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Abstract

The Minimum Description Length (MDL)
principle is a method for model selection
that trades off between the explanation of
the data by the model and the complexity
of the model itself. Inspired by the MDL
principle, we develop an objective func-
tion for generative models that captures
the description of the data by the model
(log-likelihood) and the description of the
model (model size). We also develop a ef-
ficient general search algorithm based on
the MAP-EM framework to optimize this
function. Since recent work has shown that
minimizing the model size in a Hidden
Markov Model for part-of-speech (POS)
tagging leads to higher accuracies, we test
our approach by applying it to this prob-
lem. The search algorithm involves a sim-
ple change to EM and achieves high POS
tagging accuracies on both English and
Italian data sets.

1 Introduction

The Minimum Description Length (MDL) princi-
ple is a method for model selection that provides a
generic solution to the overfitting problem (Barron
et al., 1998). A formalization of Ockham’s Razor,
it says that the parameters are to be chosen that
minimize the description length of the data given
the model plus the description length of the model
itself.

It has been successfully shown that minimizing
the model size in a Hidden Markov Model (HMM)
for part-of-speech (POS) tagging leads to higher
accuracies than simply running the Expectation-
Maximization (EM) algorithm (Dempster et al.,
1977). Goldwater and Griffiths (2007) employ a
Bayesian approach to POS tagging and use sparse
Dirichlet priors to minimize model size. More re-

cently, Ravi and Knight (2009) alternately mini-
mize the model using an integer linear program
and maximize likelihood using EM to achieve the
highest accuracies on the task so far. However, in
the latter approach, because there is no single ob-
jective function to optimize, it is not entirely clear
how to generalize this technique to other prob-
lems. In this paper, inspired by the MDL princi-
ple, we develop an objective function for genera-
tive models that captures both the description of
the data by the model (log-likelihood) and the de-
scription of the model (model size). By using a
simple prior that encourages sparsity, we cast our
problem as a search for the maximum a poste-
riori (MAP) hypothesis and present a variant of
EM to approximately search for the minimum-
description-length model. Applying our approach
to the POS tagging problem, we obtain higher ac-
curacies than both EM and Bayesian inference as
reported by Goldwater and Griffiths (2007). On a
Italian POS tagging task, we obtain even larger
improvements. We find that our objective function
correlates well with accuracy, suggesting that this
technique might be useful for other problems.

2 MAP EM with Sparse Priors

2.1 Objective function

In the unsupervised POS tagging task, we are
given a word sequence w = w1, . . . ,wN and want
to find the best tagging t = t1, . . . , tN , where
ti ∈ T , the tag vocabulary. We adopt the problem
formulation of Merialdo (1994), in which we are
given a dictionary of possible tags for each word
type.

We define a bigram HMM

P(w, t | θ) =

N∏
i=1

P(w, t | θ) · P(ti | ti−1) (1)

In maximum likelihood estimation, the goal is to
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find parameter estimates

θ̂ = arg max
θ

log P(w | θ) (2)

= arg max
θ

log
∑

t
P(w, t | θ) (3)

The EM algorithm can be used to find a solution.
However, we would like to maximize likelihood
and minimize the size of the model simultane-
ously. We define the size of a model as the number
of non-zero probabilities in its parameter vector.
Let θ1, . . . , θn be the components of θ. We would
like to find

θ̂ = arg min
θ

(
− log P(w | θ) + α‖θ‖0

)
(4)

where ‖θ‖0, called the L0 norm of θ, simply counts
the number of non-zero parameters in θ. The
hyperparameter α controls the tradeoff between
likelihood maximization and model minimization.
Note the similarity of this objective function with
MDL’s, where α would be the space (measured
in nats) needed to describe one parameter of the
model.

Unfortunately, minimization of the L0 norm
is known to be NP-hard (Hyder and Mahata,
2009). It is not smooth, making it unamenable
to gradient-based optimization algorithms. There-
fore, we use a smoothed approximation,

‖θ‖0 ≈
∑

i

(
1 − e

−θi
β

)
(5)

where 0 < β ≤ 1 (Mohimani et al., 2007). For
smaller values of β, this closely approximates the
desired function (Figure 1). Inverting signs and ig-
noring constant terms, our objective function is
now:

θ̂ = arg max
θ

log P(w | θ) + α
∑

i

e
−θi
β

 (6)

We can think of the approximate model size as
a kind of prior:

P(θ) =
expα

∑
i e
−θi
β

Z
(7)

log P(θ) = α ·
∑

i

e
−θi
β − log Z (8)

where Z =
∫

dθ expα
∑

i e
−θi
β is a normalization

constant. Then our goal is to find the maximum
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Figure 1: Ideal model-size term and its approxima-
tions.

a posterior parameter estimate, which we find us-
ing MAP-EM (Bishop, 2006):

θ̂ = arg max
θ

log P(w, θ) (9)

= arg max
θ

(
log P(w | θ) + log P(θ)

)
(10)

Substituting (8) into (10) and ignoring the constant
term log Z, we get our objective function (6) again.

We can exercise finer control over the sparsity
of the tag-bigram and channel probability distri-
butions by using a different α for each:

arg max
θ

(
log P(w | θ) +

αc

∑
w,t

e
−P(w|t)

β + αt

∑
t,t′

e
−P(t′ |t)

β

)
(11)

In our experiments, we set αc = 0 since previ-
ous work has shown that minimizing the number
of tag n-gram parameters is more important (Ravi
and Knight, 2009; Goldwater and Griffiths, 2007).

A common method for preferring smaller mod-
els is minimizing the L1 norm,

∑
i |θi|. However,

for a model which is a product of multinomial dis-
tributions, the L1 norm is a constant.∑

i

|θi| =
∑

i

θi

=
∑

t

∑
w

P(w | t) +
∑

t′
P(t′ | t)


= 2|T |

Therefore, we cannot use the L1 norm as part of
the size term as the result will be the same as the
EM algorithm.
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2.2 Parameter optimization
To optimize (11), we use MAP EM, which is an it-
erative search procedure. The E step is the same as
in standard EM, which is to calculate P(t | w, θt),
where the θt are the parameters in the current iter-
ation t. The M step in iteration (t + 1) looks like

θt+1 = arg max
θ

(
EP(t|w,θt)

[
log P(w, t | θ)

]
+

αt

∑
t,t′

e
−P(t′ |t)

β

) (12)

Let C(t,w; t,w) count the number of times the
word w is tagged as t in t, and C(t, t′; t) the number
of times the tag bigram (t, t′) appears in t. We can
rewrite the M step as

θt+1 = arg max
θ

(∑
t

∑
w

E[C(t,w)] log P(w | t)+

∑
t

∑
t′

(
E[C(t, t′)] log P(t′ | t) + αte

−P(t′ |t)
β

) (13)

subject to the constraints
∑

w P(w | t) = 1 and∑
t′ P(t′ | t) = 1. Note that we can optimize each

term of both summations over t separately. For
each t, the term∑

w

E[C(t,w)] log P(w | t) (14)

is easily optimized as in EM: just let P(w | t) ∝
E[C(t,w)]. But the term∑

t′

(
E[C(t, t′)] log P(t′ | t) + αte

−P(t′ |t)
β

)
(15)

is trickier. This is a non-convex optimization prob-
lem for which we invoke a publicly available
constrained optimization tool, ALGENCAN (An-
dreani et al., 2007). To carry out its optimization,
ALGENCAN requires computation of the follow-
ing in every iteration:

• Objective function, defined in equation (15).
This is calculated in polynomial time using
dynamic programming.

• Constraints: gt =
∑

t′ P(t′ | t) − 1 = 0 for
each tag t ∈ T . Also, we constrain P(t′ | t) to
the interval [ε, 1].1

1We must have ε > 0 because of the log P(t′ | t) term
in equation (15). It seems reasonable to set ε � 1

N ; in our
experiments, we set ε = 10−7.

• Gradient of objective function:

∂F
∂P(t′ | t)

=
E[C(t, t′)]

P(t′ | t)
−
αt

β
e
−P(t′ |t)

β (16)

• Gradient of equality constraints:

∂gt

∂P(t′′ | t′)
=

1 if t = t′

0 otherwise
(17)

• Hessian of objective function, which is not
required but greatly speeds up the optimiza-
tion:

∂2F
∂P(t′ | t)∂P(t′ | t)

= −
E[C(t, t′)]
P(t′ | t)2 + αt

e
−P(t′ |t)

β

β2

(18)
The other second-order partial derivatives are
all zero, as are those of the equality con-
straints.

We perform this optimization for each instance
of (15). These optimizations could easily be per-
formed in parallel for greater scalability.

3 Experiments

We carried out POS tagging experiments on En-
glish and Italian.

3.1 English POS tagging
To set the hyperparameters αt and β, we prepared
three held-out sets H1,H2, and H3 from the Penn
Treebank. Each Hi comprised about 24, 000 words
annotated with POS tags. We ran MAP-EM for
100 iterations, with uniform probability initializa-
tion, for a suite of hyperparameters and averaged
their tagging accuracies over the three held-out
sets. The results are presented in Table 2. We then
picked the hyperparameter setting with the highest
average accuracy. These were αt = 80, β = 0.05.
We then ran MAP-EM again on the test data with
these hyperparameters and achieved a tagging ac-
curacy of 87.4% (see Table 1). This is higher than
the 85.2% that Goldwater and Griffiths (2007) ob-
tain using Bayesian methods for inferring both
POS tags and hyperparameters. It is much higher
than the 82.4% that standard EM achieves on the
test set when run for 100 iterations.

Using αt = 80, β = 0.05, we ran multiple ran-
dom restarts on the test set (see Figure 2). We find
that the objective function correlates well with ac-
curacy, and picking the point with the highest ob-
jective function value achieves 87.1% accuracy.
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αt
β

0.75 0.5 0.25 0.075 0.05 0.025 0.0075 0.005 0.0025
10 82.81 82.78 83.10 83.50 83.76 83.70 84.07 83.95 83.75
20 82.78 82.82 83.26 83.60 83.89 84.88 83.74 84.12 83.46
30 82.78 83.06 83.26 83.29 84.50 84.82 84.54 83.93 83.47
40 82.81 83.13 83.50 83.98 84.23 85.31 85.05 83.84 83.46
50 82.84 83.24 83.15 84.08 82.53 84.90 84.73 83.69 82.70
60 83.05 83.14 83.26 83.30 82.08 85.23 85.06 83.26 82.96
70 83.09 83.10 82.97 82.37 83.30 86.32 83.98 83.55 82.97
80 83.13 83.15 82.71 83.00 86.47 86.24 83.94 83.26 82.93
90 83.20 83.18 82.53 84.20 86.32 84.87 83.49 83.62 82.03

100 83.19 83.51 82.84 84.60 86.13 85.94 83.26 83.67 82.06
110 83.18 83.53 83.29 84.40 86.19 85.18 80.76 83.32 82.05
120 83.08 83.65 83.71 84.11 86.03 85.39 80.66 82.98 82.20
130 83.10 83.19 83.52 84.02 85.79 85.65 80.08 82.04 81.76
140 83.11 83.17 83.34 85.26 85.86 85.84 79.09 82.51 81.64
150 83.14 83.20 83.40 85.33 85.54 85.18 78.90 81.99 81.88

Table 2: Average accuracies over three held-out sets for English.

system accuracy (%)
Standard EM 82.4

+ random restarts 84.5
(Goldwater and Griffiths, 2007) 85.2
our approach 87.4

+ random restarts 87.1

Table 1: MAP-EM with a L0 norm achieves higher
tagging accuracy on English than (2007) and much
higher than standard EM.

system zero parameters bigram types
maximum possible 1389 –
EM, 100 iterations 444 924
MAP-EM, 100 iterations 695 648

Table 3: MAP-EM with a smoothed L0 norm
yields much smaller models than standard EM.

We also carried out the same experiment with stan-
dard EM (Figure 3), where picking the point with
the highest corpus probability achieves 84.5% ac-
curacy.

We also measured the minimization effect of the
sparse prior against that of standard EM. Since our
method lower-bounds all the parameters by ε, we
consider a parameter θi as a zero if θi ≤ ε. We
also measured the number of unique tag bigram
types in the Viterbi tagging of the word sequence.
Table 3 shows that our method produces much
smaller models than EM, and produces Viterbi
taggings with many fewer tag-bigram types.

3.2 Italian POS tagging

We also carried out POS tagging experiments on
an Italian corpus from the Italian Turin Univer-
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Figure 2: Tagging accuracy vs. objective func-
tion for 1152 random restarts of MAP-EM with
smoothed L0 norm.

sity Treebank (Bos et al., 2009). This test set com-
prises 21, 878 words annotated with POS tags and
a dictionary for each word type. Since this is all
the available data, we could not tune the hyperpa-
rameters on a held-out data set. Using the hyper-
parameters tuned on English (αt = 80, β = 0.05),
we obtained 89.7% tagging accuracy (see Table 4),
which was a large improvement over 81.2% that
standard EM achieved. When we tuned the hyper-
parameters on the test set, the best setting (αt =

120, β = 0.05 gave an accuracy of 90.28%.

4 Conclusion

A variety of other techniques in the literature have
been applied to this unsupervised POS tagging
task. Smith and Eisner (2005) use conditional ran-
dom fields with contrastive estimation to achieve
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αt
β

0.75 0.5 0.25 0.075 0.05 0.025 0.0075 0.005 0.0025
10 81.62 81.67 81.63 82.47 82.70 84.64 84.82 84.96 84.90
20 81.67 81.63 81.76 82.75 84.28 84.79 85.85 88.49 85.30
30 81.66 81.63 82.29 83.43 85.08 88.10 86.16 88.70 88.34
40 81.64 81.79 82.30 85.00 86.10 88.86 89.28 88.76 88.80
50 81.71 81.71 78.86 85.93 86.16 88.98 88.98 89.11 88.01
60 81.65 82.22 78.95 86.11 87.16 89.35 88.97 88.59 88.00
70 81.69 82.25 79.55 86.32 89.79 89.37 88.91 85.63 87.89
80 81.74 82.23 80.78 86.34 89.70 89.58 88.87 88.32 88.56
90 81.70 81.85 81.00 86.35 90.08 89.40 89.09 88.09 88.50

100 81.70 82.27 82.24 86.53 90.07 88.93 89.09 88.30 88.72
110 82.19 82.49 82.22 86.77 90.12 89.22 88.87 88.48 87.91
120 82.23 78.60 82.76 86.77 90.28 89.05 88.75 88.83 88.53
130 82.20 78.60 83.33 87.48 90.12 89.15 89.30 87.81 88.66
140 82.24 78.64 83.34 87.48 90.12 89.01 88.87 88.99 88.85
150 82.28 78.69 83.32 87.75 90.25 87.81 88.50 89.07 88.41

Table 4: Accuracies on test set for Italian.
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Figure 3: Tagging accuracy vs. likelihood for 1152
random restarts of standard EM.

88.6% accuracy. Goldberg et al. (2008) provide
a linguistically-informed starting point for EM to
achieve 91.4% accuracy. More recently, Chiang et
al. (2010) use GIbbs sampling for Bayesian in-
ference along with automatic run selection and
achieve 90.7%.

In this paper, our goal has been to investi-
gate whether EM can be extended in a generic
way to use an MDL-like objective function that
simultaneously maximizes likelihood and mini-
mizes model size. We have presented an efficient
search procedure that optimizes this function for
generative models and demonstrated that maxi-
mizing this function leads to improvement in tag-
ging accuracy over standard EM. We infer the hy-
perparameters of our model using held out data
and achieve better accuracies than (Goldwater and
Griffiths, 2007). We have also shown that the ob-
jective function correlates well with tagging accu-

racy supporting the MDL principle. Our approach
performs quite well on POS tagging for both En-
glish and Italian. We believe that, like EM, our
method can benefit from more unlabeled data, and
there is reason to hope that the success of these
experiments will carry over to other tasks as well.
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