu, B. 2003. Learning to classify texts
using positive and unlabeled data, IJCAI.

Li, X., Liu, B., Ng, S. 2007. Learning to identify
unexpected instances in the test sSet. IJCAI.

Lin, D. 1998. Automatic retrieval and clustering
of similar words. COLING/ACL.

Liu, B, Lee, W-S, Yu, P. S, and Li, X. 2002.
Partially supervised text classification. ICML,
387-394.

Liu, B, Dai, Y., Li, X., Lee, W-S., and Yu. P.
2003. Building text classifiers using positive
and unlabeled examples. ICDM, 179-188.

Neter, J., Wasserman, W., and Whitmore, G. A.
1993. Applied Statistics. Allyn and Bacon.

Nigam, K., McCallum, A., Thrun, S. and Mit-
chell, T. 2000. Text classification from la-
beled and unlabeled documents using EM.
Machine Learning, 39(2/3), 103–134.

Pantel, P., Eric Crestan, Arkady Borkovsky,
Ana-Maria Popescu, Vishnu, Vyas. 2009.
Web-Scale Distributional similarity and entity
set expansion, EMNLP.

Paşca, M. Lin, D. Bigham, J. Lifchits, A. Jain, A.
2006. Names and similarities on the web: fast
extraction in the fast lane. ACL.

Sarmento, L., Jijkuon, V. de Rijke, M. and
Oliveira, E. 2007. “More like these”: growing
entity classes from seeds. CIKM.

Wang, R. C. and Cohen, W. W. 2008. Iterative
set expansion of named entities using the web.
ICDM.

Yu, H., Han, J., K. Chang. 2002. PEBL: Positive
example based learning for Web page classi-
fication using SVM. KDD, 239-248.

364

