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Abstract 

Distributional similarity is a classic tech-
nique for entity set expansion, where the 
system is given a set of seed entities of a 
particular class, and is asked to expand the 
set using a corpus to obtain more entities 
of the same class as represented by the 
seeds. This paper shows that a machine 
learning model called positive and unla-
beled learning (PU learning) can model 
the set expansion problem better. Based 
on the test results of 10 corpora, we show 
that a PU learning technique outperformed 
distributional similarity significantly.   

1 Introduction 

The entity set expansion problem is defined as 
follows: Given a set S of seed entities of a partic-
ular class, and a set D of candidate entities (e.g., 
extracted from a text corpus), we wish to deter-
mine which of the entities in D belong to S. In 
other words, we “expand” the set S based on the 
given seeds. This is clearly a classification prob-
lem which requires arriving at a binary decision 
for each entity in D (belonging to S or not). 
However, in practice, the problem is often solved 
as a ranking problem, i.e., ranking the entities in 
D based on their likelihoods of belonging to S.  

The classic method for solving this problem is 
based on distributional similarity (Pantel et al. 
2009; Lee, 1998). The approach works by com-
paring the similarity of the surrounding word 
distributions of each candidate entity with the 
seed entities, and then ranking the candidate enti-
ties using their similarity scores.   

In machine learning, there is a class of semi-
supervised learning algorithms that learns from 
positive and unlabeled examples (PU learning for 
short). The key characteristic of PU learning is 
that there is no negative training example availa-
ble for learning. This class of algorithms is less 
known to the natural language processing (NLP) 
community compared to some other semi-
supervised learning models and algorithms.  

PU learning is a two-class classification mod-
el. It is stated as follows (Liu et al. 2002): Given 
a set P of positive examples of a particular class 
and a set U of unlabeled examples (containing 
hidden positive and negative cases), a classifier 
is built using P and U for classifying the data in 
U or future test cases. The results can be either 
binary decisions (whether each test case belongs 
to the positive class or not), or a ranking based 
on how likely each test case belongs to the posi-
tive class represented by P. Clearly, the set ex-
pansion problem can be mapped into PU learning 
exactly, with S and D as P and U respectively. 

This paper shows that a PU learning method 
called S-EM (Liu et al. 2002) outperforms distri-
butional similarity considerably based on the 
results from 10 corpora. The experiments in-
volved extracting named entities (e.g., product 
and organization names) of the same type or 
class as the given seeds. Additionally, we also 
compared S-EM with a recent method, called 
Bayesian Sets (Ghahramani and Heller, 2005), 
which was designed specifically for set expan-
sion. It also does not perform as well as PU 
learning. We will explain why PU learning per-
forms better than both methods in Section 5. We 
believe that this finding is of interest to the NLP 
community.  
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There is another approach used in the Web 
environment for entity set expansion. It exploits 
Web page structures to identify lists of items us-
ing wrapper induction or other techniques. The 
idea is that items in the same list are often of the 
same type. This approach is used by Google Sets 
(Google, 2008) and Boo!Wa! (Wang and Cohen, 
2008). However, as it relies on Web page struc-
tures, it is not applicable to general free texts.  

2 Three Different Techniques  

2.1 Distributional Similarity 

Distributional similarity is a classic technique for 
the entity set expansion problem. It is based on 
the hypothesis that words with similar meanings 
tend to appear in similar contexts (Harris, 1985). 
As such, a method based on distributional simi-
larity typically fetches the surrounding contexts 
for each term (i.e. both seeds and candidates) and 
represents them as vectors by using TF-IDF or 
PMI (Pointwise Mutual Information) values (Lin, 
1998; Gorman and Curran, 2006; Paşca et al. 
2006; Agirre et al. 2009; Pantel et al. 2009). Si-
milarity measures such as Cosine, Jaccard, Dice, 
etc, can then be employed to compute the simi-
larities between each candidate vector and the 
seeds centroid vector (one centroid vector for all 
seeds). Lee (1998) surveyed and discussed vari-
ous distribution similarity measures.  

2.2 PU Learning and S-EM 

PU learning is a semi-supervised or partially su-
pervised learning model. It learns from positive 
and unlabeled examples as opposed to the model 
of learning from a small set of labeled examples 
of every class and a large set of unlabeled exam-
ples, which we call LU learning (L and U stand 
for labeled and unlabeled respectively) (Blum 
and Mitchell, 1998; Nigam et al. 2000)  

There are several PU learning algorithms (Liu 
et al. 2002; Yu et al. 2002; Lee and Liu, 2003; Li 
et al. 2003; Elkan and Noto, 2008). In this work, 
we used the S-EM algorithm given in (Liu et al. 
2002). S-EM is efficient as it is based on naïve 
Bayesian (NB) classification and also performs 
well. The main idea of S-EM is to use a spy 
technique to identify some reliable negatives 
(RN) from the unlabeled set U, and then use an 
EM algorithm to learn from P, RN and U–RN.  

The spy technique in S-EM works as follows 
(Figure 1): First, a small set of positive examples 
(denoted by SP) from P is randomly sampled 
(line 2). The default sampling ratio in S-EM is s 
= 15%, which we also used in our experiments. 

The positive examples in SP are called “spies”. 
Then, a NB classifier is built using the set P– SP 
as positive and the set U∪SP as negative (line 3, 
4, and 5). The NB classifier is applied to classify 
each u ∈ U∪SP, i.e., to assign a probabilistic 
class label p(+|u) (+ means positive). The proba-
bilistic labels of the spies are then used to decide 
reliable negatives (RN). In particular, a probabili-
ty threshold t is determined using the probabilis-
tic labels of spies in SP and the input parameter l 
(noise level). Due to space constraints, we are 
unable to explain l. Details can be found in (Liu 
et al. 2002). t is then used to find RN from U 
(lines 8-10). The idea of the spy technique is 
clear. Since spy examples are from P and are put 
into U in building the NB classifier, they should 
behave similarly to the hidden positive cases in 
U. Thus, they can help us find the set RN.  
Algorithm Spy(P, U, s, l) 
1.  RN ← ∅;            // Reliable negative set 
2.  SP ← Sample(P, s%); 
3.  Assign each example in P – SP the class label +1; 
4.  Assign each example in U ∪ SP the class label -1; 
5.  C ←NB(P – S, U∪SP); // Produce a NB classifier  
6.  Classify each u ∈U∪SP using C; 
7.  Decide a probability threshold t using SP and l; 
8.  for each u ∈U do 
9.       if its probability p(+|u) < t then 
10.          RN ← RN ∪ {u}; 

Figure 1. Spy technique for extracting reliable 
negatives (RN) from U. 

Given the positive set P, the reliable negative 
set RN and the remaining unlabeled set U–RN, an 
Expectation-Maximization (EM) algorithm is 
run. In S-EM, EM uses the naïve Bayesian clas-
sification as its base method. The detailed algo-
rithm is given in (Liu et al. 2002). 

2.3 Bayesian Sets 

Bayesian Sets, as its name suggests, is based on 
Bayesian inference, and was designed specifical-
ly for the set expansion problem (Ghahramani 
and Heller, 2005). The algorithm learns from a 
seeds set (i.e., a positive set P) and an unlabeled 
candidate set U. Although it was not designed as 
a PU learning method, it has similar characteris-
tics and produces similar results as PU learning. 
However, there is a major difference. PU learn-
ing is a classification model, while Bayesian Sets 
is a ranking method. This difference has a major 
implication on the results that they produce as we 
will discuss in Section 5.3.  

In essence, Bayesian Sets learns a score func-
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tion using P and U to generate a score for each 
unlabeled case u ∈ U. The function is as follows:  
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Pupuscore =  (1) 

where p(u|P) represents how probable u belongs 
to the positive class represented by P. p(u) is the 
prior probability of u. Using the Bayes’ rule, eq-
uation (1) can be re-written as:              
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Pupuscore =                    (2)  

Following the idea, Ghahramani and Heller 
(2005) proposed a computable score function. 
The scores can be used to rank the unlabeled 
candidates in U to reflect how likely each u ∈ U 
belongs to P. The mathematics for computing the 
score is involved. Due to the limited space, we 
cannot discuss it here. See (Ghahramani and Hel-
ler, 2005) for details. In (Heller and Ghahramani, 
2006), Bayesian Sets was also applied to an im-
age retrieval application.  

3 Data Generation for Distributional 
Similarity, Bayesian Sets and S-EM 

Preparing the data for distributional similarity is 
fairly straightforward. Given the seeds set S, a 
seeds centroid vector is produced using the sur-
rounding word contexts (see below) of all occur-
rences of all the seeds in the corpus (Pantel et al, 
2009). In a similar way, a centroid is also pro-
duced for each candidate (or unlabeled) entity.  
Candidate entities: Since we are interested in 
named entities, we select single words or phrases 
as candidate entities based on their correspond-
ing part-of-speech (POS) tags. In particular, we 
choose the following POS tags as entity indica-
tors — NNP (proper noun), NNPS (plural proper 
noun), and CD (cardinal number). We regard a 
phrase (could be one word) with a sequence of 
NNP, NNPS and CD POS tags as one candidate 
entity (CD cannot be the first word unless it 
starts with a letter), e.g., “Windows/NNP 7/CD” 
and “Nokia/NNP N97/CD” are regarded as two 
candidates “Windows 7” and “Nokia N97”. 
Context: For each seed or candidate occurrence, 
the context is its set of surrounding words within 
a window of size w, i.e. we use w words right 
before the seed or the candidate and w words 
right after it. Stop words are removed.  

For S-EM and Bayesian Sets, both the posi-
tive set P (based on the seeds set S) and the unla-
beled candidate set U are generated differently. 
They are not represented as centroids.  

Positive and unlabeled sets: For each seed si ∈S, 
each occurrence in the corpus forms a vector as a 
positive example in P. The vector is formed 
based on the surrounding words context (see 
above) of the seed mention. Similarly, for each 
candidate d ∈ D (see above; D denotes the set of 
all candidates), each occurrence also forms a 
vector as an unlabeled example in U. Thus, each 
unique seed or candidate entity may produce 
multiple feature vectors, depending on the num-
ber of times that it appears in the corpus. 

The components in the feature vectors are 
term frequencies for S-EM as S-EM uses naïve 
Bayesian classification as its base classifier. For 
Bayesian Sets, they are 1’s and 0’s as Bayesian 
Sets only takes binary vectors based on whether 
a term occurs in the context or not.  

4 Candidate Ranking 
For distributional similarity, ranking is done us-
ing the similarity value of each candidate’s cen-
troid and the seeds’ centroid (one centroid vector 
for all seeds). Rankings for S-EM and Bayesian 
Sets are more involved. We discuss them below.  

After it ends, S-EM produces a Bayesian clas-
sifier C, which is used to classify each vector u ∈ 
U and to assign a probability p(+|u) to indicate 
the likelihood that u belongs to the positive class. 
Similarly, Bayesian Sets produces a score 
score(u) for each u (not a probability).  

Recall that for both S-EM and Bayesian Sets, 
each unique candidate entity may generate mul-
tiple feature vectors, depending on the number of 
times that the candidate entity occurs in the cor-
pus. As such, the rankings produced by S-EM 
and Bayesian Sets are not the rankings of the 
entities, but rather the rankings of the entities’ 
occurrences. Since different vectors representing 
the same candidate entity can have very different 
probabilities (for S-EM) or scores (for Bayesian 
Sets), we need to combine them and compute a 
single score for each unique candidate entity for 
ranking.  

To this end, we also take the entity frequency 
into consideration. Typically, it is highly desira-
ble to rank those correct and frequent entities at 
the top because they are more important than the 
infrequent ones in applications. With this in 
mind, we define a ranking method. 

Let the probabilities (or scores) of a candidate 
entity d ∈ D be Vd = {v1 , v2 …, vn} for the n fea-
ture vectors of the candidate. Let Md be the me-
dian of Vd. The final score (fs) for d is defined as:  
    )1log()( nMdfs d +×=         (3) 
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The use of the median of Vd can be justified 
based on the statistical skewness (Neter et al. 
1993). If the values in Vd are skewed towards the 
high side (negative skew), it means that the can-
didate entity is very likely to be a true entity, and 
we should take the median as it is also high 
(higher than the mean). However, if the skew is 
towards the low side (positive skew), it means 
that the candidate entity is unlikely to be a true 
entity and we should again use the median as it is 
low (lower than the mean) under this condition.  

Note that here n is the frequency count of 
candidate entity d in the corpus. The constant 1 is 
added to smooth the value. The idea is to push 
the frequent candidate entities up by multiplying 
the logarithm of frequency. log is taken in order 
to reduce the effect of big frequency counts. 

The final score fs(d) indicates candidate d’s 
overall likelihood to be a relevant entity. A high 
fs(d) implies a high likelihood that d is in the 
expanded entity set. We can then rank all the 
candidates based on their fs(d) values.  

5 Experimental Evaluation 

We empirically evaluate the three techniques in 
this section. We implemented distribution simi-
larity and Bayesian Sets. S-EM was downloaded 
from http://www.cs.uic.edu/~liub/S-EM/S-EM-
download.html. For both Bayesian Sets and S-
EM, we used their default parameters. EM in S-
EM ran only two iterations. For distributional 
similarity, we tested TF-IDF and PMI as feature 
values of vectors, and Cosine and Jaccard as si-
milarity measures. Due to space limitations, we 
only show the results of the PMI and Cosine 
combination as it performed the best. This com-
bination was also used in (Pantel et al., 2009). 

5.1 Corpora and Evaluation Metrics 

We used 10 diverse corpora to evaluate the tech-
niques. They were obtained from a commercial 
company. The data were crawled and extracted 
from multiple online message boards and blogs 
discussing different products and services. We 
split each message into sentences, and the sen-
tences were POS-tagged using Brill’s tagger 
(Brill, 1995). The tagged sentences were used to 
extract candidate entities and their contexts. Ta-
ble 1 shows the domains and the number of sen-
tences in each corpus, as well as the three seed 
entities used in our experiments for each corpus. 
The three seeds for each corpus were randomly 
selected from a set of common entities in the ap-
plication domain.  

Table 1. Descriptions of the 10 corpora 

Domains # Sentences Seed Entities 
 Bank 17394 Citi, Chase, Wesabe 
 Blu-ray 7093 S300, Sony, Samsung 
 Car 2095 Honda, A3, Toyota 
 Drug 1504 Enbrel, Hurmia, Methotrexate 
 Insurance 12419 Cobra, Cigna, Kaiser 
 LCD 1733 PZ77U, Samsung, Sony 
 Mattress 13191 Simmons, Serta, Heavenly 
 Phone 14884 Motorola, Nokia, N95 
 Stove 25060 Kenmore, Frigidaire, GE 
 Vacuum 13491 Dc17, Hoover, Roomba 

The regular evaluation metrics for named enti-
ty recognition such as precision and recall are not 
suitable for our purpose as we do not have the 
complete sets of gold standard entities to com-
pare with. We adopt rank precision, which is 
commonly used for evaluation of entity set ex-
pansion techniques (Pantel et al., 2009):  

Precision @ N: The percentage of correct enti-
ties among the top N entities in the ranked list.  

5.2 Experimental Results 

The detailed experimental results for window 
size 3 (w=3) are shown in Table 2 for the 10 cor-
pora. We present the precisions at the top 15-, 
30- and 45-ranked positions (i.e., precisions 
@15, 30 and 45) for each corpus, with the aver-
age given in the last column. For distributional 
similarity, to save space Table 2 only shows the 
results of Distr-Sim-freq, which is the distribu-
tional similarity method with term frequency 
considered in the same way as for Bayesian Sets 
and S-EM, instead of the original distributional 
similarity, which is denoted by Distr-Sim. This 
is because on average, Distr-Sim-freq performs 
better than Distr-Sim. However, the summary 
results of both Distr-Sim-freq and Distr-Sim are 
given in Table 3.  

From Table 2, we observe that on average S-
EM outperforms Distr-Sim-freq by about 12 – 
20% in terms of Precision @ N. Bayesian-Sets 
is also more accurate than Distr-Sim-freq, but S-
EM outperforms Bayesian-Sets by 9 – 10%. 

To test the sensitivity of window size w, we 
also experimented with w = 6 and w = 9. Due to 
space constraints, we present only their average 
results in Table 3. Again, we can see the same 
performance pattern as in Table 2 (w = 3): S-EM 
performs the best, Bayesian-Sets the second, and 
the two distributional similarity methods the 
third and the fourth, with Distr-Sim-freq slightly 
better than Distr-Sim.  
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5.3 Why does S-EM Perform Better? 

From the tables, we can see that both S-EM and 
Bayesian Sets performed better than distribution-
al similarity. S-EM is better than Bayesian Sets. 
We believe that the reason is as follows: Distri-
butional similarity does not use any information 
in the candidate set (or the unlabeled set U). It 
tries to rank the candidates solely through simi-
larity comparisons with the given seeds (or posi-
tive cases). Bayesian Sets is better because it 
considers U. Its learning method produces a 
weight vector for features based on their occur-
rence differences in the positive set P and the 
unlabeled set U (Ghahramani and Heller 2005). 
This weight vector is then used to compute the 
final scores used in ranking. In this way, Baye-
sian Sets is able to exploit the useful information 
in U that was ignored by distributional similarity. 
S-EM also considers these differences in its NB 
classification; in addition, it uses the reliable 
negative set (RN) to help distinguish negative 
and positive cases, which both Bayesian Sets and 
distributional similarity do not do. We believe 
this balanced attempt by S-EM to distinguish the 
positive and negative cases is the reason for the 
better performance of S-EM. This raises an inter-
esting question. Since Bayesian Sets is a ranking 
method and S-EM is a classification method, can 
we say even for ranking (our evaluation is based 

on ranking) classification methods produce better 
results than ranking methods? Clearly, our single 
experiment cannot answer this question. But in-
tuitively, classification, which separates positive 
and negative cases by pulling them towards two 
opposite directions, should perform better than 
ranking which only pulls the data in one direc-
tion. Further research on this issue is needed. 

6 Conclusions and Future Work 

Although distributional similarity is a classic 
technique for entity set expansion, this paper 
showed that PU learning performs considerably 
better on our diverse corpora. In addition, PU 
learning also outperforms Bayesian Sets (de-
signed specifically for the task). In our future 
work, we plan to experiment with various other 
PU learning methods (Liu et al. 2003; Lee and 
Liu, 2003; Li et al. 2007; Elkan and Noto, 2008) 
on this entity set expansion task, as well as other 
tasks that were tackled using distributional simi-
larity. In addition, we also plan to combine some 
syntactic patterns (Etzioni et al. 2005; Sarmento 
et al. 2007) to further improve the results.  
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Research Grant 2009-1062-1-A, and would like 
to thank Suk Hwan Lim and Eamonn O'Brien- 
Strain for many helpful discussions.   

Table 2.  Precision @ top N (with 3 seeds, and window size w = 3) 

 Bank Blu-ray Car  Drug Insurance LCD Mattress Phone Stove  Vacuum Avg. 
 Top 15 
Distr-Sim-freq 0.466 0.333 0.800 0.666 0.666 0.400 0.666 0.533 0.666 0.733 0.592
Bayesian-Sets 0.533 0.266 0.600 0.666 0.600 0.733 0.666 0.533 0.800 0.800 0.617

S-EM 0.600 0.733 0.733 0.733 0.533 0.666 0.933 0.533 0.800 0.933 0.720 
 Top 30 

Distr-Sim-freq 0.466 0.266 0.700 0.600 0.500 0.333 0.500 0.466 0.600 0.566 0.499 
Bayesian-Sets 0.433 0.300 0.633 0.666 0.400 0.566 0.700 0.333 0.833 0.700 0.556 

S-EM 0.500 0.700 0.666 0.666 0.566 0.566 0.733 0.600 0.600 0.833 0.643 
 Top 45 

Distr-Sim-freq 0.377 0.288 0.555 0.500 0.377 0.355 0.444 0.400 0.533 0.400 0.422 
Bayesian-Sets 0.377 0.333 0.666 0.555 0.377 0.511 0.644 0.355 0.733 0.600 0.515 

S-EM 0.466 0.688 0.644 0.733 0.533 0.600 0.644 0.555 0.644 0.688 0.620 

Table 3. Average precisions over the 10 corpora of different window size (3 seeds) 

Window-size w = 3   Window-size  w = 6  Window-size  w = 9 
Top Results Top 15 Top 30 Top 45  Top 15 Top 30 Top 45  Top 15 Top 30 Top 45
Distr-Sim 0.579 0.466 0.410  0.553 0.483 0.439  0.519 0.473 0.412 

Distr-Sim-freq 0.592 0.499 0.422  0.553 0.492 0.441  0.559 0.476 0.410 
Bayesian-Sets 0.617 0.556 0.515  0.593 0.539 0.524  0.539 0.522 0.497 

S-EM 0.720 0.643 0.620  0.666 0.606 0.597  0.666 0.620 0.604 
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