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Abstract

We address the problem of selecting non-
domain-specific language model training
data to build auxiliary language models
for use in tasks such as machine transla-
tion. Our approach is based on comparing
the cross-entropy, according to domain-
specific and non-domain-specifc language
models, for each sentence of the text
source used to produce the latter language
model. We show that this produces better
language models, trained on less data, than
both random data selection and two other
previously proposed methods.
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The normal practice when using multiple lan-
guages models in machine translation seems to be
to train models on as much data as feasible from
each source, and to depend on feature weight opti-
mization to down-weight the impact of data that is
less well-matched to the translation application. In
this paper, however, we show that for a data source
that is not entirely in-domain, we can improve the
match between the language model from that data
source and the desired application output by intel-
ligently selecting a subset of the available data as
language model training data. This not only pro-
duces a language model better matched to the do-
main of interest (as measured in terms of perplex-

_ ity on held-out in-domain data), but it reduces the
1 Introduction computational resources needed to exploit a large

Statistical N-gram language models are widely@mount of non-domain-specific data, since the re-
used in applications that produce natural-languag80urces needed to filter a large amount of data are
text as output, particularly speech recognition andnuch less (especially in terms of memory) than
machine translation. It seems to be a univerihose required to build a language model from all
sal truth that output quality can always be im-the data.
proved by using more language model trainin
data, but only if the training data is reasonabl
well-matched to the desired output. This present©ur approach to the problem assumes that we have
a problem, because in virtually any particular ap-enough in-domain data to train a reasonable in-
plication the amount of in-domain data is limited. domain language model, which we then use to
Thus it has become standard practice to comhelp score text segments from other data sources,
bine in-domain data with other data, either byand we select segments based on a score cutoff op-
combining N-gram counts from in-domain andtimized on held-out in-domain data.
other data (usually weighting the counts in some We are aware of two comparable previous ap-
way), or building separate language models fronproaches. Lin et al. (1997) and Gao et al. (2002)
different data sources, interpolating the languagéoth used a method similar to ours, in which the
model probabilities either linearly or log-linearly. metric used to score text segments is their perplex-
Log-linear interpolation is particularly popular ity according to the in-domain language model.
in statistical machine translation (e.g., Brants efThe candidate text segments with perplexity less
al., 2007), because the interpolation weights cathan some threshold are selected.
easily be discriminatively trained to optimize an The second previous approach does not explic-
end-to-end translation objective function (such astly make use of an in-domain language model, but
BLEU) by making the log probability according to is still applicable to our scenario. Klakow (2000)
each language model a separate feature function estimates a unigram language model from the
the overall translation model. entire non-domain-specific corpus to be selected

32 Approaches to the Problem
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from, and scores each candidate text segment from
that corpus by the change in the log likelihood
of the ir?—dom)allin data acgcording to t?]e unigram P(Npg|s,N) = P(sINt, N)P(N7|)
model, if that segment were removed from the cor- P(s|N)

pus used to estimate the unigram model. Those gjnce Ny is a subset ofN, P(s|Ny, N)
s_egr_nents whose_ removql would decrease the IO§(5|N1), and by our assumption about the rela-
likelihood of the in-domain data more than SOMEionship ofI and Ny, P(s|Ny) = P(s|I). Hence,
threshold are selected.

Our method is a fairly simple variant of scoring P(Ny|s, N) = P(s|I)P(Ny|N)
by perplexity according to an in-domain language ’ P(s|N)
model. First, note that selecting segments baseﬁj we could estimate all the probabilities in the

on a perplexity threshold is equivalent to SeIeCtingr'ght-hand side of this equation, we could use it

based on a cross-entropy threshold. Perplexity and

cross-entropy are monotonically related, since thé[zO select text segments that have a high probability

perplexity of a strings according to a model/ is Of\t/)\;?ing inN,t._ o
simply b"v () whereH ,(s) is the cross-entropy . Ie can es lmad I(sclm) arcllI (s] )I (})/Nram-
of s according toM andb is the base with re- "9 'anguage modeis ohand a sample ofv, re-

spect to which the cross-entropy is measured (e.ggpectlvely. That leaves us only(N;|N), to es-

bits or nats). However, instead of scoring text seg;['mate’ but we really don't care what(N;|N)

ments by perplexity or cross-entropy according ta>" because knowing that would still leave us won-

the in-domain language model, we score them b)(/jerlng what threshold to set aR(Ny|s, V). We

the difference of the cross-entropy of a text seg don’t care about classification accuracy; we care

ment according to the in-domain language mode?nIy about the quality of the resulting language

and the cross-entropy of the text segment accord- ?hdel,hscl) dweerIgIh t ?DS Wﬁ” ':ESE atttgz m'pt totr]:md
ing to a language model trained on a random sarrEil reshold oP(s|I)/P(s| V) that optimizes the

ple of the data source from which the text segmen It of the resuilting language model to held-out in-
is drawn domain data.

. _ _ Equivalently, we can work in the log domain
To state this formally, lef be an in-domaindata jith the quantitylog(P(s|I)) — log(P(s|N)).

setandV be a non-domain-specific (or otherwise Thjs gets us very close to working with the differ-
not entirely in-domain) data set. Léf;(s) bethe  gncein cross-entropies, becatte s) — Hy (s) is
per-word cross-entropy, according to a Ianguagieus»[a length-normalized version bifg(P(s|I)) —
model trained o, of a text segmentdrawn from log(P(s|N)), with the sign reversed. The rea-
N. Let Hy(s) be the per-word cross-entropy of 5o that we need to normalize for length is that
according to a language model trained on a range yalue oflog(P(s|I)) — log(P(s|N)) tends to
dom sample ofV. We partitionV into text seg-  cqrrelate very strongly with text segment length.

ments (e.g,, sentences), and score the segments §Cthe candidate text segments vary greatly in
cording toH; (s) — HN(S)’ selecting all text seg- |ength—e.g., if we partitionV into sentences—
ments whose score is less than a thresfiold this correlation can be a serious problem.

This method can be justified by reasoning sim- We estimated this effect on a 1000-sentence
liar to that used to derive methods for trainingsample of our experimental data described be-
binary text classifiers without labeled negativelow, and found the correlation between sentence
examples (Denis et al., 2002; Elkin and Noto,log probability difference and sentence length to
2008). Let us imagine that our non-domain-be r = —0.92, while the cross-entropy differ-
specific corpugV contains an in-domain subcor- ence was almost uncorrelated with sentence length
pus Ny, drawn from the same distribution as our (r = 0.04). Hence, using sentence probability ra-
in-domain corpud. SinceNy is statistically just tios or log probability differences as our scoring
like our in-domain datd, it would seem to be a function would result in selecting disproportion-
good candidate for the data that we want to extracately very short sentences. We tested this in an
from N. By a simple variant of Bayes rule, the experiment not described here in detail, and found
probability P(N;|s, N') of a text segmerd, drawn it not to be significantly better as a selection crite-
randomly fromN, being inN; is given by rion than random selection.
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Corpus Sentence count Token count| discounted probability mass at the unigram level
Gigaword 133,310,562 3,445,946,266 was added to the probability gflUNK> A count
Europarl train 1,651,392 48,230,859 cutoff of 2 occurrences was applied to the trigrams
Europarl test 2,000 55,566| and 4-grams in estimating these models.
We computed the cross-entropy of each sen-
Table 1: Corpus size statistics tence in the Gigaword corpus according to both

models, and scored each sentence by the differ-

ence in cross-entropy g, (s) — Hgw(s). We then

selected subsets of the Gigaword data correspond-
ding to 8 cutoff points in the cross-entropy differ-

We have empirically evaluated our propose : .
. . ence scores, and trained 4-gram models (again us-
method for selecting data from a non-domain-, . . . )
o ) - ._ing absolute discounting with a discount of 0.7) on
specific source to model text in a specific domain. .
) . . each of these subsets and on the full Gigaword cor-
For the in-domain corpus, we chose the English

side of the English-French parallel text from re-PUS: These language models were estimated with-

lease v5 of the Europarl corpus (Koehn, 2005).out restricting the vocabulary or applying count
) . . cutoffs, but the only parameters computed were
This consists of proceedings of the European Par- . )
. those needed to determine the perplexity of the
liament from 1999 through 2009. We used the .
: . . held-out Europarl test set, which saves a substan-
text from 1999 through 2008 as in-domain train- . T L

. : tial amount of computation in determining the op-
ing data, and we used the first 2000 sentences .
timal selection threshold.

from January 2009 as test data. For the non- Wi q lect hod h
domain-specific corpus, we used the LDC Eng- e compared our selection method to three

lish Gigaword Third Edition (LDC Catalog No.: other methods. As a baseline, we tramgd lan-
LDC2007T07). guage models on random subsets of the Gigaword

We used a simple tokenization scheme on an:orpus of approximately equal size to the data
data, splitting on white space and on boundariege'[S produced by the cutoffs we selected for the

. . cross-entropy difference scores. Next, we scored
between alphanumeric and nonalphanumeric (e.g,,

. . . o Il th igawor nten he cross-entr
punctuation) characters. With this tokenlzatlon,a the .G gaword sentences byt & cross-entropy
a&cordmg to the Europarl-trained model alone.

the sizes of our data sets in terms of sentences alk . ) .
. .As we noted above, this is equivalent to the in-
tokens are shown in Table 1. The token counts in-

clude added end-of-sentence tokens. domain perplexity scoring method used by Lin et

al. (1997) and Gao et al. (2002). Finally, we im-

To implement our data selection method we re'plemented Klakow’s (2000) method, scoring each

quirgd one language mode! trained on the Eumpa'ﬂ;igaword sentence by removing it from the Giga-
galnlng dati aﬂd or|1e rained ond tt|1e G'gaWOLCI‘Nord corpus and computing the difference in the

ata. To make these 'ahguage models compara I%'g likelihood of the Europarl corpus according to
and_to show the feas_lblllty of th|m|2|ng the fit to unigram models trained on the Gigaword corpus
the.m-do_mam data without tra|n.|ng a modgl on thewith and without that sentence. With the latter two
entire Gigaword corpus, we trained the GlgaWO“%ethods, we chose cutoff points in the resulting

language model for data selection on a random., s 1 produce data sets approximately equal in
sample of the Gigaword corpus of a similar size tog;, ¢ ¢, those obtained using our selection method.
that of the Europarl training data: 1,874,051 sen-

tences, 48,459,945 tokens. 4 Results
To further increase the comparability of these

Europarl and Gigaword language models, we reFor all four selection methods, plots of test set per-
stricted the vocabulary of both models to the to-plexity vs. the number of training data tokens se-
kens appearing at least twice in the Europarl traintected are displayed in Figure 1. (Note that the
ing data, treating all other tokens as instances dfraining data token counts are displayed on a log-
<UNK> With this vocabulary, 4-gram language arithmic scale.) The test set perplexity for the lan-
models were trained on both the Europarl trainingguage model trained on the full Gigaword corpus
data and the Gigaword random sample using backs 135. As we might expect, reducing training
off absolute discounting (Ney et al. 1994), with adata by random sampling always increases per-
discount of 0.7 used for all N-gram lengths. Theplexity. Selecting Gigaword sentences by their

3 Experiments
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Figure 1: Test set perplexity vs. training set size

Selection Method Original LM PPL | Modified LM PPL
in-domain cross-entropy scoring 124.4 124.8
Klakow’s method 110.5 110.8
cross-entropy difference scoring 100.7 101.9

Table 2: Results adjusted for vocabulary coverage

cross-entropy according to the Europarl-trainedhe training sets that appear to produce the lowest
model is effective in reducing both test set perplexperplexity for each selection method, however, the
ity and training corpus size, with an optimum per-spread of OOV counts is much narrower, ranging
plexity of 124, obtained with a model built from 53 (0.10%) for best training set based on cross-
36% of the Gigaword corpus. Klakow’s method entropy difference scoring, to 20 (0.03%), for ran-
is even more effective, with an optimum perplex-dom selection.
ity of 111, obtained with a model built from 21% 14 control for the difference in vocabulary, we
of the Gigaword corpus. The cross-entropy differ-astimated a modified 4-gram language model for
ence selection method, however, is yet more effecagch selection method (other than random se-
tive, with an optimum perplexity of 101, obtained lection) using the training set that appeared to
with a model built from less than 7% of the Giga- produce the lowest perplexity for that selection
word corpus. method in our initial experiments. In the modified
The comparisons implied by Figure 1, how-language models, the unigram model based on the
ever, are only approximate, because each perpleselected training set is smoothed by absolute dis-
ity (even along the same curve) is computed withcounting, and backed-off to an unsmoothed uni-
respect to a different vocabulary, resulting in a dif-gram model based on the full Gigaword corpus.
ferent out-of-vocabulary (OOV) rate. OOV tokens This produces language models that are normal-
in the test data are excluded from the perplexityized over the same vocabulary as a model trained
computation, so the perplexity measurements aren the full Gigaword corpus; thus the test set has
not strictly comparable. the same OQVs for each model.

Out of the 55566 test set tokens, the number Test set perplexity for each of these modifed
of OOV tokens ranges from 418 (0.75%), for thelanguage models is compared to that of the orig-
smallest training set based on in-domain crossinal version of the model in Table 2. It can be
entropy scoring, to 20 (0.03%), for training on seen that adjusting the vocabulary in this way, so
the full Gigaword corpus. If we consider only that all models are based on the same vocabulary,
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yields only very small changes in the measured ACM Transactions on Asian Language Informa-
test-set perplexity, and these differences are much tion Processing1(1):3-33.

smaller than the differences between the different

selection methods, whichever way the vocabulanP'€trich Klakow. 2000. Selecting articles from
of the language models is determined. the language model training corpus.|@ASSP
200Q June 5-9, Istanbul, Turkey, vol. 3, 1695—

5 Conclusions 1698.

The cross-entropy difference selection method inPhilipp Koehn. 2005. Europarl: a parallel cor-
troduced here seems to produce language mod- pus for statistical machine translation. MT
els that are both a better match to texts in a re- Summit X September 12-16, Phuket, Thailand,
stricted domain, and require less data for train- 79-86.

ing, than any of the other data selection methods i i i ) )
tested. This study is preliminary, however, in that>und-Chien Lin, Chi-Lung Tsai, Lee-Feng Chien,
we have not yet shown improved end-to-end task K€-Jiann Chen, and Lin-Shan Lee. ~1997.
performance applying this approach, such as im- Chineése language model adaptation based on
proved BEU scores in a machine translation task, document classification and multiple domain-
However, we believe there is reason to be opti- specific language models. BUROSPEECH-
mistic about this. When a language model trained 1997 1463-1466.

on non-domain-specific data is used in a statistijermann Ney, Ute Essen, and Reinhard Kneser.
cal translation model as a separate feature func- 1994 on structuring dependencies in stochas-

tion (as is often the case), lower perplexity on in- - language modellingComputer Speech and
domain target language test data derived from ref- Language8:1-38.

erence translations corresponds directly to assign-
ing higher language model feature scores to those
reference translations, which should in turn lead to
translation system output that matches reference
translations better.
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